
TCP Inigo:
Ambidextrous Congestion Control

LA-UR-15-27631

Andrew G. Shewmaker shewa@lanl.gov *, Carlos Maltzahn **, Katia Obraczka **, and
Scott Brandt **

*Los Alamos National Laboratory and UC Santa Cruz
**UC Santa Cruz

Abstract
Some TCP congestion control algorithms [1, 34] can pro-
vide impressive performance with the help of Explicit
Congestion Notification (ECN) or improved timestamp-
ing. However, configuring switch queues to mark ECN
appropriately or separating low latency protocols from
aggressive legacy traffic is not always feasible. And the
inertia and variety of networks makes modifying both
senders and receivers, altering drivers, or adding new
TCP options a daunting challenge.

We propose TCP Inigo, a delay-based congestion con-
trol variant of TCP that has low barriers to deploy and
can coexist with loss-based TCPs. Inigo adds two inde-
pendent types of congestion control: a Round-Trip-Time
(RTT) based congestion ratio on the sender, and a Rel-
ative Forward Delay (RFD) based congestion ratio used
by the receiver to either mark ECN or manage the re-
ceive window. We compare and contrast these uses of
RTT and RFD with ECN, demonstrating more than 2×
smaller RTTs than non-ECN TCPs and superior utiliza-
tion in easily reproduced Mininet experiments.

1 Introduction

Congestion control remains a perennial concern in data
centers and the Internet. Network congestion is one of
the causes of variation in delay and can also cause perfor-
mance collapse in a worst case scenario. For businesses
the long tail of variations can cost money [17], but con-
gestion made worse by bufferbloat [22] creates pain every
day for home users.

While many advances in congestion control [1, 34] and
active queue management (AQM) [39, 47, 37] show po-
tential, almost all proposals require amounts of change
and configuration that prevent the new technologies from
spreading quickly. A brief overview of DCTCP, which
provided inspiration for Inigo, and some of its complica-
tions are in § 2.1. There is considerable practical value in

being able to improve network performance while min-
imizing the effort needed to deploy and maintain the
changes. Any work that must be redone for unique hard-
ware or that increases the complexity of network config-
urations will likely find itself in a losing tug-of-war with
End-to-end arguments [43, 4].

There has been a long line of TCP congestion control
variants that try to keep congestion low and do not require
extensive change or configuration of network equipment,
but most are unable to compete for bandwidth with loss-
based TCPs [7]. Some, such as CAIA Delay-Gradient
(CDG) TCP [26], are able to coexist to some degree. Oth-
ers, like Performance-oriented Congestion Control (PCC)
[18] may have a promising prototype, but are still far from
deployable.

With the difficulty of changing both Local Area and the
Internet in mind, this paper proposes TCP Inigo, which
offers the following contributions that do not require any
switch configuration, adapter support, driver modifica-
tion, or new TCP options:

• a new fallback mode for DCTCP

– mimics DCTCP’s ECN behavior using RTTs

– shares bandwidth with loss-based TCPs

– attains best-in-class latencies

– requires only a sender-side modification

– available as Linux kernel module

• receiver congestion control or ECN marking

– mimics DCTCP’s ECN behavior using OWDs

– DCTCP-style receive window 1 for all TCPs

– requires only a receiver-side modification

– available as Linux kernel patch

1While shrinking the receive window is strongly discouraged, we
can show that Inigo’s small adjustments result in fewer resent segments,
fairer bandwidth sharing, and lower latencies.
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The rest of this paper is organized as follows:
Section § 2 describes the Inigo sender-side modifica-

tion, along with the complications surrounding existing
TCP RTT measurements and how they can be used. Sec-
tion § 3 describes the Inigo receiver-side modification,
and how the differences in OWDs can drive similar con-
gestion control decisions with regard to ECN marking
and window sizing. Section § 4 demonstrates the effec-
tiveness of both techniques independently and combined.
Next, Section § 5 describes related work and the conclu-
sion § 6. In addition, the availability of the TCP Inigo
code and experiments is detailed in Appendix A, followed
by supplementary material.

2 TCP Inigo Sender

TCP Inigo is composed of two independent techniques.
The first is a sender-side only modification that uses
TCP RTT measurements. Both follow in the footsteps
of DCTCP in using a congestion ratio, a measure of the
extent of congestion, in order to proportionally adjust the
congestion window.

2.1 ECN and DCTCP
Standard ECN support [42] directs a sender to halve its
window once per RTT upon seeing an marked with Con-
gestion Exists (CE), while DCTCP [1] tracks the ratio
of bytes marked with CE to the total number of bytes
acknowledged (ACKed) in order to estimate the extent
of congestion. Given congestion markings on all of the
packets in a window, DCTCP will halve the window. If
DCTCP sees fewer markings it will back off proportion-
ally less.

When ECN is not supported by the receiver, DCTCP
falls back to basic TCP Reno. If the receiver supports
ECN, but was not modified to accurately convey ECN
with delayed ACKs, then DCTCP will under-estimate the
extent of congestion. Kato developed a one-sided variant
of DCTCP [30], but it compromises the performance of
DCTCP when the receiver has been modified appropri-
ately.

Switches must also be configured to mark ECN appro-
priately for use with DCTCP. Configuring for DCTCP
is simpler than for Random Early Detection (RED) [21],
although it can use the same widespread support in Ether-
net hardware. However, there are many situations where
DCTCP cannot be easily deployed. A cloud provider may
not be able to force all tenants to use a buffer-friendly
TCP, configuring separate switch queues may be consid-
ered impractical, or setting per-route congestion control
on the application side may not be fine-grained enough.

