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Abstract

We develop a Bayesian nonparametric framework for modeling ordinal regression relation-

ships which evolve in discrete time. The motivating application involves a key problem

in fisheries research on estimating dynamically evolving relationships between age, length

and maturity, the latter recorded on an ordinal scale. The methodology builds from non-

parametric mixture modeling for the joint stochastic mechanism of covariates and latent

continuous responses. This approach yields highly flexible inference for ordinal regression

functions while at the same time avoiding the computational challenges of parametric

models that arise from estimation of cut-off points relating the latent continuous and

ordinal responses. A novel dependent Dirichlet process prior for time-dependent mixing

distributions extends the model to the dynamic setting. The methodology is used for a

detailed study of relationships between maturity, age, and length for Chilipepper rockfish,

using data collected over 15 years along the coast of California.
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1 Introduction

The motivating application for this work lies in estimating dynamic relationships between age,

length and fish maturity, with maturity recorded on an ordinal scale. This is a key problem

in fisheries science, one reason being that estimates of age at maturity play an important role

in population estimates of sustainable harvest rates (Clark, 1991; Hannah et al., 2009). The

specific data set comes from the National Marine Fisheries Service and consists of year of

sampling, age recorded in years, length in millimeters, and maturity for female Chilipepper

rockfish, with measurements collected over 15 years along the coast of California. The ordinal

maturity scale involves values from 1 through 3, where 1 indicates immature and 2 and 3

represent pre- and post-spawning mature, respectively.

Exploratory data analysis suggests both symmetric, unimodal as well as less standard

shapes for the marginal distributions of length and age. Bivariate data plots of age and

length suggest similar shapes across years, with some differences in location and scale, and

clear differences in sample size, as can be seen from Figure 1. Maturity level is also indicated

in the plots, and to make them more readable, random noise has been added to age, which is

recorded on a discretized scale. While data is only shown for three years, there are similarities

across years, including the concentration of immature fish near the lower left quadrants, but

also differences such as the lack of immature fish in years 1995 through 2000 as compared to

the early and later years. More details on the data are provided in Section 3.

In addition to studying maturity as a function of age and length, inference for the age

and length distributions is also important. This requires a joint model which treats age

and length as random in addition to maturity. We are not aware of any existing modeling

strategy for this problem which can handle multivariate mixed data collected over time.

Compromising this important aspect of the problem, and assuming the regression of maturity

on body characteristics is the sole inferential objective, a possible approach would be to use an

ordered probit regression model. Empirical (data-based) estimates for the trend in maturity

as a function of length or age indicate shapes which may not be captured well by a parametric
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Figure 1: Bivariate plots of length versus age at three years of data, with symbols/colors
indicating maturity level. Red plus represents level 1 (immature), green circles level 2 (pre-
spawning mature), and blue triangles level 3 (post-spawning mature). Values of age have
been jittered to make the plots more readable.

model. For instance, the probability a fish is immature (level 1) is generally decreasing with

length, however, in some of the years, the probability a fish is post-spawning mature (level 3)

is increasing up to a certain length value and then decreasing. This is not a trend that can be

captured by parametric models for ordinal regression (Boes and Winkelmann, 2006, discuss

some of these properties). One could include higher order and/or interaction terms, though

it is not obvious which terms to include, and how to capture the different trends across years.

In practice, virtually all methods for studying maturity as a function of age and/or length

use logistic regression or some variant, often collapsing maturity into two levels (immature

and mature) and treating each covariate separately in the analysis (e.g., Hannah et al., 2009;

Bobko and Berkeley, 2004). Bobko and Berkeley (2004) applied logistic regression with

length as a covariate, and to obtain an estimate of age at 50% maturity (the age at which

50% of fish are mature), they used their estimate for length at 50% maturity and solved

for the corresponding age given by the von Bertalanffy growth curve, which relates age to

length using a particular parametric function. Others assume that maturity is independent

of length after conditioning on age, leading to inaccurate estimates of the proportion mature

at a particular age or length (Morgan and Hoenig, 1997).
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We develop a flexible model to study time-evolving relationships between maturation,

length, and age. These three variables constitute a random vector, and although maturity

is recorded on an ordinal scale, it is natural to conceptualize an underlying continuous mat-

uration variable. Distinguishing features of our approach include the joint modeling for the

stochastic mechanism of maturation and length and age, and the ability to obtain flexible

time-dependent inference for multiple ordinal maturation categories. While estimating ma-

turity as a function of length and age is of primary interest, the joint modeling framework

provides inference for a variety of functionals involving the three body characteristics.

The proposed modeling approach for dynamic ordinal regression avoids restrictive para-

metric assumptions through use of Bayesian nonparametric mixture priors. The methodology

is particularly well-suited to the fish maturity application, as well as to related evolution-

ary biology problems that involve studying natural selection characteristics (such as survival

or maturation) in terms of phenotypic traits. However, the methodology is more generally

applicable for modeling ordinal responses collected along with covariates over discrete time,

with multiple observations recorded at each time point.

We build on previous work on ordinal regression not involving time (DeYoreo and Kottas,

2017), where the ordinal responses arise from latent continuous variables, and the joint latent

response-covariate distribution is modeled using a Dirichlet process (DP) mixture of multi-

variate normals (Müller et al., 1996). In the context of the rockfish data, we model maturity,

length, and age jointly, using a DP mixture. This modeling approach is further developed

here to handle ordinal regressions indexed in discrete time, using a new dependent Dirichlet

process (DDP) prior (MacEachern, 1999, 2000), which estimates the regression relationship

at each time point in a flexible way, while incorporating dependence across time.

We review the model for ordinal regression without the time component in Section 2.1.

Section 2.2 introduces the DDP mixture model, and in Section 2.3, we develop a new method

for incorporating dependence in the DP weights to handle distributions indexed in discrete

time. We discuss related literature on dependent nonparametric priors in Section 2.4. In

Section 3, the DDP mixture model is used for a comprehensive analysis of the rockfish data
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discussed above. Section 4 concludes with a discussion. Technical details on properties of

the DDP prior model are included in the Appendix. The Supplementary Material contains

additional details on prior specification, posterior inference, and model comparison results.

2 Modeling Framework

2.1 Bayesian Nonparametric Ordinal Regression

We first describe the regression model for a single distribution. Let {(yi,xi) : i = 1, . . . , n}

denote the data, where each observation consists of an ordinal response yi along with a vector

of covariates xi = (xi1, . . . , xip). The methodology is developed in DeYoreo and Kottas (2017)

for multivariate ordinal responses, however our application involves a univariate response. We

assume that the ordinal responses arise as discretized versions of latent continuous responses,

which is particularly relevant for the fish maturity application, as maturation is a contin-

uous variable recorded on a discrete scale. With C categories, introduce latent continuous

responses (Z1, . . . , Zn) such that Yi = j if and only if Zi ∈ (γj−1, γj ], for j = 1, . . . , C, and

cut-off points −∞ = γ0 < γ1 < · · · < γC = ∞.

We consider settings in which the covariates may be treated as random, which is appropri-

ate, indeed necessary, for many biological and environmental applications. In our application,

the focus is on building a flexible model for the joint stochastic mechanism of maturation,

length, and age. In particular, we model the joint density f(z,x) with a DP mixture of mul-

tivariate normals: (zi,xi) | G
iid∼

�
N(zi,xi | µ,Σ) dG(µ,Σ), with G | α, G0 ∼ DP(α, G0).

By the DP constructive definition (Sethuraman, 1994), a realization G from a DP(α, G0)

is almost surely of the form G =
�∞

l=1 plδθl
. The locations, θl = (µl,Σl), are independent

and identically distributed (i.i.d.) realizations from the centering distribution G0, and the

weights are determined through stick-breaking from beta distributed random variables. In

particular, let vl
iid∼ beta(1,α), l = 1, 2, . . . , independently of {θl}, and define p1 = v1, and

for l = 2, 3, . . . , pl = vl
�l−1

r=1(1− vr). Therefore, the model for f(z,x) is a countable mixture
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of multivariate normals, which implies the following model for the regression functions:

Pr(Y = j | x, G) =
∞�

r=1

wr(x)

� γj

γj−1

N(z | mr(x), sr) dz, j = 1, . . . , C (1)

with covariate-dependent weights wr(x) ∝ prN(x | µx
r ,Σ

xx
r ), covariate-dependent means

mr(x) = µ
z
r +Σzx

r (Σxx
r )−1(x − µx

r ), and variances sr = Σzz
r −Σzx

r (Σxx
r )−1Σxz

r . Here, µr is

partitioned into µ
z
r and µx

r according to Z and X, and (Σzz
r ,Σxx

r ,Σzx
r ,Σxz

r ) are the compo-

nents of the corresponding partition of covariance matrix Σr.

