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Abstract

Univariate or multivariate ordinal responses are often assumed to arise from a latent con-

tinuous parametric distribution, with covariate effects which enter linearly. We introduce a

Bayesian nonparametric modeling approach for univariate and multivariate ordinal regres-

sion, which is based on mixture modeling for the joint distribution of latent responses and

covariates. The modeling framework enables highly flexible inference for ordinal regression

relationships, avoiding assumptions of linearity or additivity in the covariate effects. In stan-

dard parametric ordinal regression models, computational challenges arise from identifiability

constraints and estimation of parameters requiring nonstandard inferential techniques. A key

feature of the nonparametric model is that it achieves inferential flexibility, while avoiding

these difficulties. In particular, we establish full support of the nonparametric mixture model

under fixed cut-off points that relate through discretization the latent continuous responses

with the ordinal responses. The practical utility of the modeling approach is illustrated

through application to two data sets from econometrics, an example involving regression

relationships for ozone concentration, and a multirater agreement problem.
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1 Introduction

Estimating regression relationships for univariate or multivariate ordinal responses is a key

problem in many application areas. Correlated ordinal data arise frequently in the social sciences,

for instance, survey respondents often assign ratings on ordinal scales (such as “agree”, “neutral”,

or “disagree”) to a set of questions, and the responses given by a single rater are correlated.

Ordinal data is also commonly encountered in econometrics, as rating agencies (such as Standard

and Poor’s) use an ordinal rating scale. A natural way to model data of this type is to envision

each ordinal variable as representing a discretized version of an underlying latent continuous

random variable. In particular, the commonly used (multivariate) ordinal probit model results

when a (multivariate) normal distribution is assumed for the latent variable(s).

Under the probit model for a single ordinal response Y with C categories, and covariate

vector x, Pr(Y ≤ m | x) = Φ(γm − xTβ), for m = 1, . . . , C. Here, −∞ = γ0 < γ1 < · · · <

γC−1 < γC = ∞ are cut-off points for the response categories, where typically γ1 = 0 for

identifiability. Albert and Chib (1993) have shown that posterior simulation is greatly simplified

by augmenting the model with latent variables. In particular, assume that the ordinal response

Y arises from a latent continuous response Z, such that Y = m if and only if Z ∈ (γm−1, γm],

for m = 1, . . . , C, and Z | β ∼ N(xTβ, 1), which yields Pr(Y = m | x) =
∫ γm
γm−1

N(z;xTβ, 1)dz.

The multivariate probit model for binary or ordinal responses generalizes the probit model to

accommodate correlated ordinal responses Y = (Y1, ..., Yk), where Yj ∈ {1, ..., Cj} for j = 1, ..., k,

using a multivariate normal distribution for the underlying latent variables Z = (Z1, ..., Zk). To

obtain an identifiable model, restrictions must be imposed on the covariance matrix Σ of the

multivariate normal distribution for Z. One way to handle this is to restrict the covariance

matrix to be a correlation matrix, which complicates Bayesian inference since there does not

exist a conjugate prior for correlation matrices. Chib and Greenberg (1998) discuss inference

under this model, using a random walk Metropolis algorithm to sample the correlation matrix.

Liu (2001) and Imai and van Dyk (2005) use parameter expansion with data augmentation (Liu

and Wu, 1999) to expand the parameter space such that unrestricted covariance matrices may

2



be sampled. Talhouk et al. (2012) work with a sparse correlation matrix arising from conditional

independence assumptions, and use a parameter expansion strategy to expand the correlation

matrix into a covariance matrix, which is updated with a Gibbs sampling step. Webb and Forster

(2008) reparameterize Σ in a way that enables fixing its diagonal elements without sacrificing

closed-form full conditional distributions. Lawrence et al. (2008) use a parameter expansion

technique, in which the parameter space includes unrestricted covariance matrices, which are

then normalized to correlation matrices. In addition to the challenges arising from working with

correlation matrices, the setting with multivariate ordinal responses requires estimation for the

cut-off points, which are typically highly correlated with the latent responses.

The assumption of normality on the latent variables is restrictive, especially for data which

contains a large proportion of observations at high or low ordinal levels, and relatively few

observations at moderate levels. As a consequence of the normal distribution shape, there

are certain limitations on the effect that each covariate can have on the marginal probability

response curves. In particular, Pr(Yj = 1 | x) and Pr(Yj = Cj | x) are monotonically increasing

or decreasing as a function of covariate x, and they must have the opposite type of monotonicity.

The direction of monotonicity changes exactly once in moving from category 1 to Cj (referred

to as the single-crossing property). In addition, the relative effect of covariates r and s, i.e., the

ratio of ∂Pr(Yj = m | x)/∂xr to ∂Pr(Yj = m | x)/∂xs, is equal to the ratio of the r-th and

s-th regression coefficients for the j-th response, which does not depend on m or x. That is, the

relative effect of one covariate to another is the same for every ordinal level and any covariate

value. We refer to Boes and Winkelmann (2006) for further discussion of such properties.

Work on Bayesian nonparametric modeling for ordinal regression is relatively limited, par-

ticularly in the multivariate setting. In the special case of binary regression, there is only one

probability response curve to be modeled, and this problem has received significant attention.

Existing semiparametric approaches involve relaxing the normality assumption for the latent

response (e.g., Newton et al., 1996; Basu and Mukhopadhyay, 2000), while others have tar-

geted the linearity assumption for the response function (e.g., Mukhopadyay and Gelfand, 1997;

Walker and Mallick, 1997; Choudhuri et al., 2007). For a univariate ordinal response, Chib and
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Greenberg (2010) assume that the latent response arises from scale mixtures of normals, and the

covariate effects to be additive upon transformation by cubic splines. This allows nonlinearities

to be obtained in the marginal regression curves, albeit under the restrictive assumption of ad-

ditive covariate effects. Gill and Casella (2009) extend the ordinal probit model by introducing

subject-specific random effects terms modeled with a Dirichlet process (DP) prior.

Chen and Dey (2000) model the latent variables for correlated ordinal responses with scale

mixtures of normal distributions, with means linear on the covariates. In the context of mul-

tivariate ordinal data without covariates, Kottas et al. (2005) model the distribution of the

latent variables with a DP mixture of multivariate normals, which is sufficiently flexible to

uncover essentially any pattern in a contingency table while using fixed cut-offs. This repre-

sents a significant advantage relative to the parametric models discussed, since the estimation of

cut-offs requires nonstandard inferential techniques, such as hybrid Markov chain Monte Carlo

(MCMC) samplers (Johnson and Albert, 1999) and reparamaterization to achieve transformed

cut-offs which do not have an order restriction (Chen and Dey, 2000).