In cases like those, it would be good to fall back to
behavior as similar as possible, but with fewer require-

ments. We submit that existing RTT measurements are
adequate to the task. Up until this point, using exist-
ing RTTs has not resulted in low queue depths and tight
latency distributions similar to DCTCP.

2.2 TCP RTTs

TCP’s timestamps and RTT measurements are taken sev-
eral layers and queues above the hardware. As such, they
include the variability of the host operating systems and
not just the network delay due to congestion. Recently,
Lee, et al. proposed DX congestion control which can
utilize improved timestamping to good effect [34]. How-
ever, those improvements rely on driver modifications,
new TCP header options, and changes to both senders
and receivers. Those changes will require a determined
effort to become common enough to rely on.

In addition to ease of deployment, there are other ad-
vantages to using already available time measurements for
congestion control. If the goal is to minimize the end-to-
end delay variability up to the application layer, then the
fact that the TCP RTT includes delays due to OS buffers
and network buffers may be an asset. Also, a holistic
observation like the RTT does not combine independent
signals in a way that might indicate more congestion than
is actually present. In contrast, ECN marking at switches
is done independently, so one could envision an unlikely
scenario where a series of switches each experienced mi-
nor congestion at different times, causing the majority of
a flow’s packets to be marked.

RTT measurements are noisy, so reacting to individual
measurements results in unpredictable behavior. That is
why many algorithms use some sort of smoothing, but
given the dynamic range of RTTs this can often prevent
quick responses to changing conditions.

DCTCP-inspired delay-based congestion control was
made more effective by several developments in the Linux
kernel since the original DCTCP paper. Internal buffer
bloat and the delay variability that comes with it were
much improved with features such as Byte Queue Limits
[12], TCP Small Queues [14], and TCP Segmentation
Offload (TSO) sizing and pacing [15]. In addition, the
units of the sender’s RTT measurement changed from
milliseconds to microseconds [19].

2.3 RTT Congestion Ratio

Inigo uses late RTTs in the same way that DCTCP uses
ECN markings to calculate and respond to the extent of
congestion. Since the RTT signal arrives at the same
frequency as ECN markings (i.e. every ACK), and since
TCP RTTs must generally correspond to increased queu-
ing (despite noise), we believe that the recommended
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DCTCP threshold is valid for defining a what makes an
RTT late.

Alizadeh, et al. derived equation (1), in which C and d
respectively denote the bottleneck capacity (packets/sec)
and propagation delay (in sec), giving a threshold of K
(packets). This threshold is 2.7% larger than their origi-
nal, and is based on a fluid model of DCTCP that is more
accurate than their previous sawtooth model [2].

K ≈ 0.17Cd (1)

The corresponding queuing delay threshold, dthresh, is
simply K divided by the bottleneck capacity C. Substi-
tuting equation (1) into (2) gives (3).

dthresh = K/C (2)

dthresh ≈ 0.17Cd/C = 0.17d (3)

In their fluid model, the RTT at time t of a flow is given
by equation (4), where d is the propagation delay, q(t) is
the queue size at the switch and q(t)/C is the queuing
delay. But since d is not doubled as would be expected
for one-way propagation delay, d is actually the minimum
RTT, and therefore dthresh is the RTT threshold.

R(t) = d +q(t)/C (4)

Algorithm 2 calculates the congestion ratio αRT T using
the RTTs marked late by algorithm 1. It is nearly identical
to the approach taken in DCTCP, where a fraction F is
tracked during a window and used to update the expo-
nential weighted moving average of the congestion ratio
αRT T .

Algorithm 1 RTT Congestion Marking
for each ACK do

if RT Tmin = 0∨RT T < RT Tmin then
RT Tmin← RT T

end if
RT T sobserved ← RT T sobserved +1
if RT T ≥ RT Tmin +dthresh then

RT T slate← RT T slate +1
end if

end for

Algorithm 2 Congestion Ratio with RTTs
for every window do

F ← RT T slate/RT T sobserved
αRT T ← (1−g)×αRT T +g×F
RT T sobserved ← 0
RT T slate← 0

end for

Our delay-based congestion ratio uses RTT observa-
tions instead of bytes, and delayed ACKs are not compen-
sated for since the receiver can only improve the signal by
sending ACKs more frequently. The number of RTT mea-
surements can be further reduced due to TSO. Attempts
to reason about best and worst case congestion scenarios
given a RTT measurement and the number of segments
being aggregated by TSO resulted in worse performance,
but we describe what was attempted in appendix B.

Algorithms 1 and 2 work well in simple homoge-
neous environments, but Inigo will have to co-exist with
other traffic that does not keep switch buffer occupancy
low. However, that situation can be addressed by dilating
RT Tmin as in algorithm 3. Dilation also allows Inigo to
adapt to truly increasing RTTs: new longer route, changes
to traffic shaping, or overheads from potentially adaptive
lower level changes like Forward Error Correction for link
degradation.

If major congestion persists for several RTTs, then
αRT T will approach its maximum and Inigo will approx-
imately halve its window multiple times, as explained
in § 2.5. But in the presence of overly aggressive flows,
αRT T will not decrease as it should. In that situation Inigo
responds aggressively by changing its late RTT marking
threshold to be the higher average RTT, resetting its mea-
sure of congestion to zero, and entering Slow Start. Inigo
eases off after a few windows so that the queue can drain
in the case conditions have gotten better again.

