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ABSTRACT
Peer grading is widely used in MOOCs and in standard university
settings. The quality of grades obtained via peer grading is essential
for the educational process. In this work, we study the factors that
influence errors in peer grading. We analyze 288 assignments with
25,633 submissions and 113,169 reviews conducted with Crowd-
Grader, a web based peer grading tool. First, we found that large
grading errors are generally more closely correlated with hard-to-
grade submission, rather than with imprecise students. Second, we
detected a weak correlation between review accuracy and student
proficiency, as measured by the quality of the student’s own work.
Third, we found little correlation between review accuracy and the
time it took to perform the review, or how late in the review pe-
riod the review was performed. Finally, we found a clear evidence
of tit-for-tat behavior when students give feedback on the reviews
they received. We conclude with remarks on how these data can
lead to improvements in peer-grading tools.

1. INTRODUCTION
In peer grading, students review and grade each other’s work. The
grades assigned by the students to each item are then merged into a
single consensus grade for the item. Peer grading has several ben-
efits, as reported in the literature, including the fact that students
learn from each other’s work, and the reduced workload on the in-
structors. For these reasons, peer grading has been widely used
both in MOOCs, where it would be infeasible for a small number
of instructors to grade all work [13, 1, 5, 11], and in standard uni-
versity classes [16, 14, 9, 17, 3, 15].

Successful peer grading is predicated on the ability to reconstruct a
reasonably accurate consensus grade from the grades assigned by
the students. This leads to the following question: what factors
cause or influence the errors in peer-assigned grades? We are in-
terested in this question for three reasons. First, we wish to obtain
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a better understanding of the dynamics and human factors in peer
grading. Second, a better understanding of the causes of error has
the potential to lead to tool improvements that reduce the errors.
For example, if mis-understanding on the work submitted consti-
tuted a large source of error, then peer grading tools could be aug-
mented with means for work authors and graders to communicate,
so that the misunderstandings could be resolved. Third, a better
model of peer grading errors might lead to better algorithms for ag-
gregating the student-assigned grades into the consensus grades for
each item.

Our interest in the origin of peer-grading errors is also due to our
work on the peer-grading tool CrowdGrader1 [8]. We have put con-
siderable effort in reducing the error in the consensus grade com-
puted by CrowdGrader, as compared to control instructor-assigned
grades. While efforts on the tool UI and UX paid off, as we will
detail later, the efforts to create more precise grade-aggregation al-
gorithms did not. In the context of MOOCs, [13] reports a 30%
decrease in error using parameter-estimation algorithms that in-
fer, and correct for, the imprecision and biases of individual users.
CrowdGrader is used mostly in universities and high-schools. On
CrowdGrader data, the parameter-estimation algorithm of [13] of-
fers no benefit compared with the simple “Olympic average” ob-
tained by removing lowest and highest grades, and averaging the
rest. Indeed, we have spent a large amount of time experimenting
with variations upon the algorithm (see also [7]) and new ideas, but
we are yet to find an algorithm that offers consistent error reduc-
tion of more than 10% compared to the Olympic average. Thus our
interest on the origin of errors in CrowdGrader: what are the main
causes? What makes them so difficult to remove using algorithms
based on parameter estimation, reputation systems, and more?

To gain an understanding of the dynamics of peer grading, we
have analyzed a set of CrowdGrader data consisting in 288 assign-
ments, 25,633 submissions, and 113,169 grades and reviews. Of
the 25,633 submissions, 2,564 were graded by the instructors in
addition to the students. The questions we ask include the follow-
ing.

Is error mostly due to items or to students? We first ask the question
of whether the imprecision in peer grades can be best explained in
terms of students being imprecise, or items being difficult to grade.
We answer this question in two different ways.

1www.crowdgrader.org



First, we build a parameterized probabilistic model of the review
process, similar to the model of [13], in which every review error is
the sum of a component due to the submission being reviewed, and
of a component due to the reviewer. The parameters of the model
are then estimated via Gibbs sampling [10]. The results indicate
that students contribute roughly two thirds of the total evaluation
error.

