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Abstract

We propose a new family of error distributions for model-based quantile regression, which is

constructed through a structured mixture of normal distributions. The construction enables fix-

ing specific percentiles of the distribution while, at the same time, allowing for varying mode,

skewness and tail behavior. It thus overcomes the severe limitation of the asymmetric Laplace

distribution – the most commonly used error model for parametric quantile regression – for which

the skewness of the error density is fully specified when a particular percentile is fixed. We de-

velop a Bayesian formulation for the proposed quantile regression model, including conditional

lasso regularized quantile regression based on a hierarchical Laplace prior for the regression co-

efficients, and a Tobit quantile regression model. Posterior inference is implemented via Markov

Chain Monte Carlo methods. The flexibility of the new model relative to the asymmetric Laplace

distribution is studied through relevant model properties, and through a simulation experiment to

compare the two error distributions in regularized quantile regression. Moreover, model perfor-

mance in linear quantile regression, regularized quantile regression, and Tobit quantile regression

is illustrated with data examples that have been previously considered in the literature.
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1 Introduction

Quantile regression offers a practically important alternative to traditional mean regression, and forms

an area with a rapidly increasing literature. Parametric quantile regression models are almost exclu-

sively built from the asymmetric Laplace (AL) distribution the density of which is

fAL
p (y | µ, σ) =

p(1− p)
σ

exp

{
− 1

σ
ρp (y − µ)

}
, y ∈ R (1)

where ρp(u) = u[p − I(u < 0)], with I(·) denoting the indicator function. Here, σ > 0 is a

scale parameter, p ∈ (0, 1), and µ ∈ R corresponds to the pth percentile,
∫ µ
−∞ f

AL
p (y | µ, σ)dy =

p. Hence, a model for pth quantile regression can be developed by expressing µ as a function of

available covariates x, for instance, µ = xTβ yields a linear quantile regression structure. Note

that maximizing the likelihood with respect to β under an AL response distribution corresponds to

minimizing for β the check loss function,
∑n

i=1 ρp(yi − xTi β), used for classical semiparametric

estimation in linear quantile regression (Koenker, 2005).

The AL distribution is receiving increasing attention in the Bayesian literature, originating from

work on inference for linear quantile regression (Yu and Moyeed, 2001; Tsionas, 2003). Particularly

relevant to the Bayesian framework are the different mixture representations of the distribution (Kotz

et al., 2001), which have been exploited to construct posterior simulation algorithms (Kozumi and

Kobayashi, 2011), as well as to explore different modeling scenarios; see, for instance, Lum and

Gelfand (2012) and Waldmann et al. (2013).

However, the AL distribution has substantial limitations as an error model for quantile regression.

Most striking is that the skewness of the error density is fully determined when a specific percentile

is chosen, that is, when p is fixed. In particular, the error density is symmetric in the case of median

regression, since for p = 0.5, the AL reduces to the Laplace distribution. Moreover, the mode of the

error distribution is at zero, for any p, which results in rigid error density tails for extreme percentiles.

The literature includes Bayesian nonparametric models for the error distribution in the special

case of median regression (Walker and Mallick, 1999; Kottas and Gelfand, 2001; Hanson and John-

son, 2002) and in general quantile regression (Kottas and Krnjajić, 2009; Reich et al., 2010). The
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Bayes nonparametrics literature has also explored inference methods for simultaneous quantile re-

gression (Taddy and Kottas, 2010; Tokdar and Kadane, 2012; Reich and Smith, 2013). However,

work on parametric alternatives to AL quantile regression errors is limited, and the existing models

do not overcome all the limitations discussed above. For instance, although the class of skew dis-

tributions studied in Wichitaksorn et al. (2014) includes the AL as a special case, it shares the same

restriction with the AL as a quantile regression error model in that it has a single parameter that

controls both skewness and percentiles. Zhu and Zinde-Walsh (2009) and Zhu and Galbraith (2011)

explored the family of asymmetric exponential power distributions, which does not include the AL

distribution. For a fixed probability p, the density function has four free parameters and allows for

different decay rates in the left and the right tails. However, similar to the AL, the mode of the

distribution is fixed at the quantile µ by construction.

More flexible parametric quantile regression error models are arguably useful both to expand the

inferential scope of the asymmetric Laplace in the standard quantile regression setting, as well as

to provide building blocks for model development under more complex data structures. The limited

scope of results in this direction may be attributed to the challenge of defining sufficiently flexible dis-

tributions that are parameterized by percentiles and, at the same time, allow for practicable modeling

and inference methods.

Seeking to fill this gap, we propose a new family of distributions that is parameterized in terms of

percentiles, and overcomes the restrictive aspects of the AL distribution. The distribution is developed

constructively through an extension of an AL mixture representation. In particular, we introduce a

shape parameter to obtain a distribution that has more flexible skewness and tail behaviour than the

AL distribution, while retaining it as a special case of the new model. The latter enables connections

with the check loss function which are useful in studying the utility of the new model in the context

of regularized quantile regression. Owing to its hierarchical mixture representation, the proposed

distribution preserves the important feature of ready to implement posterior inference for Bayesian

quantile regression.

In Section 2, we develop the new distribution and discuss its properties relative to the AL distri-

bution. In Section 3, we formulate the Bayesian quantile regression model, including a prior spec-
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ification for the regression coefficients that encourages shrinkage resulting in regularized quantile

regression, and a Tobit quantile regression formulation. In Section 4, we present results from a sim-

ulation study to compare the performance of the AL and the proposed distribution in regularized

quantile regression. The methodology is illustrated with three data examples in Section 5, focusing

again on comparison with the AL quantile regression model. Finally, Section 6 concludes with a

summary and discussion of possible extensions.

2 The generalized asymmetric Laplace distribution

The construction of the new distribution is motivated by the most commonly used mixture represen-

tation of the AL density. In particular,

fAL
p (y | µ, σ) =

∫
R+

N(y | µ+ σA(p)z, σ2B(p)z) Exp(z | 1) dz (2)

where A(p) = (1−2p)/{p(1−p)} and B(p) = 2/{p(1−p)}. Moreover, N(m,W ) denotes the nor-

mal distribution with mean m and variance W , and Exp(1) denotes the exponential distribution with

mean 1. We use such notation throughout to indicate either the distribution or its density, depending

on the context.