The preceding discussion reflects the fact that there are significant challenges involved in fit-

ting multivariate probit models, and a large amount of research has been dedicated to providing

new inferential techniques in this setting. While the simplicity of its model structure and inter-

pretability of its parameters make the probit model appealing to practitioners, the assumptions

of linear covariate effects, and normality on the latent variables are restrictive. Hence, from

both the methodological and practical point of view, it is important to explore more flexible

modeling and inference techniques. This is especially relevant for the setting with multivariate

ordinal responses for which Bayesian nonparametric approaches are virtually nonexistent. Semi-

parametric models for binary regression are more common, since in this case there is a single

regression function to be modeled. When taken to the setting involving a single ordinal response

with C ≥ 3 classifications, it becomes much harder to incorporate flexible priors for each of the

C − 1 probability response curves. And, semiparametric prior specifications appear daunting in

the multivariate ordinal regression setting where, in addition to general regression relationships,

it is desirable to achieve flexible dependence structure between the ordinal responses.
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Motivated by these limitations of parametric and semiparametric prior probability models,

our goal is to develop a Bayesian nonparametric regression model for univariate and multivariate

ordinal responses, which enables flexible inference for both the conditional response distribution

and for regression relationships. We focus on problems where the covariates can be treated

as random, and model the joint distribution of the covariates and latent responses with a DP

mixture of multivariate normals to induce flexible regression relationships, as well as general

dependence structure in the multivariate response distribution. In many fields – such as biometry,

economics, and the environmental and social sciences – the assumption of random covariates is

appropriate, indeed we argue necessary, as the covariates are not fixed prior to data collection.

In addition to the substantial distributional flexibility, an appealing aspect of the nonpara-

metric modeling approach taken is that the cut-offs may be fixed, and the mixture kernel covari-

ance matrix left unrestricted. Regarding the latter, we show that all parameters of the normal

mixture kernel are identifiable provided each ordinal response comprises more than two classi-

fications. For the former, we demonstrate that, with fixed cut-offs, our model can approximate

arbitrarily well any set of probabilities on the ordinal outcomes. To this end, we prove that the

induced prior on the space of mixed ordinal-continuous distributions assigns positive probability

to all Kullback-Leibler (KL) neighborhoods of all densities in this space.

We are primarily interested in regression relationships, and demonstrate that we can obtain

inference for a variety of nonlinear as well as more standard shapes for ordinal regression curves,

using data examples chosen from fields for which the methodology is particularly relevant. As

a consequence of the joint modeling framework, inferences for the conditional covariate distri-

bution given specific ordinal response categories, or inverse inferences, are also available. These

relationships may be of direct interest in certain applications. Also of interest are the associa-

tions between the ordinal variables. These are described by the correlations between the latent

variables in the ordinal probit model, termed polychoric correlations in the social sciences (e.g.,

Olsson, 1979). Using a data set of ratings assigned to essays by multiple raters, we apply our

model to determine regions of the covariate space as well as the levels of ratings at which pairs

of raters tend to agree or disagree. We contrast our approach with the Bayesian methods for
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studying multirater agreement in Johnson and Albert (1999) and Savitsky and Dalal (2014).

Finally, we note that our modeling framework is related to that of Shahbaba and Neal

(2009), Dunson and Bhattacharya (2010), Hannah et al. (2011), and Papageorgiou et al. (2014),

as they also develop nonparametric models for joint response-covariate distributions, including

categorical variables. Shahbaba and Neal (2009) considered classification of a univariate response

using a multinomial logit kernel, and this was extended by Hannah et al. (2011) to accommodate

alternative response types with mixtures of generalized linear models. Dunson and Bhattacharya

(2010) studied DP mixtures of independent kernels, and Papageorgiou et al. (2014) build a model

for spatially indexed data of mixed type (count, categorical, and continuous). However, these

models would not be suitable for ordinal data, or, particularly in the first three cases, when

inferences are to be made on the association between ordinal response variables.

The rest of the article is organized as follows. In Section 2, we formulate the DP mixture

model for ordinal regression, including study of the theoretical properties discussed above (with

technical details given in the Appendix). We discuss prior specification and posterior inference,

and indicate the necessary modifications when binary responses are present. The methodology

is applied in Section 3 to ozone concentration data, two data examples from econometrics, and

a multirater agreement problem. Finally, Section 4 concludes with a discussion.

2 Methodology

2.1 Model formulation

Suppose that k ordinal categorical variables are recorded for each of n individuals, along with

p continuous covariates, so that for individual i we observe a response vector yi = (yi1, . . . , yik)

and a covariate vector xi = (xi1, . . . , xip), with yij ∈ {1, . . . , Cj}, and Cj > 2. Introduce

latent continuous random variables zi = (zi1, . . . , zik), i = 1, . . . , n, such that yij = l if and

only if γj,l−1 < zij ≤ γj,l, for j = 1, . . . , k, and l = 1, . . . , Cj . For example, in a biomedical

application, yi1 and yi2 could represent severity of two different symptoms of patient i, recorded

on a categorical scale ranging from “no problem” to “severe”, along with covariate information
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weight, age, and blood pressure. The assumption that the ordinal responses represent discretized

versions of latent continuous responses is natural for many settings, such as the one considered

here. Note also that the assumption of random covariates is appropriate in this application, and

that the medical measurements are all related and arise from some joint stochastic mechanism.

This motivates our focus on building a model for the joint density f(z,x), which is a multivariate

continuous density of dimension k+p, which in turn implies a model for the conditional response

distribution f(y | x).

To model f(z,x) in a flexible way, we use a DP mixture of multivariate normals model, mixing

on the mean vector and covariance matrix. That is, we assume (zi,xi) | G
iid∼
∫

N(·;µ,Σ)dG(µ,Σ),

and place a DP prior (Ferguson, 1973) on the random mixing distribution G. The hierarchical

model is formulated by introducing a latent mixing parameter θi = (µi,Σi) for each data vector:

(zi,xi) | θi
ind.∼ N(µi,Σi); θi | G

iid∼ G, i = 1, . . . , n (1)

whereG | α,ψ ∼ DP(α,G0(·;ψ)), with base distributionG0(µ,Σ;ψ) = N(µ;m,V )IW(Σ; ν,S).