This result, however, speaks to the average source of error. Of par-
ticular concern in peer grading are the very large errors that happen
less frequently, but have more impact on the perceived fairness and
effectiveness of peer grading. We measure the correlation of large
errors in items, and in users; our results indicate that hard-to-grade
items are a more common cause of large errors than very imprecise
students.

Do better students make better graders? A natural question is
whether better students make better graders. In Section 6 we give
an affirmative answer: students whose submissions are in the lower
30%-percentile quality-wise have a grading error that is about 15%
above average. The effect is fairly weak, a likely testament to the
fundamental homogeneity in abilities in a high-school or college
class, as well as to the fact that grading a homework is usually eas-
ier than solving the homework.

Does the timing of reviews affect their precision? In Section 7 we
consider the relation of review timing and review precision. We
did not detect strong dependencies between grading error and the
time taken to complete a review, the order in which the student
completed the reviews, or how late the reviews were completed
with respect to the review deadline.

Does error vary with class topic? In Section 4 we consider the
question of whether grading precision varies from topic to topic.
Comparing broad topic areas, such as computer science, essays,
science, we find the statistics to be quite similar, indicating how
general factors are less important than the specifics of each class.

Does tit-for-tat affect review feedback? CrowdGrader allows stu-
dents to leave feedback on the reviews and grades they receive;
this feedback is then used as one of the factor that determines the
student’s grade in the assignment. The feedback was introduced
to provide an incentive for writing helpful reviews. In Section 8
we show that when a grade is over 20% below the consensus, it
receives a low feedback score due to tit-for-tat about 38% of the
time.

In the next section, we give a brief description of CrowdGrader,
and of the datasets on which our analysis is based. The subsequent
sections present the details of the answers to the above questions.
We conclude with a discussion on the nature of errors in peer grad-
ing, and on the implications for algorithms and reputation systems
for computing consensus grades.

2. RELATED WORK
The accuracy of peer grading in the context of MOOCs has been
analyzed in [12], where the match between instructor grade and
student grades is analyzed in detail. The study finds a tendency by
student to rate higher people that share their country of origin —
and this in spite of the grading process being anonymous. The study
finds that improvement in grading rubrics lead to improved grading
accuracy. Geographical origin, along with gender, employment sta-
tus, and other factors, are found to have influence on engagement in

peer grading in a French MOOC in [4]. Our work is thus somewhat
orthogonal to [4, 12]: we do not have data on student ethnicity,
and we focus instead on factors measurable from the peer grading
activity itself.

Frequently, peer grades are accompanied with reviewers’ comments
or feedback; [18] explores the possibility of using the review text to
asses review quality. The authors show a successful application of
classifiers and statistical Natural Language Processing to evaluate
reviews.

Peer Instruction is a process in which students can observe grades
by other reviewers, discuss the review, and consequently modify
their grades [6]. The factors that influence grades in peer instruc-
tion have been studied in [2]. In spite of the different settings, [2]
also observe that the behavior of high and low-scoring students is
fairly similar in terms of their grading accuracy.

3. THE CROWDGRADER DATASET
To analyze the source of grading errors in peer grading, we rely on
a dataset from CrowdGrader, a peer review and grading tool used in
universities and high-schools [8]. After students submit their solu-
tions to an assignment, students review and grade a certain number
of submissions by their peers. From these peer grades, Crowd-
grader computes a consensus grade for every submission. Once
the review phase is concluded, the students can rate the reviews
they received according to a 1 to 5-star rating. These review ratings
are meant to provide an incentive for students to write detailed,
helpful reviews of other students work.

The overall dataset we examined consisted in 288 assignments,
for a total of 25,633 submissions and 113,169 reviews, written by
23,762 distinct reviewers. The number of reviewers is smaller than
the number of submissions, as some students did not participate in
the review phase. Table 1 gives a break-down of the dataset ac-
cording to subject area. On average, each submission received 4.41
reviews, and each reviewer wrote on average 4.76 reviews.

We will refer to submissions also as items, and we will refer to
students or reviewers also as users, thus adopting common termi-
nology for general peer-review systems.

CrowdGrader includes three features that promote grading accu-
racy; these features likely influenced the data presented in this study.