The mixture formulation in (2) enables exploration of extensions to the AL distribution. Extend-

ing the Exp(1) mixing distribution is not a fruitful direction in terms of evaluation of the intergal,

and, more importantly, with respect to fixing percentiles of the resulting distribution. However, both

goals are accomplished by replacing the normal kernel in (2) with a skew normal kernel (Azzalini,

1985). In its original parameterization, the skew normal density is given by fSN(y | ξ, ω, λ) =

2ω−1 φ(ω−1(y − ξ)) Φ(λω−1(y − ξ)), where φ(·) and Φ(·) denote the density and distribution func-

tion, respectively, of the standard normal distribution. Here, ξ ∈ R is a location parameter, ω > 0 a

scale parameter, and λ ∈ R the skewness parameter. Key to our construction is the fact that the skew

normal density can be written as a location normal mixture with mixing distribution given by a stan-

dard normal truncated on R+ (Henze, 1986). More specifically, reparameterize (ξ, ω, λ) to (ξ, τ, ψ),

where τ > 0 and ψ ∈ R, such that λ = ψ/τ and ω = (τ2 + ψ2)1/2. Then, fSN(y | ξ, τ, ψ) =
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∫
R+ N(y | ξ + ψs, τ2)N+(s | 0, 1) ds, where N+(0, 1) denotes the standard normal distribution

truncated over R+.

The proposed model, referred to as generalized asymmetric Laplace (GAL) distribution, is built

by adding a shape parameter, α ∈ R, to the mean of the normal kernel in (2) and mixing with respect

to a N+(0, 1) variable. More specifically, the full mixture representation for the density function,

f(y | p, α, µ, σ), of the new distribution is as follows

∫∫
R+×R+

N(y | µ+ σαs+ σA(p)z, σ2B(p)z) Exp(z | 1) N+(s | 0, 1) dzds. (3)

Note that, integrating over s in (3), the GAL density can be expressed in the form of (2) with the

N(y | µ + σA(p)z, σ2B(p)z) kernel replaced with a skew normal kernel, which, in its original pa-

rameterization, has location parameter µ+σA(p)z, scale parameter σ{α2+B(p)z}1/2, and skewness

parameter α{B(p)z}−1/2. Evidently, when α = 0, f(y | p, 0, µ, σ) reduces to the AL density.

To obtain the GAL density, we integrate out first z and then s in (3). The integrand of∫
R+ N(y | µ + σαs + σA(p)z, σ2B(p)z) Exp(z | 1) dz can be recognized as the kernel of a

generalized inverse-Gaussian density. Therefore, integrating out z, we obtain f(y | p, α, µ, σ) =∫
R+ p(1− p)σ−1 exp

{
−σ−1 [p− I(y < µ+ σαs)] [y − (µ+ σαs)]

}
N+(s | 0, 1) ds. This integral

involves a normal density kernel, but care is needed with the limits of integration which depend on

the sign of y − µ and of α. Combining the resulting expressions from all possible cases, we obtain

that for α 6= 0, the GAL density is given by

f(y | p, α, µ, σ) = 2
p(1− p)

σ

([
Φ

(
y∗

α
− pα−α

)
− Φ(−pα−α)

]
exp

{
−pα−y

∗ +
1

2
( pα−α)2

}
I

(
y∗

α
> 0

)
+ Φ

[
pα+

α− y∗

α
I

(
y∗

α
> 0

)]
exp

{
−pα+

y∗ +
1

2
(pα+

α)2
})

(4)

where y∗ = (y − µ)/σ, pα+ = p− I(α > 0), pα− = p− I(α < 0), with p ∈ (0, 1). The relatively

complex form of the density in (4) is not an obstacle from a practical perspective, since its hierarchical

mixture representation facilitates study of model properties and Markov chain Monte Carlo posterior

simulation.

There is a direct link between the GAL distribution and the p0th quantile for any p0 ∈ (0, 1);

5



note that parameter p no longer corresponds to the cumulative probability at the quantile for α 6= 0.

When α > 0, the distribution function of (4) at µ is given by
∫ µ
−∞ f(y | p, α, µ, σ)dy = 2pΦ[(p −

1)α] exp
{

(p− 1)2α2/2
}

. Hence, letting γ = (1− p)α, the distribution function becomes,

∫ µ

−∞
f(y | p, γ, µ, σ) dy = p g(γ) with g(γ) = 2Φ(−|γ|) exp(γ2/2).

We use |γ| above, since this is the general form of g(γ) that applies also in the α < 0 case.

Note that, for γ ∈ R−, dg(γ)/dγ = 2h(γ) exp(γ2/2), where h(γ) = φ(γ) + γΦ(γ). The

function h(γ) is monotonically increasing in R−, since dh(γ)/dγ = Φ(γ) > 0. Moreover, h(0) =

(2π)−1/2 > 0, and limγ→−∞ h(γ) = 0. Therefore, h(γ) > 0 for γ ∈ R−, and thus g(γ) is

monotonically increasing in R−. Since g(γ) is an even function, it also obtains that it is monotonically

decreasing in R+.

Consider now setting
∫ µ
−∞ f(y | p, γ, µ, σ) dy = pg(γ) = p0. Then, the fact that g(γ) is decreas-

ing in R+ combined with g(γ) > p0, imply that for each γ > 0 in the domain that respects the con-

dition of p ∈ (0, 1) and α > 0, there is a unique solution of p that ensures
∫ µ
−∞ f(y | p, γ, µ, σ) dy =

p0, and subsequently a unique α based on γ = (1−p)α. For α < 0, setting
∫∞
µ f(y | p, γ, µ, σ) dy =

1− p0 and letting γ = pα leads to the same argument.