The model is completed with hyperpriors on ψ = (m,V ,S), and a prior on α:

m ∼ N(am,Bm), V ∼ IW(aV ,BV ), S ∼W(aS ,BS), α ∼ gamma(aα, bα), (2)

where W(aS ,BS) denotes a Wishart distribution with mean aSBS , and IW(aV ,BV ) denotes

an inverse-Wishart distribution with mean (aV − (k + p)− 1)−1BV .

According to its constructive definition (Sethuraman, 1994), the DP generates almost surely

discrete distributions, G =
∑∞

l=1 plδϑl
. The locations ϑl are independent realizations from G0,

and the weights are determined through stick-breaking from beta distributed random variables

with parameters 1 and α. That is, p1 = v1, and pl = vl
∏l−1
r=1(1 − vr), for l = 2, 3, . . . , with

vl
iid∼ beta(1, α). The discreteness of the DP allows for ties in the θi, so that in practice less than

n distinct values for the {θi} are imputed. The data is therefore clustered into a typically small

number of groups relative to n, with the number of clusters n∗ controlled by parameter α, where

larger values favor more clusters (Escobar and West, 1995). From the constructive definition
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for G, the prior model for f(z,x) has an almost sure representation as a countable mixture

of multivariate normals, and the proposed model can therefore be viewed as a nonparametric

extension of the multivariate probit model, albeit with random covariates.

This implies a countable mixture of normal distributions (with covariate-dependent weights)

for f(z | x;G), from which the latent z may be integrated out to reveal the induced model

for the ordinal regression relationships. In general, for a multivariate response Y = (Y1, . . . , Yk)

with an associated covariate vectorX, the probability that Y takes on the values l = (l1, . . . , lk),

where lj ∈ {1, . . . , Cj}, for j = 1, . . . , k, can be expressed as

Pr(Y = l | x;G) =
∞∑
r=1

wr(x)

∫ γk,lk

γk,lk−1

· · ·
∫ γ1,l1

γ1,l1−1

N(z;mr(x),Sr)dz (3)

with covariate-dependent weights wr(x) ∝ prN(x;µxr ,Σ
xx
r ), and mean vectors mr(x) = µzr +

Σzx
r (Σxx

r )−1(x − µxr ), and covariance matrices Sr = Σzz
r − Σzx

r (Σxx
r )−1Σxz

r . Here, (µr,Σr)

are the atoms in the DP prior constructive definition, where µr is partitioned into µzr and µxr

according to random vectors Z and X, and (Σzz
r ,Σ

xx
r ,Σ

zx
r ,Σ

xz
r ) are the components of the

corresponding partition of covariance matrix Σr.

To illustrate, consider a bivariate response Y = (Y1, Y2), with covariates X. The probability

assigned to the event (Y1 = l1)∩(Y2 = l2) is obtained using (3), which involves evaluating bivari-

ate normal distribution functions. However, one may be interested in the marginal relationships

between individual components of Y and the covariates. Referring to the example given at the

start of this section, we may obtain the probability that both symptoms are severe as a function

ofX, but also how the first varies as a function ofX. The marginal inference, Pr(Y1 = l1 | x;G),

is given by the expression

∞∑
r=1

wr(x)

{
Φ

(
γ1,l1 −mr(x)

s
1/2
r

)
− Φ

(
γ1,l1−1 −mr(x)

s
1/2
r

)}
(4)

where mr(x) and sr are the conditional mean and variance for z1 conditional on x implied by the

joint distribution N(z,x;µr,Σr). Expression (4) provides also the form of the ordinal regression

curves in the case of a single response.
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Hence, the implied regression relationships have a mixture structure with component-specific

kernels which take the form of parametric probit regressions, and weights which are covariate-

dependent. This structure enables inference for non-linear, non-standard response curves, by

favoring a set of parametric models with varying probabilities depending on the location in

the covariate space. Many of the limitations of parametric probit models – including relative

covariate effects which are constant in terms of the covariate and the ordinal level, monotonicity,

and the single-crossing property of the response curves – are thereby overcome.

2.2 Model properties

In (1), Σ was left an unrestricted covariance matrix. As an alternative to working with correla-

tion matrices under the probit model, identifiability can be achieved by fixing γj,2 (in addition to

γj,1), for j = 1, . . . , k. As shown here, analogous results can be obtained in the random covariate

setting. In particular, Lemma 1 establishes identifiability for Σ as a general covariance matrix,

assuming all cut-offs, γj,1, . . . , γj,Cj−1, for j = 1, . . . , k, are fixed. Here, model identifiability

refers to likelihood identifiability of the mixture kernel parameters in the induced model for

(Y ,X), such that within a mixture component, the parameters are identifiable.

Lemma 1. Consider a mixture of multivariate normals model,
∫

N(µ,Σ)dG(µ,Σ), for the joint

distribution of covariates X and latent responses Z, with fixed cut-off points defining the ordinal

responses Y through Z. Then, the parameters µ and Σ are identifiable in the kernel of the

implied mixture model for (Y ,X), provided Cj > 2, for j = 1, . . . , k.

Refer to Appendix A for a proof of this result. If Cj = 2 for some j, additional restrictions

are needed for identifiability, as discussed in Section 2.5.

Identifiability is a basic model property, and is achieved here by fixing the cut-offs. However,

this may appear to be a significant restriction, as under the parametric probit setting, fixing

all cut-off points would prohibit the model from being able to adequately assign probabilities

to the regions determined by the cut-offs. We therefore seek to determine if the nonparametric

model with fixed cut-offs is sufficiently flexible to accommodate any distribution for (Y ,X) and

also for Y |X. Kottas et al. (2005) provide an informal argument that the normal DP mixture
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model for multivariate ordinal responses (without covariates) can approximate arbitrarily well

any probability distribution for a contingency table. The basis for this argument is that, in

the limit, one mixture component can be placed within each set of cut-offs corresponding to a

specific ordinal vector, with the mixture weights assigned accordingly to each cell.

Here, we provide a proof of the full support of our more general model for ordinal-continuous

distributions. In addition to being a desirable property on its own, the ramifications of full

support for the prior model are significant, as it is a key condition for the study of posterior

consistency (e.g., Ghosh and Ramamoorthi, 2003). Using the KL divergence to define density

neighborhoods, a particular density f0(w) is in the KL support of the prior P, if P(Kε(f0(w))) >

0, for any ε > 0, where Kε(f0(w)) = {f :
∫
f0(w) log(f0(w)/f(w))dw < ε}. The KL property

is satisfied if any density in the space of interest is in the KL support of the prior.