Incentives for accuracy. The overall grade a student receives in
a CrowdGrader assignment is a weighed average of the student’s
submission, accuracy, and helpfulness grades. The accuracy grade
reflects the precision of the student’s grade, compared either to the
other grades for the same submission or, when available, to the
instructor-assigned grade. The helpfulness grade grade reflects the
rating received by the reviews written by the student. Combining
the submission grade with the accuracy grage creates an incentive
for students to be precise in their grading. The amount of incen-
tive can be chosen by the instructor, but the default is to give 75%
weight to the submission grade, 15% weight to the accuracy grade,
and 10% weight to the helpfulness grade, and most instructors do
not change this default.

Ability to decline reviews. Early in the development of Crowd-
Grader, we noticed that some of the most glaring grading errors
occurred when reviewers were forced to enter a grade for submis-
sions that they could not properly evaluate. This occurred, for in-



Assignments Submissions Reviewers Reviews Graded Assignments Graded Submissions
Computer Science 188 19397 17829 86347 68 2402

Physics 7 274 270 907 6 33
Epidemiology 5 337 313 1551 0 0

Sociology 49 3822 3683 18339 3 16
Business 26 1217 1108 3915 15 106

English 9 397 383 1717 1 7
High-school 7 279 278 1097 5 20

Other 4 189 176 393 0 0
All Combined 288 25633 23762 113169 93 2564

Table 1: The CrowdGrader dataset used in this study. Graded assignments are the assignments where an instructor or teaching assistant
graded at least a subset of the submissions. Graded submissions is the number of submissions that were graded by instructors or teaching
assistants, in addition to peer grading.

stance, when students could not open the files uploaded as part of
the submission, due to software incompatibilities. To mitigate this
problem, we gave students the ability to decline to perform reviews
of particular submissions. The total number of submissions a stu-
dent can decline is bounded, to prevent students from “shopping
around” for the easiest submissions to review.

Submission discussion forums. Another early source of large errors
in CrowdGrader consisted in gross mis-understandings between the
author of a submission, and the reviewers. For instance, when zip
archives are submitted, the reviewers may expect some information
to be contained in one of the component files, whereas the author
might have included it in another. Another example consists in
mis-organizing the content of a software submission, so that the
reviewers do not know how to run it and evaluate it. To remedy this,
CrowdGrader introduced anonymous forums associated with each
submission, where submission authors and reviewers can discuss
any issues they encounter in evaluating the work.

4. ERRORS IN PEER GRADING
Instructor grades and Olympic averages. We measure review er-
ror as the difference between individual student grades, and the
“consensus grade” for each submission. We consider two kinds
of consensus grades. One is the Olympic average of the grades
provided by the students: this is obtained by discarding the lowest
and highest grade for each submission, and taking the average of
the remaining grades. The other is the instructor grade. In Crowd-
Grader, instructors (or teaching assistants) have the option of re-
grading submissions. In some assignments, instructors decided to
grade most submissions as control; in other assignments, instruc-
tors mostly re-graded only submissions where student grades were
in too much disagreement. When considering instructor grades,
we consider only assignments of the first type, where instructors
graded at least 30% of all submissions. Considering assignments
where instructors grade only problematic submissions would con-
siderably skew the statistics. The dataset, for instructor grades, is
thus reduced to 19 assignments and 7675 reviews. Instructor and
Olympic average grades have a coefficient of correlation ρ = 0.81
(with p < 10−200), and an average absolute difference of 6.11 on
the [0, 100] grading range.

Global and per-topic errors. Table 2 reports the size of errors in
CrowdGrader peer grading assignments, split by assignment topic,
and taking instructor grades and Olympic grades as reference. When
the error is measured with respect to instructor grades, computer
science, physics, and high-school assignments showed smaller av-
erage error than business, sociology and English, all of whose as-

signments required essay-writing. When the error is measured with
respect to Olympic average, is is mainly business and English that
show larger error.

Average Error N. of Assignments
Computer Science 7.52 15

Physics 10.6 1
Business 16.5 2

English 17.2 1
High School 10.6 1

All 7.67 19

(a) Error with respect to instructor grades, based on assignments with at
least 30% of items graded by the instructor.