The above connection between (p0, γ) and (p, α) suggests that by reparameterization with desired

p0 and γ = [I(α > 0)−p]|α|, we can derive a new family of distributions with the percentile for fixed

p0 given by µ, and with an additional shape parameter γ. For γ 6= 0, the density, fp0(y | γ, µ, σ), of

such quantile-fixed GAL distribution is

2
p(1− p)

σ

({
Φ

(
−
pγ+y

∗

|γ|
+
pγ−

pγ+

|γ|
)
− Φ

(
pγ−

pγ+

|γ|
)}

exp

{
−pγ−y

∗ +
γ2

2

(
pγ−

pγ+

)2
}
I

(
y∗

γ
> 0

)
+ Φ

[
−|γ|+

pγ+y
∗

|γ|
I

(
y∗

γ
> 0

)]
exp

{
−pγ+y

∗ +
γ2

2

})
(5)

where p ≡ p(γ, p0) = I(γ < 0) + {[p0 − I(γ < 0)]/g(γ)}, pγ+ = p − I(γ > 0), pγ− =

p− I(γ < 0), and y∗ = (y − µ)/σ. Parameter γ has bounded support over interval (L,U), where L

is the negative root of g(γ) = 1 − p0 and U is the positive root of g(γ) = p0. For instance, γ takes

values in (−0.07, 15.90), (−1.09, 1.09) and (−2.90, 0.39) when p0 = 0.05, p0 = 0.5 and p0 = 0.75,
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Figure 1: Density function of quantile-fixed generalized asymmetric Laplace distribution with µ = 0, σ = 1
and different values of γ, for p0 = 0.05, 0.5 and 0.75. In all cases, the solid line corresponds to the asymmetric
Laplace density (γ = 0).

respectively. When γ = 0, the density reduces to the AL density, which is also a limiting case of (5).

The density function is continuous for all possible γ values.

The quantile-fixed GAL distribution has three parameters, µ, σ and γ. Note that Y has density

fp0(· | γ, µ, σ) if and only if (Y − µ)/σ has density fp0(· | γ, 0, 1). Hence, similarly to the AL

distribution, µ is a location parameter and σ is a scale parameter. The new shape parameter γ enables

the extension relative to the quantile-fixed AL distribution. As demonstrated in Figure 1, γ controls

skewness and tail behaviour, allowing for both left and right skewness when the median is fixed, as

well as for both heavier and lighter tails than the asymmetric Laplace, the difference being particularly

emphatic for extreme percentiles. Moreover, as γ varies, the mode is no longer held fixed at µ; it is

less than µ when γ < 0 and greater than µ when γ > 0. The above attributes render the proposed

distribution substantially more flexible than the AL distribution.

Finally, we note that parameter γ satisfies likelihood identifiability. Consider the location-scale

standardized density, fp0(· | γ, 0, 1), which is effectively the model for the errors in quantile regres-

sion. Then, assume fp0(y | γ1, 0, 1) = fp0(y | γ2, 0, 1), for all y ∈ R. Given that parameter γ
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controls the mode of the density, this implies that γ1 and γ2 must have the same sign. Working with

either of the two cases (that is, γ1 > 0 and γ2 > 0 or γ1 < 0 and γ2 < 0) in expression (5), we arrive

at g(γ1) = g(γ2), which, based on the monotonicity of function g(·), implies γ1 = γ2.

3 Bayesian quantile regression with GAL errors

3.1 Inference for linear quantile regression

Consider continuous responses yi and the associated covariate vectors xi, for i = 1, . . . , n. The linear

quantile regression model is set up as yi = xTi β+εi, where the εi arise independently from a quantile-

fixed GAL distribution with
∫ 0
−∞ fp0(ε | γ, 0, σ)dε = p0. Owing to the mixture representation of the

new distribution, the model for the data can be expressed hierarchically as follows

yi | β, γ, σ, zi, si
ind.∼ N(yi | xTi β + σC|γ|si + σAzi, σ

2Bzi), i = 1, ..., n

zi, si
ind.∼ Exp(zi | 1) N+(si | 0, 1), i = 1, ..., n (6)

where C = [I(γ > 0)− p]−1, and A and B are the functions of p given in (2). Since p is a function

of γ and p0, A, B and C are all functions of parameter γ. The Bayesian model is completed with

priors for β, σ and γ. Here, we assume a normal prior N(m0,Σ0) for β and an inverse-gamma prior

IG(aσ, bσ) for σ, with mean bσ/(aσ − 1) provided aσ > 1. For any specified p0, γ is defined over an

interval (L,U) with fixed finite endpoints, and thus a natural prior for γ is given by a rescaled Beta

distribution, with the uniform distribution available as a default choice.

The augmented posterior distribution, which includes the zi and the si, can be explored via a

Markov chain Monte Carlo algorithm based on Gibbs sampling updates for all parameters other than

γ. As in Kozumi and Kobayashi (2011), we set vi = σzi, i = 1, . . . , n. Then, the posterior simulation

method is based on the following updates.

1. Sample β from N(m∗,Σ∗), with covariance matrix Σ∗ = [Σ−10 +
∑n

i=1 xix
T
i /(Bσvi)]

−1 and

mean vectorm∗ = Σ∗{Σ−10 m0 +
∑n

i=1 xi[yi − (σC|γ|si +Avi)]/(Bσvi)}.

2. For each i = 1, ..., n, sample vi from a generalized inverse-Gaussian distribution, GIG(0.5, ai, bi),
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where ai = [yi − (xTi β + σC|γ|si)]2/(Bσ) and bi = 2/σ + A2/(Bσ), with density given by

GIG(x | ν, a, b) ∝ xν−1 exp{−0.5(a/x+ bx)}.

3. For each i = 1, ..., n, sample si from a normal N(µsi , σ
2
si) distribution truncated on R+, where

σ2si = [(Cγ)2σ/(Bvi) + 1]−1 and µsi = σ2siC|γ|[yi − (xTi β +Avi)]/(Bvi).

4. Sample σ from a GIG(ν, c, d) distribution, where ν = −(aσ + 1.5n), c = 2bσ + 2
∑n

i=1 vi +∑n
i=1[yi − (xTi β +Avi)]

2/(Bvi), and d =
∑n

i=1(Cγsi)
2/(Bvi).

5. Update γ with a Metropolis-Hasting step, using a normal proposal distribution on the logit scale

over (L,U).

Based on the hierarchical model structure, the posterior predictive error density can be expressed

as p(ε | data) =
∫

N(ε | σC|γ|s + σAz, σ2Bz) Exp(z | 1) N+(s | 0, 1)π(γ, σ |data) ds dz dγ dσ,

and thus estimated through Monte Carlo integration, using the posterior samples of (γ, σ).