This modeling strategy allows for general regression relationships, and overcomes many

limitations of standard parametric models. In addition, the cut-offs may be fixed to arbitrary

increasing values (which we recommend to be equally spaced and centered at zero) without

sacrificing model flexibility. In particular, it can be shown that the induced prior model on the

space of mixed ordinal-continuous distributions assigns positive probability to all Kullback-

Leibler neighborhoods of any distribution in this space. This represents a key computational

advantage over parametric models. We refer to DeYoreo and Kottas (2017) for more details

on model properties, and illustrations of the benefits afforded by the nonparametric joint

model over standard methods. This discussion refers to ordinal responses with three or more

categories. For the case of binary regression, i.e., when C = 2, additional restrictions are

needed on the covariance matrix Σ to facilitate identifiability (DeYoreo and Kottas, 2015).

2.2 Discrete-Time Dependent Dirichlet Process Mixture Model

In developing a model for a collection of distributions indexed in discrete time, we seek to

build on previous knowledge, retaining the powerful and well-studied DP mixture model

marginally at each time t ∈ T , with T = {1, 2, . . . }. We thus seek to extend the DP prior

to model GT = {Gt : t ∈ T }, a set of dependent distributions such that each Gt follows

a DP marginally. The dynamic DP extension can be developed by introducing temporal

dependence in the weights and atoms of the DP constructive definition, that is, extending

the DP prior for the mixing distribution G to a DDP prior for the discrete-time indexed
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collection of distributions Gt =
�∞

l=1 pl,tδθl,t
, for t ∈ T .

In our context, the general DDP formulation expresses the atoms θlT = {θl,t : t ∈ T },

for l = 1, 2, . . . , as i.i.d. sample paths from a time series model for the kernel parameters,

with the stick-breaking weights plT = {pl,t : t ∈ T }, for l = 1, 2, . . . , arising through a

latent time series with beta(1,α) (or beta(1,αt)) marginal distributions, independently of

θlT . The construction of dependent weights requires dependent beta random variables, such

that p1,t = v1,t, and pl,t = vl,t
�l−1

r=1(1 − vr,t), for l = 2, 3, . . . , with {vl,t : t ∈ T }, for

l = 1, 2, . . . , i.i.d. realizations from a time series with beta(1,α) marginals. Equivalently, we

can write p1,t = 1 − β1,t, pl,t = (1 − βl,t)
�l−1

r=1 βr,t, for l = 2, 3, . . . , with the {βl,t : t ∈ T }

i.i.d. realizations from a time series model with beta(α, 1) marginals.

The general DDP prior can be simplified by introducing temporal dependence only in the

weights (common atoms) or only in the atoms (common weights). Our original intent was to

use common atoms, however this model is not sufficiently flexible in predicting distributions

for years without any data. The time window for our application spans year 1993 to 2007, but

without data for years 2003, 2005, and 2006. Since the common atoms model forces the same

values for the mixing parameters across years, it produces density estimates at missing years

that tend to resemble an average across all years. This can adversely affect inference results

when a temporal trend is supported by the data. We thus use the general DDP prior with a

vector autoregressive (VAR) model for the atoms (detailed below), and a new construction

for the DDP weights through transformation of a Gaussian time-series model (developed in

Section 2.3).

We consider an observation time window spanning T time points (years), where data may

be missing for some of the years. Denote by nt the sample size in year t, and let Y ∗
ti, for

i = 1, . . . , nt, be a (p+1)-dimensional continuous random vector consisting of the latent con-

tinuous random variable that determines the ordinal response, and the p covariates. Ordinal

covariates can be accommodated in a similar way to the ordinal response, by introducing

latent continuous covariates into Y ∗
ti. This is described further in Section 3.1 in the context

of the rockfish data application which involves an ordinal and a continuous covariate.
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The DDP normal mixture model for the joint distribution of Y ∗
ti is expressed as

f(y∗
ti | Gt) =

�
N(y∗

ti | θ) dGt(θ) =
∞�

l=1

pl,tN(y
∗
ti | µl,t,Σl), t ∈ sc, i = 1, . . . , nt (2)

where temporal dependence in the atoms is introduced through the Gaussian kernel mean

vectors, that is, θl,t = (µl,t,Σl). Here, s collects the indexes for all years when data is

missing, and sc = {1, . . . , T} \ s represents all other years. The centering distribution for

the (p + 1) × (p + 1) covariance matrices Σl is taken to be IW(ν,D), an inverse-Wishart

distribution with density proportional to |Σl|−(ν+p+2)/2 exp{−0.5tr(DΣ−1
l )}, where D is a

random hyperparameter and ν is fixed.

To build temporal dependence in the DDP atoms, we use a first-order VAR model for the

time series that generates the {µl,t : t ∈ T }:

µl,1 | m0,V0 ∼ N(m0,V0), µl,t | µl,t−1,Θ,m,V ∼ N(m+Θµl,t−1,V ). (3)

We take Θ to be diagonal, but allow a full covariance matrix for V . Hence, the mean of each

element of µl,t depends only on the corresponding element of µl,t−1, however dependence

across elements of µl,t is allowed. A diagonal matrix Θ facilitates the selection of a stationary

VAR model (it suffices to restrict the diagonal elements to lie in (−1, 1)) and the identification

of the stationary distribution; see the Appendix. For the rockfish data application, we worked

with uniform priors on (0, 1) for the diagonal elements of Θ.

The Supplementary Material includes details on prior specification for m, V , and D, as

well as for the hyperparameters of the model for the DDP weights, which is discussed next.

2.3 A Time-Dependent Model for the DDP Weights

To obtain dependent stick-breaking weights, we define a stochastic process with beta(α, 1)

marginal distributions as follows:

B =

�
βt = exp

�
−ζ

2 + η
2
t

2α

�
: t ∈ T

�
, (4)
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where ζ ∼ N(0, 1) and, independently of ζ, ηT = {ηt : t ∈ T } is a stochastic process with

N(0, 1) marginal distributions. This transformation leads to marginal distributions βt ∼

beta(α, 1), since for two independent N(0, 1) random variables Y1 and Y2, W = (Y 2
1 + Y

2
2 )/2

follows an exponential distribution with mean 1, and thus exp(−W/α) ∼ beta(α, 1). To our

knowledge, this is a novel construction for the weights in a DDP prior model. The practical

utility of the transformation in (4) is that it facilitates building the temporal dependence

through Gaussian time-series models, while maintaining the DP structure marginally.

Working with distributions indexed in discrete time, we take ηT to be a first-order au-

toregressive (AR) process. Therefore, the prior model for the DDP weights, p1,t = 1 − β1,t,

pl,t = (1− βl,t)
�l−1

r=1 βr,t, l = 2, 3, . . . , is built from βl,t = exp{−(ζ2l + η
2
l,t)/2α}, where

ζl
iid∼ N(0, 1), ηl,1

iid∼ N(0, 1), ηl,t | ηl,t−1,φ ∼ N(φηl,t−1, 1− φ
2), l = 1, 2, . . . , t = 2, . . . , T

(5)

with |φ| < 1. The restriction on the variance of the AR(1) model for ηT , along with the

assumption ηl,1 ∼ N(0, 1), results in the required N(0, 1) marginals for the ηl,t.

The restriction |φ| < 1 implies stationarity for stochastic process ηT . Since B is a trans-

formation of a strongly stationary stochastic process, it is also strongly stationary. Note that

the correlation in (βl,t,βl,t+k) is driven by the autocorrelation present in ηT , and this induces

dependence in the weights (pl,t, pl,t+k), which leads to dependent distributions (Gt, Gt+k). We

explore this dependence in the Appendix, deriving the expressions for corr(βl,t,βl,t+k | α,φ),

corr(pl,t, pl,t+k | α,φ), and corr(Gt(A), Gt+1(A) | α,φ, G0,T ), for any specified measurable

subset A in the support of the Gt. The last correlation is studied for both a generic DDP

prior model with dependent atoms, as well as for the simplified model with common atoms.

Note that corr(βl,t,βl,t+k | α,φ) depends on ρk = corr(ηl,t, ηl,t+k | φ) = φ
k only through ρ

2
k,

and thus it is natural to assume φ ∈ (0, 1).

9



2.4 Discussion of Related Literature

The literature includes several variations of the DDP model. The common weights version,

with a Gaussian process used to generate dependent atoms, was first discussed by MacEachern

(2000). Applications of common weights DDP mixtures include ANOVA models (De Iorio

et al., 2004), spatial modeling (Gelfand et al., 2005; Kottas et al., 2012), survival regression

(DeIorio et al., 2009), and dose-response modeling (Fronczyk and Kottas, 2014a,b).