Algorithm 3 RT Tmin Dilation
dilate← 0
for every window do

if αRT T > 9αmax/10∨dilate > 3 then
dilate← dilate+1

end if
if 3 < dilate < 7 then

RT Tpredilate← RT Tmin
RT Tmin← RT Tsmoothed +dthresh
αRT T ← 0
ssthresh← ssthreshmax

end if
if dilate > 7 then

RT Tmin← RT Tpredilate +dthresh
dilate← 0

end if
end for

2.4 Slow Start
There are many variations of TCP Slow Start, in which
the initial rate of transmission rapidly increases, usually
via window doubling. This phase is necessary because
TCP does not know the speed of the network. DCTCP
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shows that the standard method of doubling the window
size every RTT can quickly achieve full throughput while
keeping queue occupancy low with the help of ECN mark-
ing on switches. It exits Slow Start immediately upon
seeing an ACK with CE. Matching that behavior using
only delay is slightly more challenging, with HyStart [23]
probably the most successful example of the technique.

The Linux kernel possesses implementations of HyS-
tart in TCP CUBIC [24] and CDG [26], with the latter
containing some experimental changes. Both variants
detect congestion during Slow Start with ACK trains and
when a late RTT is observed. They take the minimum of
the first seven RTT samples and exit Slow Start immedi-
ately upon receiving one late RTT. The delay threshold,
dthresh, used by CUBIC in Linux 4.2.0 is one eighth the
minimum RTT, bounded between 32 and 128 millisec-
onds. CDG’s dthresh is also one eighth the minimum
RTT, but it is calculated with a microsecond clock and
only has an upper bound of 125 microseconds.

HyStart was designed to find an early, safe exit point to
enter CUBIC’s aggressive Congestion Avoidance phase.
But the threshold was increased to one eighth in 2014
because one sixteenth was too sensitive. That over-
sensitivity was one of the reasons Linux networking main-
tainer David Miller recommended disabling HyStart by
default [35]. Interestingly, CUBIC’s new threshold is
within 1.8% of the initially recommended threshold for
DCTCP [1].

Inigo sets aside HyStart’s ACK train heuristic, exit-
ing Slow Start only upon seeing an RTT that exceeds
RT Tmin + dthresh, as in algorithm 2. Similar to HyStart,
Inigo requires a minimum number of observations to ini-
tialize RT Tmin. But instead of simply exiting Slow Start
by setting the Slow Start threshold ssthresh to the cur-
rent congestion window cwnd, Inigo uses the congestion
ratio to decrease the congestion window. Algorithm 4
uses RT T sobserved and RT T slate from algorithm 2. If the
congestion ratio is non-zero once 10 RTTs are observed,
then it reduces cwnd by the congestion ratio similarly to
algorithm 7 in § 2.5. Then it assigns ssthresh = cwnd.

Algorithm 4 Slow Start
for every ACK do

if cwnd ≤ ssthresh∧ samples≥ 10 then
F ← RT T slate/RT T sobserved
αRT T ← (1−g)×αRT T +g×F
if αRT T > 0 then

ssthresh← cwnd− cwnd_cnt×α/2
end if

end if
end for

2.5 Congestion Avoidance and Response
The basic congestion avoidance logic first implemented
by TCP Inigo is shown in algorithm 5. Other than taking
the maximum of αRT T from algorithm 2 and αDCTCP,
it works exactly the same as DCTCP and reduces the
congestion window, cwnd, in proportion to the conges-
tion ratio. Taking the maximum congestion ratio should
allow accurate congestion control to function across con-
nections that include and assortment of switches with and
without DCTCP-style ECN marking.

Algorithm 5 Congestion Avoidance and Response
for every window do

α ← max(αRT T ,αDCTCP)
cwnd← cwnd× (1−α/2)
if α > 0 then

cwnd← cwnd +1
end if

end for

However, Alizadeh, et al. proposed an RTT-fairness
enhancement to DCTCP [2], in which it would respond to
congestion upon every ACK. The improvement counter-
acts the typical TCP behavior of flows with longer RTTs
growing more slowly than flows with short RTTS by caus-
ing the latter to respond to congestion more rapidly. Con-
ventional wisdom is for a congestion response to only oc-
cur once per RTT in order to see the effect of the response,
but the sum of the adjustments of the per-ACK response
are designed to approximate the normal response once
per RTT.

Passengers in a vehicle appreciate a driver who makes
micro-adjustments instead of slamming on the breaks or
the accelerator, even if the average speed is the same.
Similarly, a TCP that makes sub-window adjustment
should be able to avoid over-steering. This is about more
than RTT-fairness. It affects convergence time for long
lived flows with the same RTT starting at different times.
Flows beginning earlier will have a larger window and
respond more slowly than newer flows. And sub-window
adjustments should allow mice flows to enter and leave
with smaller perturbations to elephant flows.

Unfortunately, the units of the Linux snd_cwnd vari-
able are in packets and the DCTCP RTT-fairness up-
date algorithm 6 implies the need to adjust the window
by a fraction of a packet. For example, if W = 200
and α = 300/1024, then upon seeing and ECN marking
W ← 100+1/200−150/1024 ≈ 199.86. Integer arith-
metic would result in W ← 200, and if α remains rela-
tively constant, then W ← 200 after a window of ACKs.
On the other hand, the original once per RTT response
would yield W ← 171.

The sender’s window could be tracked in bytes like
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Algorithm 6 DCTCP RTT-fairness
for every ACK do

W ←W +

{
1/W if ECN = 0
1/W −α/2 if ECN = 1

end for

the receiver’s window, allowing fine-grained changes to
accumulate. Or the window mechanism might be altered
to allow sending at a different frequency, as has been
proposed for scaling to small RTTs [8]. However, both
would require either modifying the whole TCP stack or
adding extra variables to the TCP congestion structure
for private per-socket data. A sub-window approach to
RTT-fairness is simpler to implement and requires fewer
variables.