3.2 Quantile regression with regularization

Since the GAL distribution is constructed through modifying the mixture representation of the AL

distribution, it retains some of the interesting properties of the AL distribution. In particular, working

with the hierarchical representation of the GAL distribution, we are able to retrieve an extended

version of the check loss function which corresponds to asymmetric Laplace errors.

Consider the collapsed posterior distribution, π(β, γ, σ, s1, ..., sn | data), that arises from (6) by

marginalizing over the zi. Then, the corresponding posterior full conditional for β can be expressed

as

π(β | γ, σ, s1, ..., sn, data) ∝ π(β) exp

{
− 1

σ

n∑
i=1

ρp(yi − xTi β − σH(γ)si)

}

where π(β) is the prior density for β, H(γ) = γg(γ)/{g(γ) − |p0 − I(γ < 0)|}, and p = I(γ <

0) + {[p0 − I(γ < 0)]/g(γ)}, with p0 the probability associated with the specified quantile modeled

through xTi β. Hence, ignoring the prior contribution, finding the mode of the posterior full condi-

tional for β is equivalent to minimizing with respect to β the adjusted loss function
∑n

i=1 ρp(yi −
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xTi β − σH(γ)si); note that in the special case with asymmetric Laplace errors, that is, for γ = 0,

this reduces to the check loss function with p = p0.

Based on the above structure, the positive-valued latent variables si can be viewed as response-

specific weights that are adjusted by real-valued coefficient H(γ), which is fully specified through

the shape parameter γ. The result is the real-valued, response-specific terms σH(γ)si, which reflect

on the estimation of β the effect of outlying observations relative to the AL distribution. A promising

direction to further explore this structure is in the context of variable selection. For instance, Li et al.

(2010) study connections between different versions of regularized quantile regression and different

priors for β, working with asymmetric Laplace errors. The main example is lasso regularized quan-

tile regression, which can be connected to the Bayesian asymmetric Laplace error model through a

hierarchical Laplace prior for β. We consider this prior below extending the AL error distribution

to the proposed GAL distribution. The perspective we offer may be useful, since it can be used to

explore regularization adjusting the loss function, through the response distribution, in addition to the

penalty term, through the prior for the regression coefficients.

Here, we denote by β the d-dimensional vector of regression coefficients excluding the intercept

β0. Then, the Laplace conditional prior structure for β is given by

π(β | σ, λ) =
d∏

k=1

λ

2σ
exp

{
−λ
σ
|βk|

}
=

d∏
k=1

∫
R+

1√
2πωk

exp

{
−
β2k
2ωk

}
η2

2
exp

{
−η

2

2
ωk

}
dωk.

The second expression above utilizes the normal scale mixture representation for the Laplace distribu-

tion, which has been exploited for posterior simulation in the context of lasso mean regression (Park

and Casella, 2008). Moreover, to facilitate Markov chain Monte Carlo sampling, we reparameterize

in terms of η = λ/σ and place a gamma prior on η2. The lasso regularized version of model (6) is

completed with a normal prior for β0, and with the priors for the other parameters as given in Section

3.1. The posterior simulation algorithm is the same with the one described in Section 3.1 with the

exception of the updates for the βk, k = 1, ..., d, and for η2. Using the mixture representation of the

Laplace prior, each βk can be sampled from a normal distribution, whereas η2 has a gamma posterior

full conditional distribution.
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3.3 Tobit quantile regression

Tobit regression offers a modeling strategy for problems involving range constraints on the response

variable (Amemiya, 1984). The standard Tobit regression model can be viewed in the context of

censored regression where the responses are left censored at a threshold c; without loss of generality,

we take c = 0. The responses can be written as yi = max{0, y∗i }, where yi are the observed values

and y∗i are latent if y∗i ≤ 0. In the context of quantile regression, Yu and Stander (2007) and Kozumi

and Kobayashi (2011) applied the AL-based model to the latent responses y∗i . Here, we consider the

Tobit quantile regression setting with GAL errors.

Consider a data set of n + k observations on covariates and associated responses y = (yo,0),

where yo = (yo1, ..., y
o
n) consists of positive-valued observed responses with the remaining k re-

sponses censored from below at 0. Assuming the GAL distribution for the latent responses, the likeli-

hood can be expressed as
∏n
i=1 fp0(yoi | γ,xTi β, σ)

∏k
j=1

∫ 0
−∞ fp0(w | γ,xTn+jβ, σ) dw. Using data

augmentation (Chib, 1992), letw = (w1, ..., wk) be the unobserved (latent) responses corresponding

to the k data points that are left censored at 0. Then, using again the hierarchical representation of the

GAL distribution, the joint posterior distribution that includes w can be written as

p(β, γ, σ, {si}, {vi},w | data) ∝ π(β, γ, σ)
∏n
i=1 N(yoi | xTi β + σC|γ|si +Avi, σBvi)∏k

j=1 N−(wj | xTn+jβ + σC|γ|sn+j +Avn+j , σBvn+j)
∏n+k
i=1 Exp(vi | σ−1) N+(si | 0, 1)

where π(β, γ, σ) denotes the prior for the model parameters, and vi = σzi. Here, N− denotes a

truncated normal on R−, and Exp(v |σ−1) an exponential distribution with mean σ.

Regarding posterior inference, the posterior full conditional for each auxiliary variablewj is given

by a truncated normal distribution. And, given the augmented data (yo,w), the model parameters and

the latent variables {(vi, si) : i = 1, ..., n+ k} can be sampled as before.

Although results are not reported here, we have tested the posterior simulation algorithm on simu-

lated data sets based on GAL errors, with n = 400 observations and a censoring rate that ranged from

20% to 40%. Under this scenario, the posterior distributions successfully captured the true values of

all parameters in their 95% credible intervals.
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4 Simulation study

Here, we present results from a simulation study designed to compare the lasso regularized quantile

regression models with AL and GAL errors. We follow a standard simulation setting from the lit-

erature regarding the linear regression component (Tibshirani, 1996; Zou and Yuan, 2008; Li et al.,

2010), varying the extent of sparsity in the true β vector. For the underlying data-generating error dis-

tributions, we consider four scenarios with different types of skewness and tail behavior. For model

comparison, we evaluate the accuracy in variable selection, inference for the regression function, and

posterior predictive performance, using relevant assessment criteria. Overall, the GAL-based quantile

regression model performs better in variable selection and prediction accuracy and it is more robust to

non-standard error distributions, particularly for extreme quantiles. The two models yield comparable

results in the case of median regression.