For data indexed in discrete time, Rodriguez and ter Horst (2008) apply a common

weights model, with atoms arising from a dynamic linear model. Di Lucca et al. (2013)

develop a model for a time series of continuous or binary responses through a DDP with

atoms dependent on lagged terms. Xiao et al. (2015) construct a dynamic DDP model for

Poisson process intensities, using different types of autoregressive processes for the atoms.

Taddy (2010) assumes the alternative simplification of the DDP with common atoms,

and models the stick-breaking proportions using the positive correlated autoregressive beta

process from McKenzie (1985). Nieto-Barajas et al. (2012) also use the common atoms DDP

version, modeling a time series of random distributions by linking the beta random variables

through latent binomially distributed random variables. As discussed in Bassetti et al. (2014),

the common atoms DDP prior structure may be a strong restriction when the distributions

across time units exhibit a high degree of heterogeneity.

In the order-based DDP of Griffin and Steel (2006), covariates are used to sort the weights.

Covariate dependence is incorporated in the weights in the kernel and probit stick-breaking

models of Dunson and Park (2008) and Rodriguez and Dunson (2011), respectively, how-

ever these prior models do not retain the DP marginally. Leisen and Lijoi (2011) and Zhu

and Leisen (2015) develop a dependent two-parameter Poisson-Dirichlet process, where the

dependence is induced through a Lévy copula. There exist many related constructions for

dependent distributions defined through correlated normalized completely random measures

(e.g., Griffin et al., 2013; Lijoi et al., 2014).

Griffin and Steel (2011) and Bassetti et al. (2014) use different definitions of multivariate

beta random variables to develop nonparametric prior models for multiple time series or
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repeated measures. While there exist many proposals for generating stick-breaking weights

through multivariate beta random variables, an appealing feature of the construction of

Section 2.3 is that temporal dependence is induced through a Gaussian time-series model.

Moreover, the construction allows for extensions to modeling dependent distributions ranging

over an uncountable set, such as spatially indexed distributions.

3 Estimating Maturity of Rockfish

3.1 Chilipepper Rockfish Data

Here, we provide details on the rockfish data pertaining to the application of the DDP mixture

model developed in Section 2.

In the original rockfish data source, maturity is recorded on an ordinal scale from 1

to 6, representing immature (1), early and late vitellogenesis (2, 3), eyed larvae (4), and

post-spawning (5, 6). Because scientists are not necessarily interested in differentiating be-

tween every one of these maturity levels, and to make the model output simpler and more

interpretable, we collapse maturity into three ordinal levels, representing immature (1), pre-

spawning mature (2, 3, 4), and post-spawning mature (5, 6).

Many observations have age missing or maturity recorded as unknown. Exploratory

analysis suggests there to be no systematic pattern in missingness. Further discussion with

fisheries researchers having expertise in aging of rockfish and data collection revealed that

the reason for missing age in a sample is that otoliths (ear stones used in aging) were not

collected or have not yet been aged. Maturity may be recorded as unknown because it can be

difficult to distinguish between stages, and samplers are told to record unknown unless they

are reasonably sure of the stage. Therefore, there is no systematic reason that age or maturity

is not present, and it is thus reasonable to assume that the data are missing completely at

random. We therefore ignore the missing data mechanism, and base inferences only on the

complete data (e.g., Rubin, 1976; Gelman et al., 2004). An alternative approach would be to

impute the missing values. However, given the very large amount of missing data, and the
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Table 1: Rockfish data organized by year, total sample size nt, and sample sizes in each of
the three maturity categories, labeled as n1,t (immature), n2,t (pre-spawning mature), and
n3,t (post-spawning mature). Note that data is not available for years 2003, 2005 and 2006.

year nt n1,t n2,t n3,t

1993 305 35 232 38
1994 271 23 210 38
1995 256 9 160 87
1996 160 0 106 54
1997 184 3 144 37
1998 132 10 67 55
1999 396 7 317 72
2000 64 1 59 4
2001 146 9 89 48
2002 238 36 191 11
2004 37 6 30 1
2007 43 13 15 15

fact that we are not interested in the imputations, this approach would significantly increase

the computational burden without providing any clear benefits.

Considering year of sampling as the index of dependence, observations occur in years 1993

through 2007, indexed by t = 1, . . . , T = 15, with no observations in 2003, 2005, or 2006 (so

s = {11, 13, 14}) and clear differences in sample size. The sample sizes, organized by year

and maturity level, are provided in Table 1. This situation involving time points in which

data is completely missing is not uncommon in these types of problems, and can be handled

with our model for equally spaced time points. As discussed in Section 2.2, this aspect of the

application is among the reasons for the use of the general DDP prior structure.

Age can not be treated as a continuous covariate, as there are approximately 25 distinct

values of age in over 2, 200 observations. Age is in fact recorded as an ordinal random

variable, such that a recorded age k implies the fish was between k and k + 1 years of

age. This relationship between discrete recorded age and continuous age is obtained by the

following reasoning. Chilipepper rockfish are winter spawning, and the young are assumed to

be born in early January. The annuli (rings) of the otiliths are counted in order to determine

age, and these also form sometime around January. Thus, for each ring, there has been

one year of growth. We therefore treat age much in the same way as maturity, using a
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latent continuous age variable. More specifically, Let U
∗ represent underlying continuous

age, and assume, for k = 0, 1, . . . , that we observe age k iff U
∗ ∈ (k, k+1], or equivalently, iff

W = log(U∗) ∈ (log(k), log(k + 1)], so the support of the latent continuous random variable

W corresponding to age is R. Therefore, for the i-th fish at year t ordinal age k is observed

iff Wti ∈ (log(k), log(k + 1)], for k = 0, 1, . . . , where Wti is log-age on a continuous scale.

Denote also byXti and Zti the length and maturation on the continuous scale, respectively,

for the i-th fish at year t, for t ∈ sc and i = 1, . . . , nt. Then, the DDP mixture model in (2)

is applied to the Y ∗
ti = (Zti,Wti, Xti), where the observed ordinal maturity, Yti, arises from

Zti through Yti = j if and only if γj−1 < Zti ≤ γj , for j = 1, 2, 3.

3.2 Results

To sample from the posterior distribution of the hierarchical model for the data, we use

blocked Gibbs sampling (Ishwaran and James, 2001), which involves a finite truncation ap-

proximation to the countable representation for each Gt. Details are included in the Sup-

plementary Material, but we note here that a key aspect of the Markov chain Monte Carlo

(MCMC) algorithm involves slice sampling steps for parameters {ζl} and {ηl,t}, which define

the DDP weights. Moreover, we can estimate parameters pl,t and θl,t at every time point

t ∈ {1, . . . , T}, and therefore inference is available for Gt even if there is no data at year t.

There are several alternative MCMC methods that could be used, including a collapsed

Gibbs sampler (e.g., Nieto-Barajas et al., 2012) or a slice sampler (e.g., Kalli et al., 2011).

These approaches do not require truncation for the Gt from the outset. However, to obtain

posterior samples for the Gt, which is essential for our inferential objectives, some form of

truncation must be applied also under the alternative MCMC approaches; we refer to DeYoreo

and Kottas (2017) for further details on this point.

Various simulation settings were developed to study both the common atoms version

of the model and the more general version (DeYoreo, 2014, chapter 4). While we focus

only on the fish maturity data application in this paper, our extensive simulation studies

have revealed the inferential power of the model under different scenarios for the true latent
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Figure 2: Posterior mean estimates for the bivariate density of age and length across all years.

response distribution and ordinal regression relationships.

We first discuss inference results for functionals involving length and age, but not maturity.

A feature of the modeling approach is that inference for the density of age can be obtained

over a continuous scale. The posterior mean surfaces for the bivariate density of age and

length are shown in Figure 2 for all years, including the ones (years 2003, 2005 and 2006) for
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Figure 3: Posterior mean and 95% interval bands for the expected value of length over
(continuous) age, E(length | age, Gt), across three years. Overlaid are the data (in blue) and
the estimated von Bertalanffy growth curves (in red).

which data is not available. The model yields more smooth shapes for the density estimates

in these years. An ellipse with a slight “banana” shape appears at each year, though some

nonstandard features and differences across years are present. In particular, the estimated

density in year 2002 extends down farther to smaller ages and lengths; this year is unique in

that it contains a very large proportion of the young fish which are present in the data.

One can envision a curve going through the center of these densities, representing E(X |

U
∗ = u

∗
, Gt), for which we show posterior mean and 95% interval bands for three years

in Figure 3. The estimates from our model are compared with the von Bertalanffy growth

curves for length-at-age, which are based on a particular function of age and three parameters

(estimated here using nonlinear least squares). It is noteworthy that the nonparametric

mixture model for the joint distribution of length and age yields estimated growth curves

which are overall similar to the von Bertalanffy parametric model, with some local differences

especially in year 2002. The uncertainty quantification in the growth curves afforded by the

nonparametric model is important, since the attainment of unique growth curves by group

(i.e., by location or cohort) is often used to suggest that the groups differ in some way, and

this type of analysis should clearly take into account the uncertainty in the estimated curves.