Linux implements W ←W + 1/W (i.e. Congestion
Avoidance) with a counter snd_cwnd_cnt, which is
incremented by the number of ACKed packets until
snd_cwnd_cnt reaches snd_cwnd, and snd_cwnd is in-
cremented by one. Similarly snd_cwnd can be decre-
mented by a fractional packet by responding every N
ACKs as in algorithm 7. In our experiments, we observed
that a sub-window response sometimes backs off a little
too much, and we found that Congestion Avoidance of
W ←W +2/W ensured better performance.

Algorithm 7 Sub-window Congestion Response

for every Wsub ACKs, where 1 <Wsub <W do
if α > 0 then

W ←W −Wsubα/2
end if

end for
for every window do

cwnd← cwnd +2
end for

The frequency of response must be balanced with sen-
sitivity to the congestion ratio, αmin, calculated with equa-
tion (5). For instance, a response interval Wsub = 20 and
a maximum congestion ratio αmax = 1024 would be able
to adjust the window in response to α ≥ 104. The small-
est sub-window that could make any adjustments below
α = αmax would be Wsub = 3, with α ≥ 684. Note that
increasing the scaling factor of α does not significantly
improve sensitivity. And a certain amount of insensitiv-
ity to α is beneficial because it prevents responding to
occasional large RTTs caused by operating system noise.

αmin← ⌈2αmax/Wsub⌉+
{

1 ifαmin mod 2 = 1
0 ifαmin mod 2 = 0

(5)

In our experiments, we have found that algorithm 5

Sender Receiver

i

...

j

...

k

Si,j

Ri,j

Increasing RFD
DF

i,j = Ri,j − Si,j

Sj,k

Rj,k

Decreasing RFD
DF

j,k = Rj,k − Sj,k

Figure 1: Examples of Increasing and Decreasing Rela-
tive Forward Delay Measurements

occasionally results in the fairest bandwidth sharing, but
algorithm 7 can achieve a much tighter distribution of
bottleneck queue lengths and delay with good bandwidth
fairness.

3 TCP Inigo Receiver

The second, separate congestion control that makes up
TCP Inigo is a receiver-side only modification that detects
congestion by monitoring the accumulation of differences
in One Way Delays (OWDs). If the sender is an ECN-
Capable Transport, then the receiver marks Congestion
Encountered (CE) in the header of the next ACK. Other-
wise, the receiver controls congestion in a style similar to
DCTCP via the receive window.

3.1 Using Relative Forward Delay
Relative Forward Delay (RFD) was defined as the dif-
ference of OWDs by Parsa, et al. [40] when they used
it in the congestion control of TCP Santa Cruz. Exam-
ple RFDs are shown in Figure 1, where S is the delta
between send timestamps, R is the difference between re-
ceive timestamps, and RFD is DF , the delta between any
pair of S and R. Calculating RFD does not require clock
synchronization, but it does require stable clocks of the
same resolution. Appendix C contains more background
and a short discussion of timestamp resolution.

Algorithm 8 shows how the running RFD total of DF
total

and dthresh based on RT Tmin can be used to mark bytes as
late, similarly to DCTCP with ECN and Inigo’s sender
with RTTs.

The receiver keeps track of the running sum of RFD.
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Algorithm 8 RFD Congestion Marking
for each packet received do

if RT Tmin = 0∨RT T < RT Tmin then
RT Tmin← RT T

end if
bytestotal ← bytespkt
Si, j← tsval j− tsvali
Ri, j← tsecr j− tsecri
if Si, j = 0∧Ri, j = 0 then return
end if ▷ clock resolution low, keep tsXi
DF

i, j← Ri, j−Si, j

DF
total ← max(0,DF

total +DF
i, j)

if DF
total ≥ dthresh then

byteslate← bytespkt
ECN← 1

end if
tsvali← tsval j
tsecri← tsecr j

end for

If the total RFD becomes negative, then that means the
measurements started taking place when congestion was
already in progress, and therefore the total RFD is zeroed
as a new baseline. Whenever the total RFD exceeds dthresh
given by equation (3), the receiver marks Congestion En-
countered (CE) bits on the next ACK. This is done just
before the code that DCTCP added to accurately trans-
mit the extent of congestion using ECN despite delayed
ACKs.

Algorithm 9 Congestion Ratio with RFDs
for every window do

F ← byteslate/bytestotal
αRFD← (1−g)×αRFD +g×F
bytestotal ← 0
byteslate← 0

end for

In the case where the sender does not support ECN,
the receiver tracks the congestion ratio and modifies the
receive window in a fashion similar to algorithms 4 and
5, except in bytes and with an immediate ACK sent every
congestion window change. Note that Slow Start exits
when DF

total exceeds the dthresh since it the millisecond
clock requires many packets before RFD can be measured.

RFCs 793 and 1122 strongly discourage shrinking the
receive window since in-flight packets would be dropped,
but they also say that senders should be prepared for
that case [41, 6]. However, Inigo makes relatively small
DCTCP-style adjustments, and frequently updates the
sender when sub-window congestion responses are en-
abled. Therefore, only the minimum number of packets

necessary to prevent congestion are in danger of being
dropped. And Linux, at least, does not appear to be in
danger of dropping packets due to a shrinking receive
window. It keeps quadruple the amount copied to user
space in the last RTT in order to handle packet losses,
Slow Start, and three RTTs worth of data. Experiments
with Inigo show that shrinking the receive window care-
fully results in fewer retransmitted segments than would
normally occur.

TCPs that wish to implement receiver-side congestion
control like Inigo should ensure that their receive buffer
is at least twice the size of the congestion window. This
will prevent in-flight packets from being dropped during
extreme congestion when the window is halved over the
span of one RTT.