Average Error N. of Assignments
Computer Science 6.34 188

Physics 4.65 7
Epidemiology 4.57 5

Sociology 4.93 49
Business 7.7 26

English 8.37 9
High School 5.09 7

Other 8.15 4
All 6.16 288

(b) Error with respect to Olympic average.

Table 2: Mean absolute value difference error by topic. The grading
range is normalized to [0, 100].

5. ITEM VS. STUDENT ERROR
We consider in this section the question of whether error can be
attributed predominantly to imprecise students, or to items that are
difficult to grade.

5.1 Average error behavior
To compare the contribution of students and items to grading er-
rors, we develop a probabilistic model in which both students and
items contribute to the evaluation error. The model is a modifica-
tion of the PG1 model in [13], which allowed for student (but not
item) error. In our model, each student has a reliability and each
item has a simplicity; the variances of student and item errors are
inversely proportional to their respective reliabilities and simplici-



Average Error N. of Assignments
Computer Science 19.6 15

Physics 14.4 1
Business 21.4 2

English 20.4 1
High School 14.4 1

All 19.6 19

(a) Error with respect to instructor grades, based on assignments with at
least 30% of items graded by the instructor.

Average Error N. of Assignments
Computer Science 21.6 188

Physics 9.79 7
Epidemiology 9.38 5

Sociology 9.47 49
Business 11.2 26

English 20.1 9
High School 9.18 7

Other 11.5 4
All 19.6 288

(b) Error with respect to Olympic average.

Table 3: Root mean square error by topic. The grading range is
normalized to [0, 100].

ties. Precisely:

(Reliability) τu ∼G(α0, β0) for every student u,
(Simplicity) si ∼G(α1, β1) for every item i,

(True Grade) qi ∼N (µ0, 1/γ0) for every item i,

(Observed Grade) giu ∼N (qi, 1/τu + 1/si)

for every observed peer grade giu

where G(α, β) denotes the Gamma distribution with parameters α,
β, and N (q, v) denotes the normal distribution with average q and
variance v.

Given an assignment, we use Gibbs sampling [10] to infer the pa-
rameters α0, β0, α1, β1, µ0, γ0. In order to apply Gibbs sampling,
we need to start from suitable prior values for the quantities be-
ing estimated. To obtain suitable priors for the distribution of item
quality, we first compute an estimated grade for each item using
Olympic average, and we obtain µ0 and γ0 by fitting a normal
distribution to the estimated grades. To estimate prior parameters
α0, β0 of student reliabilities we fit a Gamma distribution to a set
of approximated students reliabilities. In detail, for every student
u we populate a list of errors lu by the student. Again, we com-
puter errors with respect to the average item grades after removing
the extremes (the Olympic average). Using the list of error lu, we
estimate a standard deviation σu for every student u ∈ U . This
allows us to approximate student reliability τ̂u as 1

σ2
u

. Prior param-
eters α0, β0 are obtained by fitting a Gamma distribution to the set
of estimated student reliabilities {τ̂u|u ∈ U}. To estimate prior
parameters α1, β1 for item simplicities we use the same approach
as for α0, β0; the only difference is that item simplicities ŝi are es-
timated using error lists li computed for every item i, rather than
for every student u.

Table 4 reports the average standard deviation of students and items
inferred from the model. As we can see, students are responsible
for over two thirds of the overall reviewing error.

students items
Average Standard Deviation 14.2 6.4

Table 4: The average standard deviation of students and items er-
rors computed over 288 assignment with 25633 items. The grading
range is [0, 100].

Error Threshold
10% 15% 20% 25% 30%

Students 0.015 0.026 0.017 0.019 0.017
Items 0.075 0.082 0.082 0.1 0. 097

(a) Item errors computed with respect to instructor’s grades. We use only
assignments that have at least 30% of items grade by the instructor.

Error Threshold
10% 15% 20% 25% 30%

Students 0.018 0.018 0.019 0.020 0.021
Items 0.045 0.030 0.020 0.021 0.020

(b) Item errors computed with respect to Olympic average.