It has been established that the DP location normal mixture prior model satisfies the KL

property (Wu and Ghosal, 2008). That is, if the mixing distribution G is assigned a DP prior on

the space of random distributions for µ, and a normal kernel is chosen such that f(w;G,Σ) =∫
N(w;µ,Σ)dG(µ), with Σ a diagonal matrix, then the induced prior model for densities has

full KL support. Letting this induced prior be denoted by P, and modeling the joint distribution

of (X,Z) with a DP location mixture of normals, the KL property yields:

P
(
{f :

∫
f0(x, z) log(f0(x, z)/f(x, z))dxdz < ε}

)
> 0 (5)

for any ε > 0, and all densities f0(x, z) ∈ D, where D denotes the space of densities on Rp+k.

To establish the KL property of the prior on mixed ordinal-continuous distributions for

(X,Y ) induced from multivariate continuous distributions for (X,Z), consider a generic data-

generating distribution p0(x,y) ∈ D∗. Here, D∗ denotes the space of distributions on Rp ×

{1, . . . , C1} × · · · × {1, . . . , Ck}. Let f0(x, z) be a density function on Rp+k such that

p0(x, l1, . . . , lk) =

∫ γk,lk

γk,lk−1

· · ·
∫ γ1,l1

γ1,l1−1

f0(x, z1, . . . , zk) dz1 · · · dzk (6)

for any (l1, ..., lk), where lj ∈ {1, . . . , Cj}, for j = 1, . . . , k. That is, f0(x, z) is a latent continuous
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density which induces the corresponding distribution on the ordinal responses. Note that at least

one f0 ∈ D exists for each p0 ∈ D∗, with one such f0 described in Appendix B. The next lemma

(proved in Appendix B) establishes that, as a consequence of the KL property of the DP mixture

of normals (5), the prior assigns positive probability to all KL neighborhoods of p0(x,y), as well

as to all KL neighborhoods of the implied conditional distributions p0(y | x).

Lemma 2. Assume the distribution of a mixed ordinal-continuous random variable is p0(x,y) ∈

D∗, and let f0(x, z) ∈ D be the corresponding continuous density function, for which P(Kε(f0(x, z))) >

0, for any ε > 0. Then P(Kε(p0(x,y))) > 0 and P(Kε(p0(y | x))) > 0, for any ε > 0.

Lemma 2 establishes full KL support for a model arising from a DP location normal mixture, a

simpler version of our model. Combined together, the properties of identifiability and full support

reflect a major advantage of the proposed model. That is, it can approximate arbitrarily well

any distribution on (Y ,X), as well as any conditional distribution for (Y | X), while at the

same time avoiding the need to impute cut-off points or work with correlation matrices, both of

which are major challenges in fitting multivariate probit models.

The cut-offs can be fixed to arbitrary increasing values, which we recommend to be equally

spaced and centered at zero. As confirmed empirically with simulated data (refer to Section 3 for

details), the choice of cut-offs does not affect inferences for the ordinal regression relationships,

only the center and scale of the latent variables, which must be interpreted relative to the cut-offs.

2.3 Prior specification

To implement the model, we need to specify the parameters of the hyperpriors in (2). A default

specification strategy is developed by considering the limiting case of the model as α → 0+,

which results in a single normal distribution for (Z,X). This limiting model is essentially

the multivariate probit model, with the addition of random covariates. The only covariate

information we use here is an approximate center and range for each covariate, denoted by cx =

(cx1 , . . . , c
x
p) and rx = (rx1 , . . . , r

x
p ). Then cxm and rxm/4 are used as proxies for the marginal mean

and standard deviation ofXm. We also seek to center and scale the latent variables appropriately,

using the cut-offs. Since Yj is supported on {1, . . . , Cj}, latent continuous variable Zj must be

11



supported on values slightly below γj,1, up to slightly above γj,Cj−1. We therefore use rzj /4,

where rzj = (γj,Cj−1 − γj,1), as a proxy for the standard deviation of Zj .

Under (Z,X) | µ,Σ ∼ N(µ,Σ), we have E(Z,X) = am, and Cov(Z,X) =

aSBS(ν − d − 1)−1 + BV (aV − d − 1)−1 + Bm, with d = p + k. Then, assuming each

set of cut-offs (γj,0, . . . , γj,Cj ) are centered at 0, we fix am = (0, . . . , 0, cx). Letting D =

diag{(rz1/4)2, . . . , (rzk/4)2, (rx1/4)2, . . . , (rxp/4)2}, each of the three terms in Cov(Z,X) can be

assigned an equal proportion of the total covariance, and set to (1/3)D, or to (1/2)D to inflate

the variance slightly. For dispersed but proper priors with finite expectation, ν, aV , and aS can

be fixed to d+ 2. Fixing these parameters allows for BS and BV to be determined accordingly,

completing the default specification strategy for the hyperpriors of m, V , and S.

In the strategy outlined above, the form of Cov(Z,X) was diagonal, such that a priori we

favor independence between Z and X within a particular mixture component. Combined with

the other aspects of the prior specification approach, this generally leads to prior means for the

ordinal regression curves which do not have any trend across the covariate space. Moreover, the

corresponding prior uncertainty bands span a significant portion of the unit interval.

2.4 Posterior inference

The approach to MCMC posterior simulation is based on a finite truncation approximation to the

countable mixing distribution G, using the DP stick-breaking representation. The blocked Gibbs

sampler (Ishwaran and Zarepour, 2000; Ishwaran and James, 2001) replaces the countable sum

with a finite sum, GN =
∑N

l=1 plδ(µl,Σl), with (µl,Σl) i.i.d. from G0, for l = 1, ..., N . Here, the

first N − 1 elements of p = (p1, ..., pN ) are equivalent to those in the countable representation of

G, whereas pN = 1−
∑N−1

l=1 pl. Under this approach, the posterior samples for model parameters

yield posterior samples for GN , and therefore full inference is available for mixture functionals.

To express the hierarchical model for the data after replacing G with GN , introduce config-

uration variables (L1, . . . , Ln), such that Li = l if and only if θi = (µl,Σl), for i = 1, ..., n and
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l = 1, ..., N . Then, the model for the data becomes

yij = l iff γj,l−1 < zij ≤ γj,l, i = 1, . . . , n, j = 1, . . . , k

(zi,xi) | {(µl,Σl) : l = 1, ..., N}, Li
ind.∼ N(µLi

,ΣLi), i = 1, . . . , n

Li | p
iid∼
∑N

l=1
plδl(Li), i = 1, ..., n

(µl,Σl) | ψ
iid∼ N(µl;m,V )IW(Σl; ν,S), l = 1, . . . , N

where the prior density for p is given by αN−1pα−1N (1 − p1)
−1(1 − (p1 + p2))

−1 × · · · × (1 −∑N−2
l=1 pl)

−1, which is a special case of the generalized Dirichlet distribution. The full model is

completed with the conditionally conjugate priors on ψ and α as given in (2).