Theoretical benefits of the receiver marking ECN or
controlling the sender’s window include:

• no switch configuration is necessary to use ECN

• it forces all TCPs sending to the receiver to keep
buffer occupancy low

• window is controlled in bytes instead of packets
(finer granularity)

• robust with regard to ACK loss (sender immediately
knows RFD-based measure of congestion upon next
ACK, no miscalculation due to missing information)

4 Experiments

We have created TCP Inigo, which has two independent
types of congestion control. The key feature of the first
component of Inigo is an RTT-based congestion ratio on
the sender, used as a fallback for DCTCP instead of TCP
Reno when ECN is not supported. The key feature of
the second component is an RFD-based congestion ratio
used by the receiver to either mark ECN or control the
receive window.

Next we present Mininet [25] convergence and incast
experiments based on those found commonly found in
papers since DCTCP [1]. In all cases, iperf2 [48] clients
generate the flows to one server. Mininet is configured
to provide a simple star topology with links running at
500Mbps and a 2 millisecond one way delay between
hosts.

Mininet does not currently allow link bandwidths
above 1Gbps, and the fidelity of experiments can suf-
fer long before that, depending on the system. However,
Mininet does allow rapid development and easy repro-
duction of experiments. These results are preliminary.
Inigo will need to be tested with a much greater variety
of conditions before it is ready for production use.
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For experiments using iperf2, bandwidth is shown with
small stacked bar graphs, with time on the X axis and
identical Y scales. The specific values are less im-
portant than the ability to see at a glance whether or
not the expected pattern of flow bandwidths has been
achieved. In addition to the stacked bandwidth graphs,
we include graphs of the empirical Cumulative Distribu-
tion Functions of the switch’s bottleneck queue and the
TCP sender’s Smoothed RTT (SRTT).

The TCP variants tested in the experiments include
CDG (a state of the art delay-based TCP that does not re-
quire special support), CUBIC (an aggressive loss-based
TCP that is default in many Linux distributions), DCTCP
(a state of the art ECN-based TCP), Inigo, and Reno
(DCTCP’s fallback). If the network is configured to mark
ECN, the TCP’s name is suffixed with +ECN. Likewise,
when a TCP is sending to Inigo’s receiver-side conges-
tion control or ECN marking, its name is suffixed with
RCV_CC or RCV_ECN, respectively.

4.1 Five Flows
In this experiment each iperf2 client precedes the next
by five seconds and continues transmitting five seconds
longer than the client that follows it. Fair sharing should
look somewhat like the cross-section of stacked bowls,
with stair-steps at five second intervals.

Figure 2 shows a wide variety of bandwidth patterns,
with consistently high utilization, crisper stair-steps, and
fairer sharing in row 2i and column 2c, corresponding
to Inigo’s sender and receiver-side congestion control,
respectively. Unfortunatley, Inigo’s receiver-side ECN
marking does not appear to work well. Since the re-
ceiver’s congestion control does work well and they share
almost all the same code, we conclude that our current
implementation is faulty. Also, Inigo+ECN 2j shows that
there is some negative interaction the combined DCTCP
and Inigo congestion control.

CDG’s graphs, row 2a, exhibit the correct basic pattern,
but the stair-steps are only clear in 2b when the network
is configured with ECN. CUBIC, row 2e, suffers from
particularly unfair bandwidth sharing except in the case
that it is talking to an Inigo receiver 2h. Even ECN
does not help CUBIC as much as receiver-side congestion
control.

Reno 2m looks slightly better than CUBIC since it does
not overflow the switch’s buffer as frequently. DCTCP
has only two unique cases compared to Reno. The case
it was designed for is depicted in Figure 2r, which does
not look quite as good as expected since the second flow
appears to have a difficult time getting started.

Of course, good utilization and fair bandwidth sharing
is only part of the story. A link can be kept fully utilized
if its buffer is kept filled to capacity, but the question

(a) CDG (b) CDG+ECN (c) CDG+RCV_CC (d) CDG+RCV_ECN

(e) CUBIC (f) CUBIC+ECN (g) CUBIC+RCV_CC (h) CUBIC+RCV_ECN

(i) INIGO (j) INIGO+ECN (k) INIGO+RCV_CC (l) INIGO+RCV_ECN

(m) RENO (n) RENO+ECN (o) RENO+RCV_CC (p) RENO+RCV_ECN

(q) RENO (r) DCTCP (s) RENO+RCV_CC (t) DCTCP+RCV_ECN

Figure 2: Five Flows Converge - Bandwidth
Consistently crisper stair-steps and fairer sharing in
row 2i and column 2c, corresponding to Inigo’s sender
and receiver-side congestion control

is: how low a buffer can be kept without letting it drain
completely too often? Figure 3 shows how well various
TCPs do with and without an Inigo Receiver to help.
An Inigo sender keeps the shortest queues when ECN
is unavailable, and Inigo receiver-side congestion control
helps CUBIC and Reno reduce their queues by almost
4×.

It can be seen in Figure 5 that the Inigo sender ap-
proaches the low queue length of ECN-enabled TCPs—
only exceeding 20 packets approximately 10% of the time.
Inigo’s receiver-side congestion control does not appear
to help further lower the queue depth attained by the
Inigo sender. Figure 4 confirms our suspicion that our
implementation of Inigo’s receiver-side ECN marking is
flawed, as it is having little to no effect on any sender.
Since that it is the case, the corresponding CDFs will be
excluded in the incast experiment below.