Table 5: Coefficient of constraint I(X,Y )/H(X) of large errors
on the same item or by the same student, for different error thresh-
olds.

5.2 Large error behavior
While students intuitively understand that small random errors will
be averaged out, they are very concerned by large errors that, they
fear, will skew their overall grade. Thus, we are interested in de-
termining whether such large errors are more often due to students
who are grossly imprecise, or items that are very hard to grade.
In other words: do large errors cluster more around imprecise stu-
dents, or around hard-to-grade items? We can answer this question
because in CrowdGrader, items are assigned to students in a com-
pletely random way. Thus, any correlation between errors on items
or students indicates causality.

We answer this question in two ways. First, we measured the
information-theoretic coefficient of constraint. To compute it, letX
and Y be two random variables, obtained by sampling uniformly at
random two reviews x and y corresponding to the same item, or
to the same student, and letting X (resp. Y ) be 1 if x (resp. y) is
incorrect by more than a pre-defined threshold (such as, 20% of the
grading range for the assignment). Then, the mutual information
I(Y,X) indicates the amount of information shared by X and Y ,
and the coefficient of constraint I(X,Y )/H(X), where H(X) is
the entropy of X , is an information-theoretic measure of the corre-
lation between X and Y .

Tables 5 gives I(X,Y )/H(X) for student and item errors, for dif-
ferent values of the error choice, and taking as reference truth for
each item either the instructor grade, or the Olympic average for the
item. When taking instructor grades as reference (Table 5a), large
errors are about 5 times more correlated on items than on students,
as measured by the coefficient of constraint. When Olympic grades
are take as reference (Table 5b), large errors are about as correlated
on items as they are on students. The difference in behavior is due
to the fact that, when an instructor disagrees with the student-given
grades on an item, this generates highly correlated errors on that
item with respect to the instructor grade, but not with respect to
the Olympic average. In any case, the results show that there is no
particular correlation on students.
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(a) Errors computed with respect to the instructor’s grades. We use only
assignments that have at least 30% of items grade by the instructor.
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(b) Errors computed with respect to Olympic average.

Items, Error Threshold = 15
Items, Error Threshold = 20
Items, Error Threshold = 25
Items, Error Threshold = 30
Users, Error Threshold = 15
Users, Error Threshold = 20
Users, Error Threshold = 25
Users, Error Threshold = 30

Figure 1: Conditional probabilities ρn = P (ξ ≥ n|ξ ≥ n − 1)
of least n errors given at least n − 1 errors. We considered error
thresholds of 15%, 20%, 25%, 30%.

Another way to measure whether large errors tend to cluster around
hard-to-evaluate items or around imprecise students consists in mea-
suring the conditional probability ρn = P (ξ ≥ n|ξ ≥ n−1) of an
item (resp. student) having ξ ≥ n grossly erroneous reviews, given
than it has at least n − 1. If errors on an item (resp. reviewer) are
uncorrelated, we would expect that ρ1 = ρ2 = ρ3 = · · · . If these
conditional probabilities grow with n, so that ρ3 > ρ2 > ρ1, this
indicates that the more errors an item (resp. a student) has partic-
ipated in, the more likely it is that there are additional errors. The
values of ρ1, ρ2, ρ3, . . . allow thus one to form an intuitive appre-
ciation for how clustered around items or students the errors are.

The results are given in Figure 1. The data shows some clustering

around users, for large errors of over 30% of the grading range.
However, clustering around users seems weaker than clustering
around items.

This provides a possible explanation for why reputation systems
have not proved effective in dealing with errors in peer-graded as-
signments with CrowdGrader. Reputation systems are effective in
characterizing the precision of each student, and taking it into ac-
count when computing each item’s grade. Our results indicate how-
ever that errors in CrowdGrader are not strongly correlated with
students, limiting the potential of reputation systems.