All full posterior conditional distributions are readily sampled, enabling efficient Gibbs sam-

pling from the joint posterior distribution of the model above. Conditional on the latent re-

sponses zi, we have standard updates for the parameters of a normal DP mixture model. And

conditional on the mixture model parameters, each zij , for i = 1, . . . , n and j = 1, . . . , k, has a

truncated normal full conditional distribution supported on the interval (γj,yij−1, γj,yij ].

The regression functional Pr(Y = l | x;G) (estimated by the truncated version of (3) implied

by GN ) can be computed over a grid in x at every MCMC iteration. This yields an entire set of

samples for ordinal response probabilities at any covariate value x (note that x may include just

a portion of the covariate vector or a single covariate). As indicated in (4), in the multivariate

setting, we may wish to report inference for individual components of Y over the covariate space.

In some applications, in addition to modeling how Y varies across X, we may also be

interested in how the distribution of X changes at different ordinal values of Y . As a feature of

the modeling approach, we can obtain inference for f(x | y;G), for any configuration of ordinal

response levels y. We refer to these inferences as inverse relationships, and illustrate them with

the data example of Section 3.2.

Under the multivariate response setting, the association between the ordinal variables may

also be a key target of inference. In the social sciences, the correlations between pairs of la-

tent responses, corr(Zr, Zs), are termed polychoric correlations (Olsson, 1979) when a single
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multivariate normal distribution is used for the latent responses. Under our mixture modeling

framework, we can sample a single corr(Zr, Zs) at each MCMC iteration according to the corre-

sponding p, providing posterior predictive inference to assess overall agreement between pairs of

response variables. As an alternative, and arguably more informative measure of association, we

can obtain inference for probability of agreement over each covariate, or probability of agreement

at each ordinal level. These inferences can be used to identify parts of the covariate space where

there is agreement between response variables, as well as the ordinal values which are associated

with higher levels of agreement. In the social sciences it is common to assess agreement among

multiple raters or judges who are assigning a grade to the same item. In Section 3.4, we illus-

trate our methods with such a multirater agreement data example, in which both estimating

regression relationships and modeling agreement are major objectives.

2.5 Accommodating binary responses

Our methodology focuses on multivariate ordinal responses with Cj > 2, for all j. However, if

one or more responses is binary, then the full covariance matrix of the normal mixture kernel

for (Z,X) is not identifiable. In the univariate probit model, it is standard practice to assume

that Z | β ∼ N(xTβ, 1), that is, identifiability is achieved by fixing Σzz. DeYoreo and Kottas

(2014) show that a similar restriction suffices in binary regression inference built through normal

mixture modeling for the joint distribution of the covariates and the single latent response.

Under the general setting involving some binary and some ordinal responses, extending the

argument that led to Lemma 1, it can be shown that identifiability is accomplished by fixing

the diagonal elements of Σzz that correspond to the variances of the latent binary responses

(the associated covariance elements remain identifiable). To incorporate this restriction, the

inverse Wishart distribution for the component of G0 that corresponds to Σ must be replaced

with a more structured specification. To this end, a square-root-free Cholesky decomposition

of Σ (Daniels and Pourahmadi, 2002; Webb and Forster, 2008) can be used to fix Σzz in the

setting with a single binary response (DeYoreo and Kottas, 2014), and this is also useful in

the multivariate setting. This decomposition expresses Σ in terms of a unit lower triangular
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matrix B, and a diagonal matrix ∆, with elements δi > 0, i = 1, ..., k + p, such that Σ =

B−1∆(B−1)T . The key result is that if (W1, . . . ,Wr) ∼ N(µ,B−1∆(B−1)T ), then this implies

Var(Wi | W1, . . . ,Wi−1) = δi, for i = 2, . . . , r. Therefore, if (Z,X) ∼ N(µ,B−1∆(B−1)T ),

with (Z1, . . . , Zr) binary, and (Zr+1, . . . , Zk) ordinal, then fixing δ1 fixes Var(Z1), fixing δ2 fixes

Var(Z2 | Z1), and so on. The scale of the latent binary responses may therefore be constrained

by fixing δ1, the variance of the first latent binary response, Z1, and the conditional variances

(δ2, . . . , δr) of the remaining latent binary responses (Z2, . . . , Zr). The conditional variances

(δr+1, . . . , δk+p) are not restricted, since they correspond to the scale of latent ordinal responses

or covariates, which are identifiable under our model with fixed cut-offs.

3 Data Examples

The model was extensively tested on simulated data, where the primary goal was to assess

how well it can estimate regression functionals which exhibit highly non-linear trends. We also

explored effects of sample size, choice of cut-offs, and number of response categories.

The effect of sample size was observed in the uncertainty bands for the regression functions,

which were reduced in width and became smoother with a larger sample size. The regression

estimates captured the truth well in all cases, but were smoother and more accurate with more

data, as expected. Even with a five-category ordinal response and only 200 observations, the

model was able to capture quite well non-standard regression curves.

As discussed previously, the cut-offs may be fixed to arbitrary increasing values, with the

choice expected to have no impact on inference involving the relationship between Y and X.

To test this point, the model was fit to a synthetic data set containing an ordinal response with

three categories, using cut-off points of (−∞,−20, 20,∞) and (−∞,−5, 5,∞), as well as cut-offs

(−∞, 0, 0.1,∞), which correspond to a narrow range of latent Z values producing response value

Y = 2. The ordinal regression function estimates were unaffected by the change in cut-offs. The

last set of cut-offs forces the model to generate components with small variance (lying in the

interval (0, 0.1)), but the resulting regression estimates are unchanged from the previous ones.

15



In the data illustrations that follow, the default prior specification strategy outlined in Section

2.3 was used. The posterior distributions for each component of m were always very peaked

compared to the prior. Some sensitivity to the priors was found in terms of posterior learning

for hyperparameters V and S, however this was not reflected in the posterior inferences for the

regression functions, which displayed little to no change when the priors were altered. Regarding

the DP precision parameter α, we noticed a moderate amount of learning for larger data sets,

and a small amount for smaller data sets, which is consistent with what has been empirically

observed about α in DP mixtures. The prior for α was in all cases chosen to favor reasonably

large values, relative to the sample size, for the number of distinct mixture components.