The last year 2007, in addition to containing few observations, is peculiar. There are no
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Figure 4: Posterior mean (black lines) and 95% interval estimates (gray shaded regions) for
the marginal maturation probability curves associated with length, for six years. Category 1
(immature) is given by the solid line, category 2 (pre-spawning mature) by the dashed line,
and category 3 (post-spawning mature) by the dotted line.

fish that are younger than age 6 in this year, and most of the age 6 and 7 fish are recorded

as immature, even though in all years combined, less than 10% of age 6 as well as age 7 fish

are immature. This year appears to be an anomaly. As there are no observations in 2005 or

2006, and a small number of observations in 2007 which seem to contradict the other years

of data, hereinafter, we report inferences only up to 2004.

Inference for the maturation probability curves is shown over length and age in Figures

4 and 5 for six years. The regression curve for maturity as a function of length, Pr(Y = j |

x,Gt), can be obtained by marginalizing over w in the expression for Pr(Y = j, w, x | Gt)

(which results from (2) by integrating over Z ∈ (γj−1, γj ]) and dividing by f(x | Gt). The

expression for Pr(Y = j | w,Gt) is computed analogously, where now the marginalization

is over length. The probability that a fish is immature is generally decreasing over length,

reaching a value near 0 at around 350 mm in most years. There is a large change in this
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Figure 5: Posterior mean (black lines) and 95% interval estimates (gray shaded regions) for
the marginal maturation probability curves associated with age, for six years. Category 1
(immature) is given by the solid line, category 2 (pre-spawning mature) by the dashed line,
and category 3 (post-spawning mature) by the dotted line.

probability over length in 2002 and 2004; these years suggest a probability of immaturity close

to 1 for very small fish near 200 to 250 mm. Turning to age, the probability of immaturity

is also decreasing with age, also showing differences in 2002 and 2004 in comparison to other

years. There is no clear indication of a general trend in the probabilities associated with

levels 2 or 3. Years 1995-1997 and 1999 display similar behavior, with a peak in probability

of post-spawning mature for moderate length values near 350 mm, and ages 6-7, favoring

pre-spawning mature fish at other lengths and ages. The last four years 2001-2004 suggest

the probability of pre-spawning mature to be increasing with length up to a point and then

leveling off, while post-spawning is favored most for large fish. Post-spawning appears to have

a lower probability than pre-spawning mature for any age at all years, with the exception of

1998, for which the probability of post-spawning mature is high for older fish.

The Pacific States Marine Fisheries Commission states that all Chilipepper rockfish are
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Figure 6: Posterior mean and 90% intervals for the smallest value of age above 2 years at
which probability of maturity first exceeds 0.9 (left), and similar inference for length (right).

mature at around 4-5 years, and at size 304 to 330 mm. A stock assessment produced by

the Pacific Fishery Management Council (Field, 2009) fitted a logistic regression to model

maturity over length, from which it appears that 90% of fish are mature around 300-350

mm. As our model does not enforce monotonicity on the probability of maturity across age,

we obtain posterior distributions for the age at which the probability of maturity exceeds

0.9, given that it exceeds 0.9 at some point. That is, for each posterior sample we evaluate

Pr(Y > 1 | u∗, Gt) over a grid in u
∗ beginning at 2 (since biologically all fish under 2 should

be immature), and find the smallest value of u∗ at which this probability exceeds 0.9. Note

that there were very few posterior samples for which this probability did not exceed 0.9 for

any age (only 4 samples in 1993 and 8 in 2003). The estimates for age at 90% maturity are

shown in the left panel of Figure 6. The model uncovers a (weak) U-shaped trend across

years. Also noteworthy are the very narrow interval bands in 2002. Recall that this year

contains an abnormally large number of young fish. In this year, over half of fish age 2 (that

is, of age 2-3) are immature, and over 90% of age 3 (that is, of age 3-4) fish are mature, so

we would expect the age at 90% maturity to be above 3 but less than 4, which our estimate

confirms. A similar analysis is performed for length (right panel of Figure 6) suggesting a

trend over time which is consistent with the age analysis.
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Figure 7: Left panel: boxplots of the proportion of age = 6 pre-spawning mature fish in
the replicated data sets, with width proportional to the number of age 6 fish in each year.
Middle panel: boxplots of the proportion of age ≥ 7, and length > 400 mm pre-spawning
mature fish in the replicated data sets, with width proportional to the number of fish of this
age and length in each year. Right panel: boxplots of the sample correlation between length
and age for pre-spawning mature fish in the replicated data sets, with width proportional to
the number of pre-spawning mature fish in each year. The blue circles in the left and middle
panels denote the actual data proportions, and in the right panel the data-based correlation.

3.3 Model Checking

Here, we discuss results from posterior predictive model checking. In particular, we generated

replicate data sets from the posterior predictive distribution, and compared to the real data

using specific test quantities (Gelman et al., 2004). We avoid using posterior predictive

p–values because these predictive probabilities are not well calibrated, tending to have non-

uniform distributions under the null hypothesis that the model is correct (e.g., Bayarri and

Berger, 2000; Gelman, 2013).

As an illustration, Figure 7 shows results for years 1993 to 2004 (excluding year 2003 for

which data is not available) and for three test quantities: the proportion of age 6 pre-spawning

mature fish; the proportion of pre-spawning mature fish of at least 7 years of age and length

larger than 400 mm; and the sample correlation between length and age for pre-spawning

mature fish. The results, a subset of which is shown in Figure 7, suggest that the model

is predicting data which is similar to the observed data in terms of practically important

inferences.
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Although results are not shown here, we also studied residuals with cross-validation, ran-

domly selecting 20% of the observations in each year and refitting the model, leaving out

these observations. We obtained residuals ỹti − E(Y | W = w̃ti, X = x̃ti, Gt) for each obser-

vation (ỹti, w̃ti, x̃ti) which was left out. There was no apparent trend in the residuals across

covariate values, that is, no indication that we are systematically under or overestimating

fish maturity of a particular length and/or age.

Allowing for both time-dependent weights and atoms proved to be important for the

application, as evidenced by formal comparison with the common atoms model. Specifically,

the posterior predictive criterion of Gelfand and Ghosh (1998) was calculated for each year

of data between 1993 and 2004, and indicated that the more general DDP model provided a

better fit to the data at most years. Refer to the Supplementary Material for more details.

4 Discussion

The methods developed for dynamic ordinal regression are widely applicable to modeling

mixed ordinal-continuous distributions indexed in discrete time. At any particular point

in time, the DP mixture representation for the latent response-covariate distribution is re-

tained, enabling flexible inference for a variety of functionals, and allowing standard posterior

simulation techniques for DP mixture models to be utilized.

In contrast to standard approaches to ordinal regression, the model does not force specific

trends, such as monotonicity, in the regression functions. We view this as an attribute in most

settings. Nevertheless, in situations in which it is believed that monotonicity exists, we must

realize that the data will determine the model output, and may not produce strictly mono-

tonic relationships. Referring to the fish maturity application, it is generally accepted that

monotonicity exists in the probability of maturity as a function of age or length. Although

our model does not enforce this, the inferences generally agree with what is expected to be

true biologically. Specifically, the probability that a fish is immature is generally decreasing

over length and age. Our model is also relevant to this setting, as the covariates age and

20



length are treated as random, and the ordinal nature of recorded age is accounted for using

variables which represent underlying continuous age. The set of inferences that are provided

under this framework, including estimates for length as a function of age, make this modeling

approach powerful for the particular application considered, as well as related problems.

While year of sampling was considered to be the index of dependence in this analysis, an

alternative is to consider cohort as an index of dependence. All fish born in the same year, or

the same age in a given year, represent one cohort. Grouping fish by cohort rather than year of

record should lead to more homogeneity within a group, however there are also some possible

issues since fish will generally be younger as cohort index increases. This is a consequence

of having a particular set of years for which data is collected, i.e., the cohort of fish born in

2006 can not be older than 4 if data collection stopped in 2009. Due to complications such

as these, combined with exploration of the relationships within each cohort, we decided to

treat year of data collection as the index of dependence, but cohort indexing could be more

appropriate in other analyses of similar data structures.