6. STUDENT ABILITY VS. ACCURACY
A natural question is whether better students make better graders.
To answer this question, we can approximate the expertise of every
student with the grade received by the student’s own submission,
and we can then study the correlation between the student’s submis-
sion grade, and the review error. As we have only partial coverage
of students with instructor grades, we compute the grade received
by the student’s own submission via Olympic average, rather than
instructor grade. As the two generally are close, this increases cov-
erage with minimal influence on the results. We study grading error
with respect to both instructor grades and Olympic average.

6.1 Aggregating data from multiple assignments
When aggregating data from multiple assignments, we cannot di-
rectly compare absolute values of grades, or absolute amount of
time spent reviewing: each assignment has its own grade distribu-
tion, review time distribution, and so forth. To account for variation
across assignments, we use the following approach. For each stu-
dent there is an independent variable x, and an error e. In this
section, x is the grade received by the student’s own submission,
measured via Olympic average; in the next section, x will be re-
lated to the time spent during the review, or the time at which the
review is turned in. The error e is the difference, for each review,
between the grade assigned as part of the review, and the grade of
the reviewed submission, obtained either via Olympic average or
via instructor grading.

First, for each assignment independently, we sort all students ac-
cording to their x-value, and we assign them to one of 10 percentile
bins: if the assignment comprises m students and the student ranks
k-th, the student will be in the d10k/me bin; we call these bins
the 10%, 20%, . . . , 100% bins. For each assignment a, we nor-
malize the grading range to [0, 100], and we let na,q and ea,q be
the number of students and the average error in the q percentile bin
of assignment a, respectively. The average error for assignment a
overall is thus ea =

∑
q na,qea,q/

∑
q na,q . There are two ways

of measuring the average error ea,q for one bin: as average ab-
solute value error, or as average root-mean-square error. The two
approaches lead to qualitatively similar conclusions, as we show
later in this section.

We aggregate data from multiple assignments, computing for each
percentile bin an absolute and a relative error, as follows. The ab-
solute error eq for each percentile q is computed as

eq =
∑
a na,qea,q

/∑
a na,q. (1)

The relative error rq for each percentile q is computed as

rq =
∑
a na,q

(
ea,q/ea

) / ∑
a na,q, (2)

where ea,q/ea is the relative error of bin q in assignment a.



6.2 Student ability vs. error
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(a) Mean absolute value difference error.
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(b) Root mean square error.

Figure 2: Average grading errors arranged into authors’ submis-
sions quality percentiles. Grading errors and submission qualities
are measured with respect to the Olympic average grades. The first
percentile bin 10% corresponds to reviewers that have authored
submissions with highest grades. Error bars correspond to one stan-
dard deviation.

The data reported in Figure 2b shows the existence of some cor-
relation between student submission grade, and grading precision,
measured with respect to the Olympic average. In relative terms,
students in the 80–100% percentile brackets show error that is 10%
to 20% greater than students with higher submission grade. The
absolute error tells a similar story. The two graphs do not have
the same shape, due to the fact that relative errors are computed in
(2) in a per-assignment fashion. In Figure 2a we report the same
data, computed using rms error rather than average absolute value
error. The data is qualitatively similar. Due to lack of space, in the
remaining graphs we consider only average absolute error.

In Figure 3a we compare the error with respect to Olympic aver-
age with the error compared to instructor grades, for the subset of
classes where at least 30% of submissions have been instructor-
graded. While the absolute values are different, we see that the
curves are very closely related, indicating that Olympic averages
are a good proxy for instructor grades when studying relative changes
in precision. The error with respect to instructor grades has very
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(a) Mean absolute value difference error.
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Figure 3: Average grading error arranged into authors’ submission
quality percentiles. The first percentile bin 10% corresponds to
reviewers that have authored submissions with highest grades. We
report the error both with respect to instructor grades, and to the
Olympic average, considering only assignments for which at least
30% of submissions have been graded by instructors. Error bars
correspond to one standard deviation.

wide error bars for the 90% percentile, mainly due to the low num-
ber of data points we have for that percentile bracket in our dataset.
We favor the comparison with the Olympic average, since the abun-
dance of data makes the statistics more reliable.