3.1 Ozone data

Problems in the environmental sciences provide a broad area of application for which the pro-

posed modeling approach is particularly well-suited. For such problems, it is of interest to

estimate relationships between different environmental variables, some of which are typically

recorded on an ordinal scale even though they are, in fact, continuous variables. This is also a

setting where it is natural to model the joint stochastic mechanism for all variables under study

from which different types of conditional relationships can be explored.

To illustrate the utility of our methodology in this context, we work with data set ozone

from the “ElemStatLearn” R package. This example contains four variables: ozone concentration

(ppb), wind speed (mph), radiation (langleys), and temperature (degrees Fahrenheit). While

these environmental characteristics are all random and interrelated, we focus on estimating

ozone concentration as a function of radiation, wind speed, and temperature. To apply our

model, rather than using directly the observed ozone concentration, we define an ordinal response

containing three ozone concentration categories. Ozone concentration greater than 100 ppb is

defined as high (ordinal level 3); this can be considered an extreme level of ozone concentration,

as only about 6% of the total of 111 observations are this high. Concentration falling between 50

ppb and 100 ppb (approximately 25% of the observations) is considered medium (ordinal level

2), and values less than 50 ppb are assumed low (ordinal level 1). We use this to illustrate a
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Figure 1: Ozone data. Posterior mean (solid lines) and 95% interval estimates (dashed lines)
for Pr(Y = l | xm;G) (thick black) compared to Pr(γl−1 < Z ≤ γl | xm;G) (red), for l = 1, 2, 3
and m = 1, 2, 3, giving the probability that ozone concentration is low, medium, and high over
covariates radiation, temperature, and wind speed.

realistic setting in which an ordinal response may arise as a discretized version of a continuous

response. Moreover, this example enables comparison of inferences from the ordinal regression

model with a model based on the actual continuous responses.

The model was applied to the ozone data, with response, Y , given by discretized ozone

concentration, and covariates, X = (X1, X2, X3) = (radiation, temperature, wind speed). To

validate the inferences obtained from the DP mixture ordinal regression model, we compare

results with the ones from a DP mixture of multivariate normals for the continuous vector

(Z,X), since the observations for ozone concentration, Z, are available on a continuous scale.

The latter model corresponds to the curve-fitting approach to regression of Müller et al. (1996),

extended with respect to the resulting inferences in Taddy and Kottas (2010). Here, it serves
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Figure 2: Ozone data. Posterior mean estimates for Pr(Y = l | x1, x2;G), for l = 1, 2, 3,
corresponding to, from left to right, low, medium, and high ozone concentration. The spectrum
of colors from white to red indicates probabilities that range from 0 to 1.

as a benchmark for our ordinal regression model, since it provides the best possible inference

that can be obtained under the mixture modeling framework if no loss in information occurs by

observing Y rather than Z. We compare the univariate regression curves Pr(Y = l | xm;G) with

Pr(γl−1 < Z ≤ γl | xm;G), for l = 1, 2, 3, and m = 1, 2, 3, the latter based on the mixture model

for (Z,X). Figure 1 compares posterior mean and 95% interval estimates for the regression

curves given each of the three covariates. The key result is that both sets of inferences uncover

the same regression relationship trends. The only subtle differences are in the uncertainty bands

which are overall slightly wider under the ordinal regression model. Also noteworthy is the

fact that the ordinal regression mixture model estimates both relatively standard monotonic

regression functions (e.g., for temperature) as well as non-linear effects for radiation.

The ability to capture such a wide range of trends for the regression relationships is a feature

of the nonparametric mixture model. Another feature is its capacity to accommodate interaction

effects among the covariates without the need to incorporate additional terms in the model. Such

effects are suggested by the estimates for the response probability surfaces over pairs of covariates;

for instance, Figure 2 displays these estimates as a function of radiation and temperature.
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Figure 3: Credit rating data. Posterior mean estimates for Pr(Y = l | xm;G), for each covariate
m = 1, . . . , 5. All five ordinal response curves are displayed in a single panel for each covariate.

3.2 Credit ratings of U.S. companies

Here, we consider an example involving Standard and Poor’s (S&P) credit ratings for 921 U.S.

firms in 2005. The example is taken from Verbeek (2008), in which an ordered logit model was

applied to the data, and was also used by Chib and Greenberg (2010) to illustrate an additive

cubic spline regression model with a normal DP mixture error distribution. For each firm, a

credit rating on a seven-point ordinal scale is available, along with five characteristics. Consistent

with the analysis of Chib and Greenberg (2010), we combined the first two categories as well

as the last two categories to produce an ordinal response with 5 levels, where higher ratings

indicate more creditworthiness. The covariates in this application are book leverage X1 (ratio of

debt to assets), earnings before interest and taxes divided by total assets X2, standardized log-

sales X3 (proxy for firm size), retained earnings divided by total assets X4 (proxy for historical

profitability), and working capital divided by total assets X5 (proxy for short-term liquidity).

The posterior mean estimates for the marginal probability curves, Pr(Y = l | xm;G), for
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Figure 4: Credit rating data. Posterior mean (solid lines) and 95% interval estimates (dashed
lines) for covariate densities f(x | Y = l;G) conditional on ordinal credit rating l = 1, ..., 5. The
top row corresponds to covariate book leverage, and the bottom row to standardized log-sales.

l = 1, . . . , 5 and m = 1, . . . , 5, are shown in Figure 3. These estimates depict some differences

from the corresponding ones reported in Chib and Greenberg (2010), which could be due to

the additivity assumption of the covariate effects in the regression function under their model.

Empirical regression functions – computed by calculating proportions of observations assigned to

each class over a grid in each covariate – give convincing graphical evidence that the regression

relationships estimated by our model fit the data quite well.

To discuss the estimated regression trends for one of the covariates, consider the standardized

log-sales variable, which is a proxy for firm size. The probability of rating level 1 is roughly

constant for low log-sales values, and is then decreasing to 0, indicating that small firms have a

similar high probability of receiving the lowest rating, whereas the larger the firm, the closer to 0

this probability becomes. The probability curves for levels 2, 3, and 4 are all quadratic shaped,

with peaks occurring at larger log-sales values for higher ratings. Finally, the probability of

receiving the highest rating is very small for low to moderate log-sales values, and is increasing

for larger values. In summary, log-sales are positively related to credit rating, as expected.