Figures 6 and 7 show a high correlation between
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Figure 3: Five Flows Converge - Receiver Congestion Control
Empirical CDF of Bottleneck Queue
Inigo sender keeps the shortest queues when ECN is
unavailable, and Inigo receiver-side congestion con-
trol helps CUBIC and Reno reduce their queues by
almost 4×

Figure 4: Five Flows Converge with Receiver ECN
Empirical CDF of Bottleneck Queue
Inigo receiver-side marking appears to be non-
functional

Figure 5: Five Flows Converge without ECN
Empirical CDF of Bottleneck Queue
Inigo approaches the low queue length of ECN-
enabled TCPs—only exceeding 20 packets approxi-
mately 10% of the time

Figure 6: Five Flows Converge - Receiver Congestion Control
Empirical CDF of TCP Smoothed RTT
Inigo sender’s 1.0 quantile is less than half CDG’s and
5× less than other TCP’s 0.5 quantile while Inigo’s re-
ceiver tightens up CUBIC and Reno’s upper 0.5 quan-
tile by 150 milliseconds
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Figure 7: Five Flows Converge with ECN
Empirical CDF of TCP Smoothed RTT
SRTTs below 4 milliseconds are impossible in this sce-
nario, so all of the ECN results should be shifted close
to Inigo

switch’s bottleneck queue length and TCP’s SRTT. Note
that the X axis of the SRTT graphs have a logarithmic
scale since RTTS can exhibit a huge range (due to accu-
mulating the effects of multiple queues). Inigo’s SRTTs
are almost entirely less than 10 milliseconds, whereas
CDG’s 1.0 quantile is around twice that and other TCPs
can often incur SRTTs of more than 5× Inigo, without
ECN.

Figure 7 gives the impression that Inigo’s RTT-based
congestion control is far outclassed by ECN-enabled
TCPs. However, the minimum RTT for this scenario
is four milliseconds, so the SRTTs below 4 millisecond
should not be possible. Perhaps the TCP SRTT calcula-
tions are oddly effected by ECN. Regardless, the tails of
ECN-enabled TCPs in the graph are more indicative of
the actual RTTs being achieved. Future experiments will
be constructed to verify that.

With regards to the dangers of shrinking the receiver
window, we note that during this test the first CUBIC flow
retransmitted 4457 segments and incurred three timeouts
in the loss state. The last CUBIC flow retransmitted 989
segments and had one timeout. In contrast, when Inigo’s
receiver was managing the window the first CUBIC flow
retransmitted 4 segments, the last flow retransmitted zero,
and neither experienced a timeout. So, despite the what
the RFCs recommend, it appears that shrinking the win-
dow in this manner may be preferrable to not shrinking
it.

(a) CDG (b) CDG+ECN (c) CDG+RCV_CC (d) CDG+RCV_ECN

(e) CUBIC (f) CUBIC+ECN (g) CUBIC+RCV_CC (h) CUBIC+RCV_ECN

(i) INIGO (j) INIGO+ECN (k) INIGO+RCV_CC (l) INIGO+RCV_ECN

(m) RENO (n) RENO+ECN (o) RENO+RCV_CC (p) RENO+RCV_ECN

(q) RENO (r) DCTCP (s) RENO+RCV_CC (t) DCTCP+RCV_ECN

Figure 8: 20 Flow Incast - Bandwidth
Inigo 8i achieves full utilization even without ECN,
where other TCPs without ECN overfill the buffer
and lose packets

4.2 Incast

In our incast experiment 20 iperf2 clients start sending to
one server simultaneously for 30 seconds. This scenario
is not uncommon in storage systems or whenever data
must be aggregated.

The two most common problems seen with incast in
Figure 8 are large drops in utilization due to overflowing
buffers and flows suffering from total bandwidth starva-
tion, even in situations that appear to be consistently shar-
ing fairly. ECN-enabled TCPs in column 8b do appear to
be stabilized, but ECN is obviously not a guarantee since
both CUBIC 8f and Reno 8n exhibit major issues.

Inigo+ECN 8j is more stable than other runs in row 8i,
but it did lose one flow. CDG 8a appears almost as
good as Inigo, but sometimes suffers from packet loss,
as seen in Figure 9. In fact, only the Inigo sender is
able to avoid overflowing the buffer without the benefit of

9



Figure 9: 20 Flow Incast - Receiver Congestion Control
Empirical CDF of Bottleneck Queue
Inigo’s bottleneck queue length is capped at around
150 packets, while other TCP’s without ECN experi-
ence unbounded queue growth

ECN. Inigo’s receiver-side congestion control again helps
CUBIC and Reno slow their buffer growth, but fails to
make a substantive difference.

Figure 9 shows Inigo’s bottleneck queue length is
capped at around 150 packets, while other TCP’s without
ECN experience unbounded queue growth. The vertical
CDF of Inigo’s queue length in figure 10 indicates that it
might be possible to get closer to ECN-enabled behavior
if Inigo is tuned to exit Slow Start slightly earlier or its
maximum backoff was slightly increased to 5W/8 instead
of W/2. In terms of delay, Inigo’s SRTT stays around 10
milliseconds, which is more than double RT Tmin, but not
out of control. Like the previous experiment, figure 10
shows the SRTTs of ECN-enabled TCPs are being miscal-
culated, and should be shifted three to four milliseconds
to the right.

4.3 RTT Dilation
In order to test the effectiveness of RTT dilation, we use
the FLExible Network Tester (Flent) [27]. This particu-
lar test, called Realtime Response Under Load, uses four
different TCP variants to create simultaneous upload and
downloads between a single client and server while moni-
toring latencies with multiple types of pings. The upload
start times were staggered in order to show how TCP
Inigo keeps latencies low when possible, but competes
for bandwidth when low latencies are not possible.