The correlation between student ability (as measured by the sub-
mission score) and grading precision is lower than we expected.
This might be a testament to the clarity of the rubrics and grading
instructions provided by the instructors: apparently, such instruc-
tions ensure that most students are able to grade with reasonable
precision the work by others. This may also be a consequence of
the fundamental skill and background homogeneity of students in a
classroom, as compared to a MOOC. We note that [2] also reported
low correlation between student grades and student precision in the
related setting of peer instruction.



7. REVIEW TIMING VS. ACCURACY
We next studied the effect of the time taken to perform the reviews,
and the order in which they were performed, on review accuracy.
These measurements are made possible by the fact that Crowd-
Grader assigns reviews one at a time: a student is assigned the next
submission to review only once the previous review is completed.
This dynamic assignment ensures that all submissions receive a
sufficient number of reviews. If each student were pre-assigned a
certain set of submissions to review, as is customary in conference
paper reviewing, then students who omitted or forgot to perform
reviews could cause some submissions to receive insufficient re-
views. CrowdGrader records the time at which each submission
is assigned for review to a student, and the time when the review
is completed. For these results, to conserve space, we provide the
error only with respect to the Olympic average, for which we have
more data. A comparison of error with respect to Olympic average
and instructor grades confirms that the Olympic average is a good
proxy for studying variation with respect to instructor grade also
We omit the analogous of Figure 3a.

Time to complete a review. We first considered the correlation be-
tween the time spent by students performing each review, and the
accuracy of the review; the results are reported in Figure 4b. The
results indicate that reviews that are performed moderately quickly
tend to be slightly more precise. The correlation is weaker than we
expected. We expected to find error peaks due to students that spent
very little time reviewing, and that entered a quick guess for the
submission grade, rather than performing a proper review. There
are no such peaks: either students are very good at quickly estimat-
ing submission quality, or they mostly take reviewing and seriously
in CrowdGrader. We believe the latter hypothesis is likely the cor-
rect one: for instance, in many computer science assignments, there
is no good way of “eye-balling” the quality of a submission without
compiling and running it.

Time at which a review is completed. Next, we studied the corre-
lation between the absolute time when reviews are performed, and
the precision of the reviews. Figure 5a shows the existence of a
modest correlation: the reviews that are completed in the first 10%
percentile tend to be 10% more accurate than later reviews. The ef-
fect is rather small, however. In a typical CrowdGrader assignment,
students are given ample time to complete their reviews, and the re-
views themselves take only one hour or so to complete. Students
likely do not feel they are under strong time pressure to complete
the reviews, and time to deadline has little effect on accuracy.

Order in which reviews are completed. Lastly, we study whether
the order in which a student performs the reviews affects the accu-
racy of the reviews. We are interested in the question of whether
students learn while doing reviews, and become more precise, or
whether they grow tired and impatient as they perform the reviews,
and their accuracy decreases. Figure 6a shows that the accuracy of
students does not vary significantly as the students progress in their
review work. Evidently, the typical review load is sufficiently light
that students do not suffer from decreased attention while complet-
ing the reviews.

8. TIT-FOR-TAT IN REVIEW FEEDBACK
In CrowdGrader, students can leave feedback to each review and
grade they receive. The feedback is expressed via 1-to-5 star rating
systems as follows:

• 1 star: factually wrong; bogus.
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Figure 4: Absolute and relative grading error vs. the time employed
to perform a review; the first percentile bin 10% corresponds to
reviews with shortest review time. The grading range is normalized
to [0, 100], and the error is measured with respect to the Olympic
average. The error bars indicate one standard deviation.

• 2 stars: unhelpful.
• 3 stars: neutral.
• 4 stars: somewhat helpful.
• 5 stars: very helpful.

Many such ratings are given as tit-for-tat: when a student receives a
low grade, the student responds by assigning a low feedback score
(typically, 1 star) to the corresponding review. Indeed, Crowd-
Grader includes a technique for identifying such tit-for-tat, so that
students, whose overall grade depends also on the helpfulness of
their reviews, are not unduly penalized. We were interested in ana-
lyzing the question of how prevalent tit-for-tat is.