This is another example where it is arguably natural to model the joint distribution for the

response and covariates (the specific firm characteristics). This allows our model to accommo-
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date interactions between covariates, as we do not assume additivity or independence in the

effects of the covariates on the latent response. In addition to the regression curve estimates,

we may obtain inference for the covariate distribution, or for any covariate conditional on a spe-

cific ordinal rating. These inverse relationships (discussed in Section 2.4) could be practically

relevant in this application. It may be of interest to investors and econometricians to know, for

example, approximately how large is a company’s leverage, given that it has a rating of 2? Is

the distribution of leverage much different from that of a level 3 company? Figure 4 plots the

estimated densities for book leverage and standardized log-sales conditional on each of the five

ordinal ratings. In general, the distribution of book leverage is centered on smaller values as

rating increases, and the densities become more peaked supporting a smaller range of leverage

values for higher ratings. The interval bands are slightly wider for the distribution associated

with Y = 1 than for Y = 2, 3, or 4, and they are much wider for Y = 5, which is consistent with

the small number of firms with a rating of 5. The distribution of log-sales has a mode which

occurs at increasing values as rating increases, indicating that if one firm has a higher rating

than another, it likely also has higher sales.

3.3 Standard and Poor’s grades of countries

As a second econometrics example, we consider a data set from Simonoff (2003), comprising

S&P ratings of n = 31 countries along with debt service ratio and income, the latter recorded

on an ordinal scale with levels of low, medium, and high. Ratings range from 1 to 7, with 1

indicating the best rating of AAA, and 7 the worst of CCC. With two covariates and a very

small sample size, this example provides an interesting testbed for our modeling approach.

Since income is available as a discrete variable, W , we model it through the (latent) continu-

ous income variable, Z2. Therefore, X represents debt service ratio, and Z = (Z1, Z2), where W

arises from Z2 just as the ordinal rating response Y arises through latent continuous response

Z1. This is another application where one may be interested in inverse relationships, such as

the distribution of debt service ratio and/or income given a specific S&P rating.

The probability response curves as functions of debt service ratio (Figure 5) contain both
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Figure 5: S&P ratings of countries data. Posterior mean (solid lines) and 95% intervals (gray
bands) for the probability response curve associated with each rating, ranging from AAA (level
1) to CCC (level 7), as a function of debt service ratio.

monotonic trends (decreasing for response categories 1 and 2, and increasing for category 7),

as well as non-linear ones, most notably for categories 4 and 5. The interval bands are wider

than in earlier examples, given the smaller sample size. Although not shown here, regression

curves can also be obtained over discrete income from Pr(Y = j |W = w;G) = Pr(Y = j,W =

w;G)/Pr(W = w;G), for w = 1, 2, 3 (low, medium, and high income), where the numerator

contains a double integral of a bivariate normal density function. The probability of receiving a

top rating of 1, 2, or 3 is highest for high-income countries, the probability of receiving a moderate

rating of 4 or 5 is highest for medium-income countries, and the probability of receiving a poor

rating is highest for low-income countries. It is highly unlikely for a country to receive one of

the top two ratings unless it is high-income, however there is non-negligible probability of a

medium-income country receiving one of the two lowest ratings.

The latent continuous responses represent latent continuous credit rating in this application.

The method for posterior simulation involves sampling zi,1, for i = 1, . . . , 31, which represent

the country-specific latent ratings. The two countries with AA (level 2) rating are Canada and

Australia. Both of these countries have income classified as high, however Canada has no debt,
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Figure 6: S&P ratings of countries data. Left panel: Posterior densities of latent continuous
ratings for Australia (solid line) and Canada (dashed line), the two countries with AA rating.
Right panel: Posterior densities of latent continuous ratings for the four countries with A rating:
Chile (black), Czech Republic (red), Hungary (green), and Slevenia (blue). In both panels, the
gray vertical lines indicate the borders for ordinal ratings.

whereas Australia has a debt service ratio which is around 10. This value is not particularly

high, but since higher debt service ratio seems to be associated with poorer ratings, we would

expect that Canada would be closer to receiving a better rating of AAA than Australia. Indeed,

posterior densities of latent continuous ratings for Canada and Australia (Figure 6, left panel)

indicate that Canada’s ordinal rating of AA is closer to a AAA rating than Australia’s.

Next, consider the four countries with A rating (level 3): Chile, Czech Republic, Hungary,

and Slovenia. The first three of these countries are classified as medium income, whereas Slovenia

is a high income country. The debt service ratios range from 8.9 (Czech Republic) to 15.8 (Chile).

The estimated latent response densities are shown on the right panel of Figure 6. We note that

Slovenia’s latent rating distribution is centered on values close to the cut-off point for a better

rating of AA. The other three distributions are fairly similar. Chile appears closest to a BBB

rating, which is consistent with its higher debt service ratio. An interesting observation from

these results is that differences in income appear to have a larger effect on the latent rating

distributions than differences in debt service ratio.
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3.4 Analysis of multirater agreement data

A variety of methods exist for analyzing ordinal data collected from multiple raters when the goal

is to measure agreement. Such methods range from the commonly used κ statistic (Cohen, 1960)

and its extensions (Fleiss, 1971), which are indices calculated from the observed and expected

agreement of raters, to model-based approaches involving log-linear models (Tanner and Young,

1985). We do not attempt a comprehensive review here, rather our focus lies in the use of

model-based methods for ordinal responses collected from multiple raters along with covariate

information. The proposed multivariate ordinal regression model offers flexibility in this setting

in terms of the modeling framework and resulting inferences. We focus on a scenario involving a

set of expert graders who evaluate student essays, rating them on an ordinal scale. We contrast

our approach to the parametric model of Johnson and Albert (1999), from where the specific

data example is taken, and the semiparametric approach of Savitsky and Dalal (2014), both

developing Bayesian inference built from modeling for latent responses.

Multirater agreement data arises when k raters assign ordinal scores to n individuals, such

that yi = (yi1, . . . , yik) collects all scores for the ith individual. The raters typically use the

same classification levels, and therefore each yij ∈ {1, . . . , C}. This data structure could be

summarized in a contingency table, however, we are concerned with problems in which relevant

covariate information is available for each individual. We assume that each judge assigns an

ordinal rating to individual i, which represents a discretized version of a continuous rating; that

is, yij is determined by zij , the continuous latent score assigned by judge j on individual i.