The proposed modeling approach could also be useful in applications in finance. One

such example arises in the analysis of price changes of stocks. In the past, stocks traded

on the New York Stock Exchange were priced in eighths, later moved to sixteenths, and

corporate bonds still trade in eighths. In analyzing price changes of stocks which are traded

in fractions, it is inappropriate to treat the measurements as continuous, particularly if the

range of values is not very large (e.g., Müller and Czado, 2009). The price changes should be

treated with a discrete response model, and the possible responses are ordered, ranging from

a large negative return to a large positive return. One possible analysis may involve modeling

the monthly returns as a function of covariates, such as trade volume, taking into account

the ordinal nature of the responses. In addition, the distribution of returns in a particular

month is likely correlated with the previous month, and the regression relationships must

be allowed to be related from one month to the next. In finance as well as environmental

science, empirical distributions may exhibit non-standard features which require more general

methods, such as the nonparametric mixture model developed here.
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Appendix: Properties of the DDP Prior Model

Here we provide derivations of various correlations associated with the DDP prior model

presented in Section 2.3.

Autocorrelation of (βt, βt+k)

First, consider the correlation of the beta random variables used to define the dynamic stick-

breaking weights. Let ρk = corr(ηt, ηt+k), which is equal to φ
k under the assumption of an

AR(1) process for ηT . The autocorrelation function associated with B is

corr(βt,βt+k | α,φ) =
α
1/2(1− ρ

2
k)

1/2(α+ 1)2(α+ 2)1/2
�
(1− ρ

2
k + α)2 − α2ρ2k

�1/2
− α(α+ 2). (A.1)

The expectations required to derive expression (A.1) are obtained as follows. Since the process

is stationary with βt ∼ beta(α, 1) at any time t, E(βt | α) = α/(α + 1) and var(βt | α) =

α/{(α+ 1)2(α+ 2)}. Also, using the definition of the B process in (4),

E(βtβt+k | α,φ) = E
�
exp(−ζ

2
/α)

�
E
�
exp(−(η2t + η

2
t+k)/2α)

�
. (A.2)

The first expectation can be obtained from the moment generating function of ζ2 ∼ χ
2
1, given

by E(etζ
2
) = (1 − 2t)−1/2, for t < 1/2. Hence, for t = −1/α, we obtain E

�
exp(−ζ

2
/α)

�
=

α
1/2

/(2 + α)1/2. Regarding the second expectation, note that (ηt, ηt+k) ∼ N(0, Ck), with Ck

a covariance matrix with diagonal elements equal to 1 and off-diagonal element equal to ρk.

Integration results in E
�
exp(−(η2t + η

2
t+k)/2α)

�
= α(1− ρ

2
k)

1/2
/{(1− ρ

2
k + α)2 − α

2
ρ
2
k}1/2.

Figure 8 plots the autocorrelation function in (A.1), for k ranging from 1 to 50, and for

various values of α and φ. Smaller values for α lead to smaller correlations for any fixed

φ at a particular lag, and φ controls the strength of correlation, with large φ producing

large correlations which decay slowly. Parameters φ and α combined can lead to a range of

correlations, however α ≥ 1 implies a lower bound near 0.5 for any lag k. In the limit, as

α → 0+, corr(βt,βt+k | α,φ) → 0, and as α → ∞, corr(βt,βt+k | α,φ) tends towards 0.5 as
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Figure 8: Autocorrelation function corr(βt,βt+k | α,φ) for a range of α values (indicated in
the title of each panel) and values of φ of 0.99 (solid lines), 0.9 (dashed lines), 0.5 (dotted
lines), and 0.3 (dashed/dotted lines). The lag k on the x-axis runs from 1 to 50.

ρk → 0+, and 1 as ρk → 1−. For ρk = φ
k, we obtain limφ→1− corr(βt,βt+k | α,φ) = 1 and

limφ→0+ corr(βt,βt+k | α,φ) = α
1/2(α+1)(α+2)1/2−α(α+2), which tends to 0.5 as α → ∞.

Autocorrelation of DDP weights

We next study the dependence induced in the DDP weights at consecutive time points.

First, E(pl,t | α) = E{(1 − βl,t)
�l−1

r=1 βr,t | α}. Since the βl,t are independent across l, and

E(βl,t | α) = α/(α + 1), we obtain E(pl,t | α) = α
l−1

/(1 + α)l. Similarly, E(p2l,t | α) =

E{(1−βl,t)2 | α}
�l−1

r=1 E(β
2
r,t | α) = 2αl−1

/{(α+1)(α+2)l}, from which var(pl,t | α) obtains.

Since pl,tpl,t+1 = (1 − βl,t)(1 − βl,t+1)
�l−1

r=1 βr,tβr,t+1, and (βl,t,βl,t+1) is independent of

(βm,t,βm,t+1), for any l �= m, we can write E(pl,tpl,t+1 | α,φ) = E{(1 − βl,t)(1 − βl,t+1) |

α,φ}
�l−1

r=1 E(βr,tβr,t+1 | α,φ). The required expectations in the above equation can be ob-

tained from (A.2) for k = 1, such that ρ1 = φ. Combining these expressions yields the
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Figure 9: Autocorrelation function corr(pl,t, pl,t+1 | α,φ) for a range of α values (indicated
in the title of each panel) and values of φ of 0.99 (solid lines), 0.9 (dashed lines), 0.5 (dotted
lines), and 0.3 (dashed/dotted lines). The weight index l on the x-axis runs from 1 to 100.

covariance

cov(pl,t, pl,t+1 | α,φ) =
�

α
3/2(1− φ

2)1/2

(2 + α)1/2 {(1− φ2 + α)2 − α2φ2}1/2

�l−1

�
1− 2α

α+ 1
+

α
3/2(1− φ

2)1/2

(2 + α)1/2 {(1− φ2 + α)2 − α2φ2}1/2

�
− α

2l−2

(1 + α)2l
. (A.3)

This can be divided by var(pl,t | α) = {2αl−1
/((1+α)(2+α)l)}− {α2l−2

/(1+α)2l} to yield

corr(pl,t, pl,t+1 | α,φ); note that E(pl,t | α) = E(pl,t+1 | α) and var(pl,t | α) = var(pl,t+1 | α).

Figure 9 displays corr(pl,t, pl,t+1 | α,φ) for different values of α and φ. The correlations

are decreasing in index l, and larger values of φ lead to larger correlations in the weights at

any particular l. Moreover, the decay in correlations with weight index is faster for small α

and small φ. As α → 0+, corr(p1,t, p1,t+1 | α,φ) → 1 for any value of φ, and as α → ∞,

corr(p1,t, p1,t+1 | α,φ) is contained in (0.5, 1), with values closer to 1 for larger φ. Note that

corr(pl,t, pl,t+k | α,φ) has the same expression as corr(pl,t, pl,t+1 | α,φ), but with φ replaced
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by φ
k; it is thus decreasing with the lag k, with the speed of decay controlled by φ.

Autocorrelation of consecutive distributions

Denote by S the support of distributions Gt =
�∞

l=1 pl,tδθl,t
(say, S ⊆ RM ) and consider a

specific measurable set A ⊂ S. We study the correlation between Gt(A) and Gt+1(A) for the

general DDP prior based on the model of Section 2.3 for the weights and a generic time series

model G0T = {G0,t : t ∈ T } for the atoms θl,t, as well as for the common atoms DDP prior.

The DDP prior model implies at any t a DP(α, G0,t) prior for Gt. Hence, we have

E(Gt(A) | α, G0T ) = G0,t(A), and var(Gt(A) | α, G0T ) = G0,t(A)(1−G0,t(A))/(α+ 1).

The additional expectation needed in order to obtain corr(Gt(A), Gt+1(A) | α,φ, G0T ) is

E(Gt(A)Gt+1(A) | α,φ, G0T ) = E
��∞

l=1 pl,tpl,t+1δθl,t
(A)δθl,t+1

(A) | α,φ, G0T
�
+

E
��∞

l=1

�
m �=l pl,tpm,t+1δθl,t

(A)δθm,t+1(A) | α,φ, G0T

�
.

The first expectation is equal to G0,t,t+1(A)
�∞

l=1 E(pl,tpl,t+1 | α,φ), where G0,t,t+1(A) =

Pr(θl,t ∈ A,θl,t+1 ∈ A | G0T ), and the term E(pl,tpl,t+1 | α,φ) = Hl(α,φ) is given as part of

expression (A.3). The second expectation becomesG0,t(A)G0,t+1(A)
�∞

l=1

�
m �=l E(pl,tpm,t+1 |

α,φ). Here, we have used the independence between the random variables defining the weights

and the atoms, as well as the independence between θl,t and θm,t+1, for m �= l.