Overall, review grade and review feedback have a correlation of
−0.39, with a p-value smaller than 10−300. The negative correla-
tion between grade and feedback indicates tit-for-tat, as there is no
reason why lower grades should per-se be associated with written
reviews that are less helpful. Interestingly, the negative correlation
is fairly independent from the subject area. To bring the tit-for-tat
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Figure 5: Absolute and relative grading error vs. absolute time
when a review is completed. The first percentile bin 10% corre-
sponds to the 10% of reviews that were completed first among all
assignment reviews. The grading range is normalized to [0, 100],
and the error is measured with respect to the Olympic average. The
error bars indicate one standard deviation.

into sharper evidence, we computed also the following statistics.
We consider a grade a p (resp. n) outlier if the grade is over 20%
above (resp. below) the Olympic average. We then measured the
conditional probabilities Pp, Pn that p and n outliers would receive
a one or two-star rating, conditioned over the probability that the
reviews received a rating at all (students do not always rate the re-
views they receive). Over all assignments, we measured Pp = 0.06
and Pn = 0.44. Since there is no a-priori reason why overly nega-
tive reviews may be of worse quality than overly positive ones, the
excess probability Pn − Pp = 0.38 can be explained by tit-for-
tat. This shows that tit-for-tat is rather common: for grades that are
20% or more below the consensus, there is a 38% probability of
low feedback due to tit for tat. Fortunately, it is easy to discard low
ratings given in response to below-average grades, as CrowdGrader
does.

9. DISCUSSION
We presented an analysis of a large body of peer-grading data, gath-
ered on assignments that used CrowdGrader across a wide set of
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Figure 6: Absolute and relative grading error vs. ordinal number of
a review by a student. The review 1 is the first a student performs,
2 is the second, and so forth. The grading range is normalized
to [0, 100], and the error is measured with respect to the Olympic
average. Error bars indicate one standard deviation.

subjects, from engineering to business and humanities. Our main
interest consisted in identifying the factors that influence grading
errors, so that we could devise methods to control or compensate
for such factors. Out results can be thus summarized:

• Large errors are no more strongly correlated on students than
they are on items. In other words, students who are imprecise
on many submissions are not a dominant source of error.

• There is some correlation between the quality of a student’s
own submission (which is an indication of the student’s ac-
complishment), and the grading accuracy of the student, but
the correlation is weak and limited to the student with high-
est, and lowest submission grades.

• There is little correlation between the accuracy of a review,
and the time it took to perform the review, or how late in the
review period the review was performed.

• There is clear evidence of tit-for-tat behavior when students
give feedback on the reviews they receive.



All of the correlations we measured, except for the tit-for-tat one,
are rather weak. This is a reassuring confirmation that peer-grading
works as intended.There are no large sources of uncontrolled er-
ror due to factors such as student fatigue in doing the reviews, or
gross inability of weaker students to perform the reviews. The peer-
grading tool, in our classroom settings, ensures that the remaining
errors are fairly randomly distributed, with little remaining struc-
ture.

The results highlight the difficulties in using reputation systems to
compute submission grades in peer-grading assignments in high-
school and university settings. Reputation systems characterize the
behavior of each student, in terms for instance of their grading ac-
curacy and bias, and compensate for each student’s behavior when
aggregating the individual review grades into a consensus grade.
However, our results indicate that the large errors that most affect
the fairness perception of peer grading are most closely associated
with items, rather than with students. Reputation systems are pow-
erless with respect to errors caused by hard-to-grade items: even
if they can correctly pinpoint which submissions are hard to grade,
little can be done except flagging them for instructor grading. In-
deed, the reputation system approach of [13], which yielded error
reductions of about 30% for MOOCs, yielded virtually no benefit
in our classroom settings.

There is more potential, instead, in approaches that make it easier to
grade difficult submissions. In CrowdGrader, we introduced anony-
mous forums, associated with each submission, where submissions
authors and reviewers can discuss any issues that arise while re-
viewing the submission. These forums are routinely used, for in-
stance, to solve the glitches that often arise when trying to compile
or run code written by someone else. Anectodally, these forums
have markedly increased the satisfaction with the peer-grading tool,
as students feel that they have a safety net if they make small mis-
takes in formatting or submitting their work, and are in the loop
should any issues occur.
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