4.1 Simulation settings

We consider synthetic data generated from linear quantile regression settings, with p0 = 0.05, 0.25

and 0.5 to study model performance for both extreme and more central percentiles. The rows of the

design matrix were generated independently from an 8-dimensional normal distribution with zero

mean vector and covariance matrix with elements 0.5|i−j|, for 1 ≤ i, j ≤ 8. We present detailed re-

sults from a relatively sparse case for the vector of regression coefficients, β = (3, 1.5, 0, 0, 2, 0, 0, 0).

In Section 4.3, we briefly discuss results form two other scenarios for β corresponding to a dense and

a very sparse case.

Data were simulated under four different error distributions:

• N(µ, 9), with µ chosen such that the p0th quantile is 0.

• Laplace(µ, 3), with µ chosen such that the p0th quantile is 0.

• 0.1N(µ, 1) + 0.9N(µ+ 1, 5), with µ chosen such that the p0th quantile is 0.

• Log-transformed generalized Pareto(σ, ξ), with ξ = 3 and σ chosen such that the p0th quantile

is 0. To generate the errors, we first sample from a generalized Pareto distribution, then take
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the logarithm. Based on the parameterization in Embrechts et al. (1997), the density function

of the errors is given by f(ε |σ, ξ) = σ−1{1 + ξσ−1 exp(ε)}−(1+ξ−1) exp(ε), for ε ∈ R.

The normal and Laplace error distributions are symmetric about zero under median regression. The

parameters of the two-component normal mixture are selected such that the resulting error distribution

is skewed. Finally, the log-transformed generalized Pareto distribution is included to study model

performance under an error density which is both skewed and does not have exponential tails.

For each setting of the simulation study, we generated 100 data sets, each with n = 100 observa-

tions for training the models and another N = 100 for testing predictions.

4.2 Criteria for comparison

We consider a number of criteria to assess different aspects of model performance. Since Bayesian

lasso regression only shrinks the covariate effects, we consider a threshold on the effect size for the

purpose of variable selection. Following Hoti and Sillanpää (2006), we calculate the standardized

effects as β∗j = (sxj/sy)βj , j = 1, . . . , d, where sxj is the standard deviation of predictor xj and

sy is the standard deviation of the response. For each posterior sample, if the standardized effect

is greater than 0.1 in absolute value, we consider the predictor as included. We count the number

of correct inclusion and exclusions (CIE) in the posterior sample and divide it by d to normalize

it to a number between 0 and 1. By averaging over all the posterior samples, we obtain the mean

standardized CIE for each simulated data set.

To assess predictive performance for the regression function, we calculate the mean check loss on

the N test data points, defined as: MCL = N−1
∑N

i=1 ρp0(xTi β
∗ − xTi β), where β∗ is the posterior

mean estimate from the training data. The mean check loss resembles the standard mean squared

error criterion, which is commonly used for evaluating prediction with cross-validation.

Finally to assess model fitting taking into account predictive uncertainty, we apply the posterior

predictive loss criterion from Gelfand and Ghosh (1998). This criterion favors the model M that

minimizes Dm(M) = P (M) + {m/(m+ 1)}G(M), where G(M) =
∑n

i=1{yi−EM(y∗i | data)}2

is a goodness-of-fit term, and P (M) =
∑n

i=1 varM(y∗i | data) is a penalty term for model complexity.

Here, m ≥ 0, and EM(y∗i | data) and varM(y∗i | data) are the mean and variance under modelM

13



of the posterior predictive distribution for replicated response y∗i with corresponding covariate xi.

We also consider the generalized version of the criterion based on the check loss function, under

which D(M) =
∑n

i=1 EM(ρp0(yi − y∗i ) | data). For this generalized criterion, the goodness-of-fit

term can be defined by G(M) =
∑n

i=1 ρp0(yi − EM(y∗i | data)) and the penalty term by P (M) =

D(M)−G(M), since the check loss function L(y, a) ≡ ρp0(y− a) = (y− a)p0− (y− a)I(y < a)

is convex in y, and thus P (M) ≥ 0; see Gelfand and Ghosh (1998) for details on defining the model

comparison criterion under loss functions different from quadratic loss.

4.3 Results

We used the same hierarchical Laplace prior for β under the AL and GAL models, with a gamma

prior for η2 with prior mean 1 and variance 10. Such prior specification is relatively non-informative

in the sense that it does not favor shrinkage for the regression coefficients, resulting in marginal prior

densities for each βk that place substantial probability mass away from 0. The shape parameter γ

of the GAL error distribution was assigned a uniform prior. Results under both models and for each

simulated data set are based on 5,000 posterior samples, obtained after discarding the first 50,000

iterations of the Markov chain Monte Carlo sampler and then retaining one every 20 iterations.

Within each simulation scenario, we summarize results from the 100 data sets using the median

and standard deviation (SD) of the values for the performance assessment criteria discussed in Section

4.2. Results are reported in Table 1 through Table 4, where we use boldface to indicate the model

supported by the particular criterion under each setting.

Overall, the lasso regularized Bayesian quantile regression model performs better under the GAL

error distribution. The GAL-based model includes/excludes correct regression coefficient values more

often than the AL model for almost all combinations of p0 and error distributions (Table 1). It also

results in a lower median mean check loss for the test data in most cases, demonstrating better perfor-

mance in the prediction of the regression function (Table 2). Note that, for both types of assessment

in Tables 1 and 2, the GAL-based model produces better results across all error distributions for

p0 = 0.05, and, with the exception of one case, when p0 = 0.25. Results are generally more bal-

anced in the median regression setting, although the GAL model fares better in all cases for which
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Error distribution
log-transformed

p0 Model Normal Laplace Normal mixture generalized Pareto
0.05 GAL 0.848 (0.063) 0.633 (0.083) 0.911 (0.042) 0.893 (0.052)

AL 0.746 (0.099) 0.534 (0.087) 0.817 (0.075) 0.840 (0.081)

0.25 GAL 0.851 (0.049) 0.728 (0.060) 0.918 (0.048) 0.896 (0.050)
AL 0.843 (0.069) 0.700 (0.068) 0.913 (0.060) 0.900 (0.051)

0.50 GAL 0.848 (0.052) 0.738 (0.065) 0.909 (0.049) 0.897 (0.055)
AL 0.850 (0.056) 0.737 (0.065) 0.905 (0.050) 0.870 (0.061)

Table 1: Simulation study. Standardized number of correctly included/excluded predictors: median (SD).