Figure 10: 20 Flow Incast without ECN
Empirical CDF of Bottleneck Queue
Inigo’s queue is about 4× greater then well behaved
DCTCP and CDG+ECN, but the shape of Inigo’s CDF
indicates that it might be able to close the gap with
some tuning

Figure 11: 20 Flow Incast - Receiver Congestion Control
Empirical CDF of TCP Smoothed RTT
Inigo’s SRTT stays around 10 milliseconds—90% of
all SRTTs of the other non-ECN TCPs tested exceed
that by a large margin
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Figure 12: 20 Flow Incast with ECN
Empirical CDF of TCP Smoothed RTT
The SRTTs of ECN-enabled TCPs are being miscalcu-
lated, and should be shifted three to four milliseconds
to the right

These were run within a Mininet environment consist-
ing of 100Mbps links and 10ms RTT. CUBIC generally
dominates all other TCPs in acquiring bandwidth.

5 Related Work

Many other enhancements have been proposed to improve
or leverage DCTCP, including RTT-fairness through sub-
window adjustments [2], ultra-low latency with phantom
queues [3], deadline-awareness [49], minimizing flow
completion times [38], sender-side only DCTCP [30],
application to wireless networks [50] stability enhance-
ments [10], elimination of Slow Start in conjunction with
Data Center Bridging [46], and various deployability en-
hancements [44].

And academia is not alone in trying to take DCTCP
further. The IETF is discussing DCTCP’s vulnerability to
ACK-loss, along with the ways they might improve con-
gestion notification and DCTCP [9, 31, 16]. The enabling
of ECN on all Apple systems [33] could encourage more
ECN marking in routers and help make DCTCP feasible
on the Internet [32]. However, those routers would need
to be configured both to mark ECN as DCTCP requires
and to enable DCTCP to coexist with other TCP variants.
Change of that magnitude should not be expected.

DCTCP has not eliminated the interest in other con-
gestion control algorithms in the data center or for the

Figure 13: Inigo Realtime Response Under Load
When Inigo detects persistent congestion over mul-
tiple RTTs, it dilates RT Tmin and fights for its share
of the bandwidth. Once the congestion abates, Inigo
returns to its regular buffer-friendly behavior

Internet. CAIA Delay-Gradient (CDG) TCP [26] uses
minimum and maximum RTTs to reason about conges-
tion, with an emphasis on coexistence with loss-based
congestion control in wide area networks, and it was re-
cently merged into the Linux 4.2 kernel. Like Inigo, it
does not require special hardware or effort to deploy.

Remy [51, 45] has been used to generate congestion
control protocols, and it compares favorably to many pre-
vious loss-based and delay-based TCPs in simulations.
However, RemyCC results in RTTs 4− 6× worse than
DCTCP since Remy does not yet take advantage of ECN
or AQM. The Tao protocols in later Remy experiments
appear to approach the performance of an omniscient
schedule, but DCTCP was not included in that compari-
son. It remains to be seen if machine generated congest
control is practical or if it can lead to new and better
understanding of congestion.

Dong, et al. make the argument that even though
Remy generates protocols, it searches a space of hard-
wired responses to packet level events, and its perfor-
mance can degrade when the real network does not match
its assumptions, just like most TCPs [18]. They pro-
pose Performance-oriented Congestion Control (PCC),
a sender-side modification to TCP that controls its rate
based on continuous experimental trials of rates differ-
ing 1− 5%. PCC makes fewer assumptions than most
congestion control algorithms, but one it shares is that
repeatedly trying higher rates is necessary even if they
always lower the measured utility.

Inigo, like DCTCP, does not respond to packet level
events, but a congestion ratio collected over a set of pack-
ets. In fact, the congestion ratio is a measure of utility
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that means “keep the link full, and latency low”. The as-
sumption that increases in RTTs are due to congestion is
generally valid, with the primary exception being operat-
ing system noise. Inigo’s use of a congestion response is
inherently robust to noise, see § 2.5. Rare situations such
as being forced mid-flow to use a longer route or the un-
derlying media enabling Forward Error Correction may
cause Inigo to need to detect a new minimum RTT, and
RTT dilation handles corner cases such as those. While
a PCC prototype has been made publicly available, we
have not yet compared it to Inigo.

Lee, et al. propose DX [34], which shows that accurate
queue delay measurements can be attained even for high
speed networks by modifying drivers and adding TCP op-
tions. Their congestion response is driven by the ratio of
the measured average queuing delay to an estimate of the
number of competing flows, resulting in higher utiliza-
tion and lower latency than DCTCP. TIMELY [36] uses
hardware timestamps, delay gradients, and rate control to
implement congestion control for RDMA traffic. While
this paper does not include a direct comparison with DX
or TIMELY, it is reasonable to expect that the RTT-based
congestion control proposed here would also benefit from
improved timestamps. However, the congestion control
described in this paper can be used without any additional
development effort and on any hardware.

Change may be well worth it in some cases, but net-
works tend to resist change. Consider the slow uptake
of IPV6, ECN, RED [21], and FQ_Codel [39]. Even
when hardware and software support became common,
configurations did not change quickly (or at all) to take
advantage of them. Another example is Quantized Con-
gestion Notification (QCN) [20], which became a stan-
dard along with other Data Center Bridging technologies.
The only QCN-enabled hardware the authors of this pa-
per are aware of comes from Mellanox, and that is likely
because they support similar features in their Infiniband
products. Norm Finn, the editor of the QCN standard,
gave the following statement (personal communication,
January 16, 2014) when asked why it was hard to find
QCN-enabled hardware:

“Judging by the scarcity of implementa-
tions of IEEE Std 802.1Qau, the principle ben-
efit obtained from the standard may not have
been congestion control, itself. The promise
of congestion control made more palatable the
standardization of IEEE Std 802.1Qbb Priority
Flow Control, to which objections were raised
on the grounds that it could cause a deadlock.
802.1Qau lessens the likelihood of 802.1Qbb
deadlocks.”