The final step of the derivation therefore involves E(pl,tpm,t+1 | α,φ), form �= l. Note that,

if l < m, pl,tpm,t+1 = (
�l−1

r=1 βr,tβr,t+1)βl,t+1(1 − βl,t) (
�m−1

r=l+1 βr,t+1) (1 − βm,t+1), and thus

Dl<m(α,φ) ≡ E(pl,tpm,t+1 | α,φ) = C(α,φ)l−1{α(α+1)−1−C(α,φ)}αm−l−1(α+1)l−m, where

C(α,φ) = E(βr,tβr,t+1 | α,φ). Analogously, for l > m, Dl>m(α,φ) ≡ E(pl,tpm,t+1 | α,φ) =

C(α,φ)m−1{α(α+ 1)−1 − C(α,φ)}αl−m−1(α+ 1)m−l.

Putting this all together, E(Gt(A)Gt+1(A) | α,φ, G0T ) is equal to

G0,t,t+1(A)
∞�

l=1

Hl(α,φ) + G0,t(A)G0,t+1(A)
∞�

l=1

�
�

m<l

Dl>m(α,φ) +
�

m>l

Dl<m(α,φ)

�
,
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and corr(Gt(A), Gt+1(A) | α,φ, G0T ) is equal to

�
α+ 1

{G0,t(A)G0,t+1(A)(1−G0,t(A))(1−G0,t+1(A))}1/2

�
×

G0,t,t+1(A)
∞�

l=1

Hl(α,φ)+G0,t(A)G0,t+1(A)

�
−1 +

∞�

l=1

�
�

m<l

Dl>m(α,φ) +
�

m>l

Dl<m(α,φ)

��
.

(A.4)

Under the simplified version of the model with common atoms, where θl,t ≡ θl arise i.i.d.

from G0, corr(Gt(A), Gt+1(A) | α,φ, G0) becomes

(α+ 1)
�
−G0(A) +

�∞
l=1Hl(α,φ) +G0(A)

�∞
l=1

��
m<l Dl>m(α,φ) +

�
m>l Dl<m(α,φ)

��

1−G0(A)
.

(A.5)

The complex nature of expressions (A.4) and (A.5) does not allow ready identification

of correlation trends in terms of the model parameters. Moreover, since the expressions

are obtained through differences of expectations, they are numerically unstable to compute

for certain combinations of parameter values. However, we can alternatively estimate the

correlation through the sample correlation of a set of draws from the prior distribution of

(Gt(A), Gt+1(A)). We discuss next some results from this prior simulation approach.

We first consider the common atoms simplification of the model. To focus on the effects

of parameters α and φ, we take S = R and set G0 = N(0, 1), with A = (−10, 0), which fixes

G0(A) ≈ 0.5. Note that we did not observe a significant effect in the correlation patterns

for different sets A. Figure 10 displays corr(Gt(A), Gt+1(A) | α,φ) for different values of α

and φ. The correlations are increasing with φ for fixed α, and decreasing with α for fixed φ.

However, for practically all combinations of α and φ values, the correlation is fairly large as

a consequence of the common atoms restriction.

Next, consider the more general model, involving time-dependent atoms θl,t. Simulating

from the prior requires sampling (θl,t,θl,t+1) from the bivariate distribution implied by the
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Figure 10: Correlations between Gt(A) and Gt+1(A), for A = (−10, 0), under the common
atoms DDP prior with G0 = N(0, 1). Left panel: Correlations as a function of φ for α = 0.5
(circles), α = 1 (triangles), and α = 4 (+ symbols). Right panel: Correlations as a function
of α for φ = 0.1 (circles), φ = 0.5 (triangles), and φ = 0.9 (+ symbols).

time series model for G0T . Under the particular model for the rockfish data application,

θl,t = (µl,t,Σl). Evidently, it is simpler to study the correlation of consecutive distributions

under a stationary model for the µl,T . The VAR process we use to define the µl,T is a

stationary model under a diagonal matrix Θ with diagonal elements taking values in (−1, 1).

To facilitate comparison with the common atoms simplification and focus on the effect

of the AR coefficient, we take S = R and θl,t = µl,t. In this case, the bivariate stationary

distribution for (θl,t, θl,t+1) under the univariate version of the autoregressive model in (3) is

bivariate normal, with means m/(1−Θ), variances V/(1−Θ2), and covariance ΘV/(1−Θ2).

We fix m = 0, V = 1, and A = (−10, 0), and focus on the effect of the AR parameter Θ.

Figure 11 displays correlations over Θ for different φ and α values. The correlations are

increasing with Θ, and increasing to a lesser degree with φ. In contrast to the common atoms

model, different combinations of Θ, α and φ values result in correlations that span the entire

interval (0, 1).
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Figure 11: Correlations between Gt(A) and Gt+1(A), for A = (−10, 0), under the general
DDP prior with a stationary AR model for the atoms with AR parameter Θ and marginal
distribution G0 = N(0, 1). The left plot fixes α = 0.5, and the right fixes α = 4. In both plots,
correlations are shown for φ = 0.1 (circles), φ = 0.5 (triangles), and φ = 0.9 (+ symbols).
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Supplementary Material for “Modeling for Dynamic Ordinal

Regression Relationships: An Application to Estimating

Maturity of Rockfish in California”

Maria DeYoreo and Athanasios Kottas

Section 1 discusses posterior inference under the DDP mixture model, as well as prior spec-

ification and sensitivity to the prior choice. Details on model comparison for the common

atoms DDP model versus the more general model are presented in Section 2.

1 Prior Specification and Posterior Simulation Details

1.1 MCMC Posterior Simulation Method

We implement posterior simulation using blocked Gibbs sampling (Ishwaran and James,

2001), which involves truncation of the countable representation for Gt to a finite level N .

Hence, the stick-breaking weights are given by p1,t = 1 − β1,t, pl,t = (1 − βl,t)
�l−1

r=1 βr,t, for

l = 2, . . . , N − 1, and pN,t =
�N−1

l=1 βl,t, ensuring
�N

l=1 pl,t = 1. Since α is not a function of t,

the same truncation level is applied for all mixing distributions. In choosing the truncation

level, we use the prior expectation for the sum of the first N DP stick-breaking weights

w1, . . . , wN , that is, E(
�N

j=1wj | α) = 1−{α/(α+1)}N . This can be averaged over the prior

for α to obtain E(
�N

j=1wj), with N chosen such that this expectation is close to 1 up to the

desired level of tolerance for the approximation. For the rockfish data application, we used

N = 50, which corresponds to E(
�N

j=1wj) > 0.999999, under the prior for α given below.

Regarding the model hyperparameters, α and φ are given priors IG(aα, bα) and uniform on

(0, 1), respectively. We choose aα = 5 and bα = 3 to favor small values for α, hence relatively
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few clusters. We assume that Θ is diagonal, with elements (θ1, θ2, θ3), however we advocate

for a full covariance matrix V . We assume uniform priors on (0, 1) for each element of Θ and

for φ. We use conditionally conjugate priors for the hyperparameters m, V and D, given by

m ∼ N(am,Bm), V ∼ IW(aV ,BV ), and D ∼ W(aD,BD). The inverse-Wishart density

for V is proportional to |V |−(aV +p+2)/2 exp{−0.5tr(BV V −1)}, and the Wishart density for

D is proportional to |D|(aD−p−2)/2 exp{−0.5tr(B−1
D D)}.

The hierarchical model for the data is written by introducing a set of mixture configuration

variables Lt,i, which indicate the mixture component for observation i at time t. Conditional

on Lt,i, the mixture model given in Equation (2) of the paper implies a normal distribution

for y∗
ti = (zti, wti, xti) with mean vector µLt,i,t and covariance matrix ΣLt,i . The posterior full

conditional for each Lt,i is a discrete distribution on {1, ..., N} with probabilities proportional

to pl,tN(y∗
ti | µl,t,Σl).

Since (zti, wti, xti) | Lt,i, (µLt,i,t,ΣLt,i) ∼ N(µLt,i,t,ΣLt,i), the posterior full conditional

for each latent continuous zti is proportional to the conditional normal distribution for

zti | (wti, xti), with lower and upper truncation points given by γyti−1 and γyti . The full

conditionals for the latent continuous wti follow analogously, and each latent continuous

random variable is sampled from a truncated normal distribution.

The conjugate priors for the hyperparameters m, V and D yield closed-form full con-

ditional distributions via standard conjugate updating. Below we derive the posterior full

conditionals and provide updating strategies for the remaining model parameters that are

more complicated to sample and have not yet been described.

Updating the weights

The full conditional for ({ζl}, {ηl,t}) is given by p({ζl}, {ηl,t} | . . . , data) ∝

N−1�

l=1

N(ζl | 0, 1)N(ηl,1 | 0, 1)
T�

t=2

N−1�

l=1

N(ηl,t | φηl,t−1, 1− φ2)
T�

t=1

nt�

i=1

N�

l=1

pl,tδl(Lt,i).