Error distribution
log-transformed

p0 Model Normal Laplace Normal mixture generalized Pareto
0.05 GAL 0.340 (0.083) 1.073 (0.391) 0.224 (0.060) 0.268 (0.081)

AL 0.523 (0.130) 1.709 (0.485) 0.375 (0.101) 0.388 (0.114)

0.25 GAL 0.325 (0.086) 0.676 (0.199) 0.225 (0.071) 0.265 (0.080)
AL 0.360 (0.096) 0.778 (0.215) 0.257 (0.076) 0.274 (0.082)

0.50 GAL 0.323 (0.092) 0.642 (0.208) 0.235 (0.064) 0.262 (0.081)
AL 0.322 (0.095) 0.624 (0.207) 0.237 (0.063) 0.294 (0.089)

Table 2: Simulation study. Mean check loss based on the test data: median (SD).

the underlying error distribution is skewed.

For each simulation setting, Table 3 includes the values for the posterior predictive loss criterion

with quadratic loss (under m → ∞, such that D∞ = P + G), and Table 4 shows the generalized

criterion under check loss. Both versions of the posterior predictive loss criterion support the GAL

model when p0 = 0.05, with differences in values between the two models that are substantially

larger than for the other two values of p0. This reinforces the earlier findings on the potential benefits

of the GAL error distribution for extreme percentiles. With the exception of one case under the check

loss version of the criterion, the GAL-based model is also favored when p0 = 0.25, whereas results

are more mixed in the median regression case.

Finally, although detailed results are not reported here, the simulation study included two more

settings for β, a dense case with all 8 regression coefficients equal to 0.85, and a very sparse case

with β = (5, 0, 0, 0, 0, 0, 0, 0). The conclusions were overall similar, in particular, the GAL model
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Error distribution
log-transformed

p0 Model Score Normal Laplace Normal mixture generalized Pareto
0.05 GAL P 1231 (193) 9799 (2483) 653 (112) 1273 (270)

G 832 (126) 7046 (1546) 429 (71) 1053 (267)
D∞ 2092 (312) 16860 (3839) 1085 (181) 2319 (531)

AL P 3359 (799) 30308 (10763) 1839 (405) 2782 (664)
G 952 (165) 8659 (2304) 534 (93) 1168 (279)
D∞ 4357 (933) 38766 (12676) 2398 (487) 4020 (873)

0.25 GAL P 1085 (206) 6977 (1607) 608 (95) 1445 (273)
G 830 (146) 6897 (1606) 444 (66) 1105 (264)
D∞ 1882 (343) 13884 (3115) 1055 (154) 2552 (511)

AL P 1630 (303) 11503 (2727) 884 (148) 1516 (260)
G 865 (154) 7395 (1742) 464 (71) 1113 (263)
D∞ 2499 (448) 18916 (4349) 1352 (215) 2600 (487)

0.50 GAL P 1283 (205) 7600 (1676) 694 (97) 1189 (217)
G 813 (132) 6459 (1509) 424 (60) 1089 (245)
D∞ 2111 (328) 14076 (3101) 1121 (152) 2283 (415)

AL P 1177 (191) 7256 (1572) 634 (87) 1318 (247)
G 818 (134) 6431 (1509) 426 (60) 1107 (255)
D∞ 2008 (318) 13667 (3019) 1058 (143) 2415 (483)

Table 3: Simulation study. Penalty term (P ), goodness-of-fit term (G) and posterior predictive loss criterion
(D∞) under quadratic loss: median (SD).

outperformed the AL model for essentially all combinations of underlying error distribution and value

of p0 = 0.05 or p0 = 0.25. Again, in the median regression case, the distinction between the

two models was less clear for the normal, Laplace and normal mixture data-generating distributions,

although the GAL model performed better under all criteria for the setting corresponding to the log-

transformed generalized Pareto distribution.

5 Data examples

In this section, we consider three data examples to illustrate the Bayesian quantile regression models

developed in Sections 3.1, 3.2, and 3.3. The main emphasis is on comparison of inference results

between models based on the GAL distribution and those assuming an AL distribution for the errors.

We have implemented both models with priors for their parameters that result in essentially the

16



Error distribution
log-transformed

p0 Model Normal Laplace Normal mixture generalized Pareto
0.05 GAL 174.2 (13.6) 507.0 (67.8) 122.8 (11.3) 178.5 (17.4)

AL 209.3 (21.7) 605.4 (70.8) 148.6 (17.3) 200.2 (20.5)

0.25 GAL 169.5 (15.9) 443.9 (47.1) 126.2 (9.5) 188.0 (17.5)
AL 178.0 (15.7) 451.4 (45.8) 129.0 (9.8) 185.5 (17.3)

0.50 GAL 175.7 (13.4) 444.7 (48.0) 127.4 (8.9) 178.6 (16.1)
AL 172.6 (13.4) 438.5 (47.5) 125.2 (8.7) 183.6 (18.1)

Table 4: Simulation study. Posterior predictive loss criterion under check loss: median (SD).

same prior predictive error densities. The two models were applied with the same prior distributions

for β and σ. More specifically, for the data sets of Sections 5.1 and 5.3, we used a N(0, 100I) prior

for the vector of regression coefficients, and an IG(2, 2) prior for the scale parameter σ. For the

data example of Section 5.2, we used a N(0, 100) prior for the intercept, and the same conditional

Laplace prior for the remaining regression coefficients with the simulation study (see Section 4.3).