6 Conclusion

The difficulty inherent in deploying new technology on
networks provided part of the motivation for the TCP
congestion control variant, Inigo, described in this paper.
Inigo does not require special hardware, driver develop-
ment, or switch configurations. But if enhanced times-
tamping does become generally available, then Inigo will
automatically benefit.

Inigo’s sender-side RTT-based congestion control in-
tegrates with DCTCP and provides a fallback that resem-
bles DCTCP’s ECN-based behavior. The receiver-side
RFD-based congestion control, though less effective than
the sender-side due to coarse-grained timestamps, is able
to encourage fair bandwidth sharing and smaller buffer
occupancy of TCP senders such as CUBIC and Reno. We
refer to both of these modifications as TCP Inigo in this
paper, even though each modification can be brought into
service separately.

Inigo is still in an early state and will require much more
testing before it can be confidently deployed. Among
other things Inigo’s ECN marking should be fixed, since
it could help make use of ECN ubiquitous on the Internet.
Then switches will not need to be configured to do the
marking themselves. The receiver side congestion control
needs to be tested against more TCP variants, especially
against those of other OSes.
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A Availability

The kernel module implementing the RTT-based fallback
for DCTCP, as well as the receiver-side congest control
patch, together called TCP Inigo in this paper, the exper-
imental results in this paper, and the Mininet experiment
framework can be downloaded from GitHub.
https://github.com/systemslab/tcp_inigo
Inigo should be easily back ported to earlier kernels, al-

though the effectiveness of the sender side will be strongly
affected by the decreased RTT resolution before Linux
3.14, among other changes. The receiver-side modifica-
tion is mostly contained in two functions, inserted before
ECN processing and a seven line change to the receive
window size selection code. Although the location of
the new function calls will be slightly different prior to
DCTCP’s inclusion in Linux 3.17, the impact to Inigo
with prior kernels should only effect DCTP senders. Of
course, DCTCP’s receiver-side change could be back-
ported too.

B TSO

The Linux pkts_acked tcp_congestion_ops hook is
passed a socket pointer, the number of packets being
ACKed, and an RTT in microseconds. If TSO [13] is
enabled, then the TCP stack will send multiple segments
worth of data at a time to the lower layers of the net-
work stack, therefore leaving TCP with only one RTT
measurement for multiple packets.

Given a RTT that exceeds RT Tmin +dthresh (i.e. a late
RTT), one could try to extract more information than
simply incrementing the RT Tobservations and RT Tlate each
by one as in algorithm 2. In the worst case one could
assume all of the segments are sent onto the network

as a single burst, and therefore all are late. A slightly
less pessimistic assumption would be that each RTT was
barely late, so the total delay minus dthresh would give
the number of late RTTS. Alternatively if packet pacing
is assumed, then the measured delay would be equally
shared amongst all of the packets being ACKed.

Algorithm 10 uses both of those lines of reasoning.

Algorithm 10 RTT Congestion Marking for TSO and
Packet Pacing

for each ACK do
RT T sobserved ← RT T sobserved + pkts_acked
if RT T ≥ RT Tmin +dthresh then

delay← RT T −RT Tmin
if pacing∧ (delay/pkts_acked > dthresh) then

RT T slate← RT T slate + pkts_acked
else

pkts_late ←
min(pkts_acked,delay/dthresh)

RT T slate← RT T slate + pkts_late
end if

end if
end for

C RFD Discussion

The simulator implementation of TCP Santa Cruz re-
quired modifications to both the sender and receiver, and
results showed promise, but it was never tested on real
networks. This was evidently due in part to TCP Santa
Cruz’s reliance on an experimental TCP option, unlike
this work.

Others have also used RFD to reason about band-
width and congestion. Pathload [29] used packet trains
to probe the available bandwidth of a network. HyS-
tart [23] found Pathload’s techniques unsuitable for in-
tegration with TCP, but used them as inspiration for its
ACK-train heuristic used as a signal to exit Slow Start.

The receiving side of TCP can use timestamps to calcu-
late RFD, but unfortunately the existing TCP timestamps
are too coarse-grained for data centers. RFC 1323 and the
updated RFC 7323 [28, 5] both recommend a timestamp
resolution between 1 millisecond and 1 second per tick,
whereas data center RTTs are measured in microseconds.
Similarly unfortunate, the receiver only has an estimate of
the RTT in milliseconds, and it appears to be less than the
actual RTT in our experiments. This will tend to magnify
the measurement of congestion since the minimum RTT
is used to define dthresh.

In order to accomodate both Intenet and data center
latencies, TCP could keep track of minimum Si, j and Ri, j
for consecutive packets. If RTTs and timestamp deltas
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for both sender and receiver are less than or equal to one
millisecond, then TCP could swap out the millisecond
timestamp operations for microsecond versions. Relying
on both sides being able to increase timestamp resolution
would be the sort of change that would inhibit adoption.
Also, a side effect of increasing the timestamp resolution
would be to reduce opportunities for Generic Receive
Offload [11].

15


	Introduction
	TCP Inigo Sender
	ECN and DCTCP
	TCP RTTs
	RTT Congestion Ratio
	Slow Start
	Congestion Avoidance and Response

	TCP Inigo Receiver
	Using Relative Forward Delay

	Experiments
	Five Flows
	Incast
	RTT Dilation

	Related Work
	Conclusion
	Availability
	TSO
	RFD Discussion