2



Write
�nt

i=1

�N
l=1 pl,tδl(Lt,i) =

�N
l=1 p

Ml,t

l,t , where Ml,t =| {(t, i) : Lt,i = l} |, i.e., the number

of observations at time t assigned to component l. Filling in the form for {pl,t} gives

nt�

i=1

N�

l=1

pl,tδl(Lt,i) =

�
1− exp

�
−
ζ21 + η21,t

2α

��M1,t

exp

�
−
MN,t

�N−1
l=1 (ζ2l + η2l,t)

2α

�

N−1�

l=2






�
1− exp

�
−
ζ2l + η2l,t

2α

��Ml,t

exp

�
−
Ml,t

�l−1
r=1(ζ

2
r + η2r,t)

2α

�


 .

The full conditional for each ζl, l = 1, . . . , N − 1, is therefore

p(ζl | . . . , data) ∝ exp

�
−
ζ2l
2

�
exp

�
−ζ2l

�T
t=1

�N
r=l+1Mr,t

2α

�
T�

t=1

�
1− exp

�
−
ζ2l + η2l,t

2α

��Ml,t

giving

p(ζl | . . . , data) ∝ N(ζl | 0, (1 + α−1
T�

t=1

N�

r=l+1

Mr,t)
−1)

T�

t=1

�
1− exp

�
−
ζ2l + η2l,t

2α

��Ml,t

We use a slice sampler to update ζl, with the following steps:

• Draw ut ∼ uniform

�
0,

�
1− exp

�
− ζ2l +η2l,t

2α

��Ml,t
�
, for t = 1, . . . , T.

• Draw ζl ∼ N(0, (1 + α−1�T
t=1

�N
r=l+1Mr,t)−1), restricted to the lie in the interval�

ζl : ut <

�
1− exp

�
− ζ2l +η2l,t

2α

��Ml,t

, t = 1, . . . , T

�
. Solving for ζl in each of these

T equations gives ζ2l > −η2l,t − 2α log(1 − u
1/Ml,t
t ), for t = 1, . . . , T . Therefore, if

−η2l,t − 2α log(1 − u
1/Ml,t
t ) < 0 for all t, then ζl has no restrictions, and is therefore

sampled from a normal distribution. Otherwise, if −η2l,t − 2α log(1 − u
1/Ml,t
t ) > 0 for

some t, then | ζl |> maxt{(−η2l,t−2α log(1−u
1/Ml,t
t ))1/2}. This then requires sampling ζl

from a normal distribution, restricted to the intervals (−∞,−maxt{(−η2l,t− 2α log(1−

u
1/Ml,t
t ))1/2}), and (maxt{(−η2l,t − 2α log(1− u

1/Ml,t
t ))1/2},∞).

In the second step above, we may have to sample from a normal distribution, restricted to two

disjoint intervals. The resulting distribution is therefore a mixture of two truncated normals,
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with probabilities determined by the (normalized) probability the normal assigns to each in-

terval. These truncated normals both have mean 0 and variance (1+
�T

t=1

�N
r=l+1Mr,t/α)−1,

and each mixture component has equal probability.

The full conditional for each ηl,t, l = 1, . . . , N − 1, t = 2, . . . , T − 1, is proportional to

N

�
ηl,t | 0,

α
�N

r=l+1 Mr,t

�
N(ηl,t | φηl,t−1, 1− φ2)N(ηl,t+1 | φηl,t, 1− φ2)

�
1− exp

�
−
ζ2l + η2l,t

2α

��Ml,t

∝ N

�
ηl,t |

φα(ηl,t−1 + ηl,t+1)

φ2(α−
�N

r=l+1 Mr,t) + α+
�N

r=l+1 Mr,t

,
α(1− φ2)

φ2(α−
�N

r=l+1 Mr,t) + α+
�N

r=l+1 Mr,t

�

�
1− exp

�
−
ζ2l + η2l,t

2α

��Ml,t

Each ηl,t, l = 1, . . . , N − 1, and t = 2, . . . , T − 1, can therefore be sampled with a slice

sampler:

• Draw u ∼ Unif

�
0,

�
1− exp

�
− ζ2l +η2l,t

2α

��Ml,t
�
.

• Draw ηl,t ∼ N

�
ηl,t |

φα(ηl,t−1+ηl,t+1)

φ2(α−
�N

r=l+1 Mr,t)+α+
�N

r=l+1 Mr,t
, α(1−φ2)

φ2(α−
�N

r=l+1 Mr,t)+α+
�N

r=l+1 Mr,t

�
,

restricted to

�
ηl,t :

�
1− exp

�
− ζ2l +η2l,t

2α

��Ml,t

> u

�
, giving η2l,t > −2α log(1−u1/Ml,t)−

ζ2l .

In the second step above, we will again either sample from a single normal or a mixture

of truncated normals, where each normal has the same mean and variance, but the trun-

cation intervals differ. Since the mean of this normal is not zero, the weights assigned to

each truncated normal are not the same. The unnormalized weight assigned to the nor-

mal which places positive probability on ((−2α log(1 − u1/Ml,t) − ζ2l )
1/2,∞) is given by

1−F ((−2α log(1−u1/Ml,t)−ζ2l )
1/2), where F is the CDF of the normal for ηl,t given in the sec-

ond step. The unnormalized weight given to the component which places positive probability

on (−∞,−(−2α log(1− u1/Ml,t)− ζ2l )
1/2) is given by F (−(−2α log(1− u1/Ml,t)− ζ2l )

1/2).
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The full conditionals for ηl,1 and ηl,T are slightly different. The full conditional for ηl,1 is

p(ηl,1 | . . . , data) ∝ N(ηl,1 | 0, α
�N

r=l+1 Mr,1

)N(ηl,1 | 0, 1)N(ηl,2 | φηl,1, 1−φ2)

�
1− exp

�
−
ζ2l + η2l,1

2α

��Ml,1

,

∝ N

�
ηl,1 |

φαηl,2

α+
�N

r=l+1Mr,1 − φ2
�N

r=l+1Mr,1

,
α(1− φ2)

α+
�N

r=l+1Mr,1 − φ2
�N

r=l+1Mr,1

�

�
1− exp

�
−
ζ2l + η2l,1

2α

��Ml,1

.

For ηl,T , we have:

p(ηl,T | . . . , data) ∝ N(ηl,T | 0, α
�N

r=l+1Mr,T

)N(ηl,T | φηl,T−1, 1−φ2)

�
1− exp

�
−
ζ2l + η2l,T

2α

��Ml,T

,

which is proportional to

N

�
ηl,T |

φαηl,T−1

α+
�N

r=l+1Mr,T − φ2
�N

r=l+1Mr,T

,
α(1− φ2)

α+
�N

r=l+1Mr,T − φ2
�N

r=l+1Mr,T

�

�
1− exp

�
−
ζ2l + η2l,T

2α

��Ml,T

The slice samplers for ηl,1 and ηl,T are therefore implemented in the same way as for ηl,t,

except the normals which are sampled from have different means and variances.

Note that if there is no data at some time point r, there are no Lr,i variables, so the full

conditional for ηl,r simply arises from the distribution for f(ηl,r | ηl,r−1) and f(ηl,r+1 | ηl,r)

in Equation (5) of the paper.

Updating α

The posterior full conditional for α is proportional to

p(α) exp

�
−
�T

t=1 MN,t
�N−1

l=1 (ζ2l + η2
l,t)

2α

�
exp

�
−
�T

t=1

�N−1
l=2 Ml,t

�l−1
r=1(ζ

2
r + η2

r,t)

2α

�
T�

t=1

N−1�

l=1

�
1− exp

�
−
ζ2l + η2

l,t

2α

��Ml,t
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Therefore, with p(α) = IG(aα, bα), we have

p(α | . . . , data) = IG

�
α | aα, bα +

1

2

T�

t=1

�
MN,t

N−1�

l=1

(ζ2l + η2l,t) +
N−1�

l=2

Ml,t

l−1�

r=1

(ζ2r + η2r,t)

��

T�

t=1

N−1�

l=1

�
1− exp

�
−
ζ2l + η2l,t

2α

��Ml,t

The parameter α can be sampled using a Metropolis-Hastings algorithm. In particular we

work with log(α), and use a normal proposal distribution centered at the log of the current

value of α.

Updating φ and Θ

The full conditional for the AR parameter φ is p(φ | . . . , data) ∝ p(φ)
�T

t=2

�N−1
l=1 N(ηl,t |

φηl,t−1, 1 − φ2), where p(φ) is the uniform(0, 1) prior for φ. We use a Metropolis-Hastings

step to sample log{φ/(1− φ)} based on a normal proposal distribution.

The full conditional for Θ is proportional to
�T

t=2

�N
l=1N(m + Θµl,t−1,V ). With the

assumption that Θ is diagonal with elements θj , and with Unif(0, 1) priors on each element,

the Metropolis-Hastings algorithm can be used to update each θj individually by sampling

log{θj/(1 − θj)} from a normal proposal distribution. Alternatively, the θj can be updated

jointly with a multivariate normal proposal distribution on the logit scale.