Finally, a uniform prior was placed on the shape parameter γ of the GAL error distribution. For all

data examples, the posterior densities for model parameters were fairly concentrated relative to the

corresponding prior densities.

5.1 Immunoglobulin-G data

We illustrate the proposed model, referred to as model M1, with a data set commonly used in additive

quantile regression; see, for instance, Yu and Moyeed (2001). The analysis focuses on comparison

with the simpler model based on asymmetric Laplace errors, referred to as model M0. The data

set contains the immunoglobulin-G concentration in grams per litre for n = 298 children aged be-

tween 6 months and 6 years. As in earlier applications of quantile regression for these data, we use

a quadratic regression function β0 + β1x + β2x
2 to model five quantiles, corresponding to p0 =

0.05, 0.25, 0.5, 0.75, 0.95, of immunoglobulin-G concentration against covariate age (x).

The two models result in different posterior predictive error densities, especially for extreme

percentiles; see Figure 2. At p0 = 0.95, under the AL model, both the shape and the skewness of

the error distribution are predetermined by p0 and the mode is forced to be 0, resulting in a rigid
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Figure 2: Immunoglobulin-G data. Inference results for p0 = 0.25, 0.5 and 0.95. Top row: posterior predictive
error densities under the asymmetric Laplace model (dashed lines) and the generalized asymmetric Laplace
model (solid lines). Bottom row: posterior densities for parameter γ, with the vertical lines corresponding to
the endpoints of the 95% credible interval.

heavy left tail. The effect of this overly dispersed tail can be observed in the inference for the quantile

regression function (Figure 3). The GAL model, on the contrary, yields an error density that has a

much thinner left tail, concentrating more of its probability mass around the mode, which is not at 0.

Figure 2 shows also the posterior densities for shape parameter γ, under a uniform prior in all cases.

For all three quantile regressions, the 95% posterior credible interval for γ does not include the value

of 0, which corresponds to asymmetric Laplace errors. Median regression is the only case where 0 is

within the effective range of the posterior distribution for γ.

For formal model comparison, we compute the Bayesian information criterion (BIC), the poste-

rior predictive loss criterion with quadratic loss, and the generalized posterior predictive loss criterion

under the check loss. The Bayesian information criterion favors the new model at all five quantiles;
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Figure 3: Immunoglobulin-G data. Posterior mean estimates and 95% credible bands for the quantile regression
function β0 + β1x + β2x

2 against age (x), for p0 = 0.05, 0.25, 0.50, 0.75 and 0.95. Left: AL model. Right:
GAL model.

Bayesian information criterion
Quantile Model log-likelihood BIC
p0 = 0.05 M0 −666 1355

M1 −615 1258

p0 = 0.25 M0 −632 1287
M1 −622 1273

p0 = 0.50 M0 −633 1289
M1 −623 1274

p0 = 0.75 M0 −654 1331
M1 −620 1268

p0 = 0.95 M0 −761 1545
M1 −646 1320

Table 5: Immunoglobulin-G data. Bayesian information criterion under the asymmetric Laplace and general-
ized asymmetric Laplace models, denoted by M0 and M1, respectively.

see Table 5. Under the posterior predictive loss criterion (Table 6), the two models are comparable

in the case of median regression, with model M0 preferred. In all other cases, model M1 is favored

by both versions of the model comparison criterion. The improvement in performance over the AL

model is particularly conspicuous at the two extreme percentiles. This is in agreement with the dif-

ference in the posterior predictive error densities for p0 = 0.95, reported in Figure 2.
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Posterior predictive loss criterion
Quadratic loss Check loss

Quantile Model P G D∞ P G D
p0 = 0.05 M0 3511 1331 4841 179 180 359

M1 1298 1170 2467 230 102 331

p0 = 0.25 M0 1820 1180 3001 232 123 355
M1 1407 1144 2551 236 108 343

p0 = 0.50 M0 1465 1142 2607 229 108 338
M1 1626 1161 2788 232 114 346

p0 = 0.75 M0 2122 1227 3350 201 134 335
M1 1208 1140 2348 228 97 325

p0 = 0.95 M0 6522 1751 8273 137 259 395
M1 1525 1165 2690 208 118 327

Table 6: Immunoglobulin-G data. Posterior predictive loss criterion (based on quadratic loss and check loss
functions) under the asymmetric Laplace and generalized asymmetric Laplace models, denoted by M0 and M1.

5.2 Boston housing data

We apply the lasso regularized quantile regression model to the realty price data from the Boston

Standard Metropolitan Statistical Area (SMSA) in 1970 (Harrison and Rubinfeld, 1978). The data set

contains 506 observations. We take the log-transformed corrected median value of owner-occupied

housing in USD 1000 (LCMEDV) as the response, and consider the following predictors: point longi-

tudes in decimal degrees (LON), point latitudes in decimal degrees (LAT), per capita crime (CRIM),

proportions of residential land zoned for lots over 25000 square feet per town (ZN), proportions of

non-retail business acres per town (INDUS), a factor indicating whether tract borders Charles River

(CHAS), nitric oxides concentration (parts per 10 million) per town (NOX), average numbers of

rooms per dwelling (RM), proportions of owner-occupied units built prior to 1940 (AGE), weighted

distances to five Boston employment centers (DIS), index of accessibility to radial highways per

town (RAD), full-value property-tax rate per USD 10,000 per town (TAX), pupil-teacher ratios per

town (PTRATIO), transformed African American population proportion (B), and percentage values

of lower status population (LSTAT).

We consider quantiles of 0.1 and 0.9 and compare the maximum a posteriori estimates (MAP) of

regression coefficients, along with 95% credible intervals, for standardized covariates under the lasso
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Figure 4: Boston housing data. Posterior point and 95% interval estimates for the regression
coefficients of the 10th quantile lasso regularized model under AL and GAL errors.

regularized quantile regression models with AL and GAL errors (Figure 4 and 5). For both quantiles,

the widths of the 95% credible intervals for the regression coefficients are overall comparable between

the two models, but the posterior point estimates can be quite different. For instance, under the 10th

quantile regression, the GAL model shrinks the effects of per capita crime (CRIM) and proporty-tax

rate (TAX) to a greater extent compared to the AL model. Similar patterns can be observed for index

of accessibility to radial highways (RAD) for the 90th quantile. Moreover, the two models reach

different conclusions on the effect of latitude (LAT) for the 10th percentile. Although the posterior

point estimates suggest a higher housing price as latitude increases adjusting for all other covariates,

the 95% credible interval under the GAL model includes 0, whereas the one under the AL model does
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Figure 5: Boston housing data. Posterior point and 95% interval estimates for the regression
coefficients of the 90th quantile lasso regularized model under AL and GAL errors.

not.