Updating {µl,t}

The updates for µl,t are based on N(m∗,V ∗) distributions, with m∗ and V ∗ given by:

• For t = 2, . . . , T−1, ifMl,t = 0, then the update for µl,t has V ∗ = (V −1+(Θ−1V Θ−T )−1)−1

and m∗ = V ∗(V −1(m+Θµl,t−1) + (Θ−1V Θ−T )−1Θ−1(µl,t+1 −m))

• For t = 2, . . . , T−1, ifMl,t �= 0, then the update for µl,t has V ∗ = (V −1+(Θ−1V Θ−T )−1+

Ml,tΣ
−1
l )−1 and m∗ = V ∗(V −1(m + Θµl,t−1) + (Θ−1V Θ−T )−1Θ−1(µl,t+1 − m) +

Σ−1
l

�
{i:Lt,i=l} y

∗
t,i)
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• for t = 1, if Ml,1 = 0, then the update for µl,1 has V ∗ = ((Θ−1V Θ−T )−1 + V −1
0 )−1,

and m∗ = V ∗((Θ−1V Θ−T )−1Θ−1(µl,2 −m) + V −1
0 m0)

• for t = 1, if Ml,1 �= 0, then the update for µl,1 has V ∗ = (Ml,1Σ
−1
l + (Θ−1V Θ−T )−1 +

V −1
0 )−1 and m∗ = V ∗(Σ−1

l

�
{i:L1,i=l} y

∗
1,i + (Θ−1V Θ−T )−1Θ−1(µl,2 −m) + V −1

0 m0)

• for t = T , if Ml,T = 0, then the update for µl,T has V ∗ = V , and m∗ = m+Θµl,T−1

• for t = T , if Ml,T �= 0, then the update for µl,T has V ∗ = (Ml,TΣ
−1
l + V −1)−1 and

m∗ = V ∗(Σ−1
l

�
{i:LT,i=l} y

∗
t,i + V −1(m+Θµl,T−1))

Updating {Σl}

Let Ml =
�T

t=1Ml,t. The posterior full conditional for Σl is proportional to IW(ν+Ml,D+
�

{(t,i):Lti=l}(y
∗
t,i − µl,t)(y∗

t,i − µl,t)T ). When |{(t, i) : Lt,i = l}| = 0, Σl is drawn from

IW(ν,D).

1.2 Prior Specification

To implement the model, we must specify the parameters of the hyperpriors on ψ. A default

specification strategy is developed by considering the limiting case of the model as α →

0+ and Θ → 0, which results in a single normal distribution for Y ∗
t . In the limit, with

Y ∗
t | µt,Σ ∼ N(µt,Σ) and µt | m,V ∼ N(m,V ), we find E(Y ∗

t ) = am and Cov(Y ∗
t ) =

Bm+BV (aV − d− 1)−1+aDBD(ν− d− 1)−1, where d is the response-covariate dimension,

here d = 3. The only covariate information we require is an approximate center and range,

denoted by cx and rx for X, and analogously for W . A widely used default choice uses

the midpoint and range of the data. Alternatively, these can be specified through expert

opinion. In the rockfish application, there is sufficient knowledge of the averages and ranges

of length and age for Chilipepper rockfish to create a scientifically informed but vague prior.

We use cx and rx/4 as proxies for the marginal mean and standard deviation of X. We

also seek to scale the latent variables appropriately. The centers and ranges of observed age

provide approximate centers cw and ranges rw of latent log-age W . Since Y is supported
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on {1, . . . , C}, latent continuous Z must be supported on values slightly below γ1 up to

slightly above γC−1, so that rz/4 is a proxy for the standard deviation of Z, where rz =

(γC−1 − γ1). Using these mean and variance proxies, we fix am = (0, cw, cx). Each of the

three terms in Cov(Y ∗
t ) can be assigned an equal part of the total covariance; we set this

to 3−1diag{(rz/4)2, (rw/4)2, (rx/4)2}. For dispersed but proper priors, ν, aV and aD can be

fixed to small values. In the application, we fix aV = aD = ν = d + 4, and calculate Bm,

BV , and BD so that Cov(Y ∗
t ) = 3−1diag{(rz/4)2, (rw/4)2, (rx/4)2}

It remains to specify m0 and V0, the mean and covariance for the initial distributions

µl,1. We propose a fairly conservative specification, noting that in the limit, E(Y ∗
1 ) = m0,

and Cov(Y ∗
1 ) = aDBD(ν − d − 1)−1 + V0. Therefore, m0 can be specified in the same

way as am but using only the subset of data at t = 1. We set m0 = (0, cw1 , c
x
1) and V0

to diag{(rz1/4)2, (rw1 /4)2, (rx1/4)2} − aDBD(ν − d − 1)−1, where cw1 , r
w
1 , c

x
1 , r

x
1 , denote the

midpoints and ranges of W and X at time 1. We set V0 to diag{(rz1/4)2, (rw1 /4)2, (rx1/4)2} −

aDBD(ν − d− 1)−1, where the subscript 1 indicates the subset of data at t = 1.

1.3 Prior Sensitivity

In simulation studies and the rockfish application, we observed a moderate to large amount

of learning for all hyperparameters. For instance, for the rockfish data, the posterior distri-

bution for φ was concentrated on values close to 1, indicating the DDP weights are strongly

correlated across time. There was also moderate learning for α as its posterior distribution

was concentrated around 0.5, with small variance, shifted down slightly relative to the prior

which had expectation .75. The posterior distribution for each element of m was reduced

in variance and concentrated on values not far from those indicated by the prior mean. The

posterior samples for the covariance matrices V and D supported smaller variance compo-

nents than suggested by the prior. Figures 1–3 illustrate prior and posterior inference for

some hyperparameters of the DDP mixture model in the context of the application.
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Figure 1: Posterior density for each component of Θ (solid) compared with prior density
(dashed).
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Figure 2: Posterior density for α (solid) compared with prior density (dashed).
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Figure 3: Posterior density for each component of m (solid) compared with the prior density
(dashed).

2 Model Comparison Results

We fit the common atoms DDP and the more general DDP model to the data and com-

puted the posterior predictive criterion of Gelfand and Ghosh (1998), which is composed of

a sum of squares goodness of fit term, and sum of predictive variances penalty term. For

data (y1, . . . , yn) and model m, the goodness of fit term G(m) is given by
�n

i=1(E(yrep,i |

data,m) − yi)2, and the penalty term P (m) by
�n

i=1 var(yrep,i | data,m). An overall com-

parison criterion Dk(m) can be obtained as P (m) + k(k + 1)−1G(m), where k ≥ 0, and as

k → ∞, the goodness of fit and penalty terms are equally weighted. We compare the models

in terms of their ability to explain maturity as a function of age and length, and thus esti-

mate posterior expectations and variances for maturity, conditional on age and length. These

expressions require estimation of conditional expectations, which can be written as integrals

and efficiently estimated via Monte Carlo integration based on posterior samples for model

parameters.

The goodness of fit and penalty terms are computed for each year of data between 1993

and 2004, and we find that the goodness of fit term is lower under the general DDP model at

every time point by a small amount. The penalty terms show larger differences, and are lower

under the general model for all years except 1996, 2002, and 2004. These values are shown in
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Table 1: Goodness of fit and penalty terms for each year of data under the general model (g)
and the simpler model (s). The overall values for comparison Dk(g) and Dk(s) are shown for
k → ∞.

year nt G(g) G(s) P (g) P (s) D∞(g) D∞(s)
1993 305 64.9 65.5 61.8 71.7 126.8 137.2
1994 271 54.2 56.9 55.5 57.8 109.6 114.6
1995 256 60.3 61.7 61.0 64.7 121.3 126.4
1996 160 30.0 31.4 35.0 33.3 65.0 64.7
1997 184 28.1 29.7 31.9 34.9 60.0 64.6
1998 132 37.2 37.3 36.6 37.6 73.8 74.9
1999 396 62.4 64.0 65.5 71.9 127.9 135.9
2000 64 2.7 3.4 4.9 8.9 7.6 12.3
2001 146 42.2 44.1 26.4 38.3 68.6 82.4
2002 238 21.2 21.6 41.3 28.3 62.5 49.9
2004 37 2.7 3.0 7.6 6.0 10.2 9.0

Table 1. This suggests that the general model is providing a better fit to the data with less

uncertainty, except in the few cases in which the posterior predictive variance is larger under

the more complex model. We also obtain the corresponding comparison criterion Dk(m) for

k → ∞, which yield the same conclusions. Other values of k give effectively the same results.

Overall, the general model is preferred to the common atoms model using this criterion.
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