Focusing on inference under the GAL error distribution, we note that, although the model selected

some common variables for the two quantiles, there is also some discrepancy. For instance, each of

higher proportions of residential land zoned for lots over 25000 square feet per town (ZN) and having

tracts bordering Charles river (CHAS) increase the price at the 90% percentile, while higher nitrogen

oxide value (NOX) has a negative influence on the 90% percentile price. However, none of these

covariates have a significant effect on the realty value at the 10% percentile.

Finally, we notice that for both the 10th and 90th quantile regression, 0 is far away from the

endpoints of the 95% credible interval for the GAL model shape parameter γ. This suggests that

22



Posterior predictive loss criterion
Quadratic loss Check loss

Quantile Model P G D∞ P G D
p0 = 0.10 M0 46.9 26.2 73.1 28.1 22.6 50.7

M1 22.8 20.1 42.9 30.4 18.5 48.9

p0 = 0.90 M0 74.8 28.8 103.6 24.1 31.5 55.7
M1 22.6 18.4 41.0 26.3 21.0 47.3

Table 7: Boston housing data. Posterior predictive loss criterion (based on quadratic loss and check loss
functions) under the AL (model M0) and GAL (model M1) error distribution.

asymmetric Laplace errors are not suitable for this particular application. This is further supported by

the results for the posterior predictive loss criterion reported in Table 7.

5.3 Labor supply data

We illustrate the Tobit quantile regression model with the female labor supply data from Mroz (1987),

which was taken from the University of Michigan Panel Study of Income Dynamics for year 1975.

The data set includes records on the work hours and other relevant information of 753 married white

women aged between 30 and 60 years old. Of the 753 women, 428 worked at some time during

1975, with the corresponding fully observed responses given by the wife’s work hours (in 100 hours).

For the remaining 325 women, the observed zero work hours correspond to negative values for the

latent “labor supply” response. We use the quantile regression function considered in Kozumi and

Kobayashi (2011), where an AL-based Tobit quantile regression model was applied to the same data

set. The linear predictor includes an intercept, income which is not due to the wife (nwifeinc), edu-

cation of the wife in years (educ), actual labor market experience in years (exper) and its quadratic

term (expersq), age of the wife (age), number of children less than 6 years old in household

(kidslt6), and number of children between ages 6 and 18 in household (kidsge6). We compare

the results from the Bayesian Tobit quantile regression model assuming AL errors (model M0) and

GAL errors (model M1).

Table 8 summarizes the posterior distribution of γ under the GAL model, and presents results

from criterion-based comparison of the two models for p0 = 0.05, 0.50 and 0.95. Since there is

23



Quantile Model Mean (95% CrI) for γ likelihood BIC
p0 = 0.05 M0 −1975 4004

M1 5.22 (4.43, 6.24) −1874 3809

p0 = 0.50 M0 −1867 3789
M1 0.58 (0.39, 0.81) −1845 3750

p0 = 0.95 M0 −1967 3989
M1 −4.16 (−5.5, −3.06) −1854 3769

Table 8: Labor supply data. Posterior mean and 95% credible interval for the shape parameter γ of the GAL
error distribution, and BIC values under the AL and GAL models, denoted by M0 and M1, respectively.

censoring in the data, we use the revised BIC from Volinsky and Raftery (2000). In all three cases,

the 95% credible interval for γ excludes 0, and the GAL-based model is associated with lower BIC

values. The results support the GAL-based model more emphatically for the extreme percentiles than

for median regression.

Figure 6 shows the posterior distributions of labor supply quantiles corresponding to p0 = 0.05,

0.50 and 0.95 for women with 0, 1, 2 and 3 children less than 6 years old. For all other predictors, we

use the median values from the data as input values to represent an average wife. As the number of

young children increases, the AL model estimates the 5th quantile and the median of labor supply of

an average wife to be closer to each other. Under the GAL model, the distance between the densities

of the 5th quantile and median labor supply also decreases with increasing number of young children,

albeit at a lower rate. When estimating the 95th quantile, the proposed model is more conservative

than the AL model about the labor contribution of an average wife with an increasing number of

children less than 6 years old. When there are 3 children less than 6 years old in the household, the

center of the posterior distribution for the 95th quantile is below zero under the GAL model, meaning

that even at the top 5th percentile of labor supply, an average wife may still produce negative labor

supply as she takes care of many young family members. More specifically, the posterior probability

of the 95th labor supply quantile being positive is 0.19 under the GAL model, as opposed to 0.97 under

the AL model. These results demonstrate that the choice of error distribution in quantile regression

can have an effect on practically important conclusions for a particular application.
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Figure 6: Labor supply data. Posterior densities for the 5th (blue), 50th (orange) and 95th
quantile (green) of labor supply (in 100 hours) for women with 0, 1, 2 or 3 children less than
6 years old. The solid (dashed) lines correspond to the posterior densities under the GAL (AL)
model.

6 Discussion

We have developed a Bayesian quantile regression framework with a new error distribution that has

flexible skewness, mode and tail behavior. The proposed model has better performance compared

with the commonly used asymmetric Laplace distribution, particularly for modeling extreme quan-

tiles. Owing to the hierarchical structure of the new distribution, posterior inference and prediction

can be readily implemented via Markov chain Monte Carlo methods.

The main motivation for this work was to develop a sufficiently flexible parametric distribution

that can be used as a building block for different types of quantile regression models. The extension
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to quantile regression with ordinal responses is a possible direction. Expanding the model to a spatial

quantile regression process, along the lines of Lum and Gelfand (2012), is another direction. Finally,

current work is exploring a composite quantile regression modeling framework, built from structured

mixtures of generalized asymmetric Laplace distributions, to combine information from multiple

quantiles of the response distribution in inference for variable selection.
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