This is in contrast to the formulation of Johnson and Albert (1999), where all judges are

assumed to agree on the intrinsic worth of each item, such that zij = wi+εij , where wi represents

the true latent score, and εij is the error observed by judge j. Then, wi is linearly related to the

covariates, assumed normal with mean containing the term xTi β. The normal latent response

distribution is not appropriate when grade distributions are skewed or favor low/high scores over

moderate scores. Since the distribution of the zij does not have a judge-specific mean, random

cut-offs are necessary to allow the ratings of a particular subject to vary among judges.

Savitsky and Dalal (2014) note that the assumption of intrinsic agreement among raters
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may be inappropriate when raters have different beliefs or perspectives that may influence their

scoring behavior. They assume a DP mixture model for the judge-specific latent random vectors

built from a mixture kernel defined through independent normals. Dependence is therefore

introduced over the latent scores of a single rater (albeit under a restrictive product-kernel for

the mixture), but the data vectors arising from each rater are assumed independent. Under this

model, it is therefore unclear how to extract inference for inter-rater agreement, which is a key

inferential objective for applications of this type in the social sciences.

Similar to the approach in Savitsky and Dalal (2014), there is no notion in our model of an

intrinsic true score for an individual. An overall score for an individual could be obtained by

averaging in some fashion over the latent scores assigned by each rater. However, our main goal

here is to obtain inference about relationships between the ordinal scores and the covariates,

as well as for inter-rater agreement over both the covariate space and the scores. Our method

offers a potentially useful perspective for modeling multirater agreement data, most notably with

respect to the generality of the nonparametric mixture model which can accommodate complex

dependence among raters and non-linear relationships with the random covariates.

We apply our method to a problem involving three expert graders who evaluate n = 198

student essays, each assigned a rating on an ordinal scale of 1 through 10 (these represent raters

2, 3, and 4 from the data given in Chapter 5 of Johnson and Albert, 1999). Average word length

and total number of essay words are used as the p = 2 covariates, to study if they have an

effect on grader ratings. The traditional measure of agreement between raters l and m in the

social sciences, the polychoric correlation ρlm = corr(Zl, Zm), can be assessed through the co-

variance mixing parameters (Σ1, . . . ,ΣN ). As discussed in Section 2.4, the posterior predictive

distribution for ρlm can be obtained by sampling at each MCMC iteration the corresponding

(ρlm,1, . . . , ρlm,N ) with probabilities (p1, . . . , pN ). The polychoric correlation predictive distribu-

tions for all three pairs of raters favor more heavily positive correlations (raters 1 and 3 appear

to agree most strongly), but place substantial probability on negative correlations. We can

study where raters l and m tend to agree or disagree by grouping the latent continuous ratings

according to the strength and direction of corr(Zl, Zm). For instance, a plot of E(zil | data) and
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Figure 7: Multirater data. Posterior mean estimates for probability of high and low rating as a
function of average word length (two left plots) and total number of words (two right plots), for
raters 1 (solid red lines), 2 (dashed blue lines), and 3 (dotted purple lines).

E(zim | data) arranged by E(corr(zil, zim) | data) reveals that raters 1 and 2 strongly agree on

very low ratings, but disagree when rater 2 assigns low ratings and rater 1 high ratings. It is

also the case for the other pairs of raters that they strongly agree mainly at low scores.

The model provides a variety of inferences in this multivariate ordinal regression example,

which can be used to assess how ratings vary across covariates, as well as how raters behave in

comparison to one another. Defining a high rating as 8 or higher, and a low rating as 3 or lower,

Figure 7 plots estimates for the probability of high and low rating in terms of average word

length and total number of words. There appears to be a strong trend in rating as a function

of number of words for each rater, with rater 2 in particular assigning higher ratings for essays

with more words. The regression curves for high ratings associated with rater 2 are somewhat

separated from raters 1 and 3, suggesting that overall rater 2 assigns higher ratings.

To identify regions of the covariate space in which raters tend to agree or disagree, Figure 8

plots estimates for the probability of perfect agreement for the three pairs of raters as a function

of total number of words. This inference suggests that raters 1 and 2 agree most strongly on

grades for essays with few or many words. The trend in probability of agreement is weaker for

the other two pairs of raters.

Finally, to assess the strength of agreement between raters on high and low scores, we
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Figure 8: Multirater data. Posterior mean (solid lines) and 95% interval estimates (gray bands)
for probability of agreement as a function of total number of words. The left panel corresponds
to raters 1 and 2, the middle panel to raters 1 and 3, and the right panel to raters 2 and 3.

Y1 = H Y1 = L Y2 = H Y2 = L Y3 = H Y3 = L
Y1 = H 0.54 0.15 0.46 0.06
Y1 = L 0.13 0.48 0.04 0.51
Y2 = H 0.36 0.18 0.27 0.14
Y2 = L 0.08 0.56 0.07 0.41
Y3 = H 0.63 0.11 0.55 0.18
Y3 = L 0.04 0.78 0.15 0.54

Table 1: Multirater data. Posterior means for agreement and disagreement conditional proba-
bilities for pairs of raters, with disagreement highlighted in gray (see Section 3.4 for details). H
refers to high ratings of {8, 9, 10}, and L refers to low ratings of {1, 2, 3}.

study the probability that one rater gives a high/low rating, conditional on the rating given by

another rater. Table 1 includes posterior means for Pr(Yl | Ym;G), for l,m ∈ {1, 2, 3}, with Yl

and Ym taking values of {8, 9, 10} (high) or {1, 2, 3} (low). Each row represents the event being

conditioned on, while each column represents the event a probability is being assigned to. For

example, row 1, column 3 contains the posterior mean for Pr(Y2 ∈ {8, 9, 10} | Y1 ∈ {8, 9, 10};G).

The cells corresponding to disagreement are highlighted with gray. The first two rows give

probabilities conditional on rater 1 scores, and indicate that rater 2 has more disagreement with

rater 1 than does rater 3. The last two rows suggest that rater 2 disagrees more with rater 3 than

does rater 1. Finally, from the middle two rows, we note slightly more disagreement between

raters 1 and 2 than between raters 3 and 2.
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4 Discussion

Seeking to expand Bayesian nonparametric methodology for ordinal regression, we have pre-

sented a fully nonparametric approach to modeling multivariate ordinal responses along with

covariates. The inferential power of the framework lies in the flexible DP mixture model for the

latent responses and covariates. The assumption of random covariates is appropriate for many

problems, and modeling the covariates along with the latent responses accounts for dependence

or interactions among the covariates. This also allows for inference on functionals of the covari-

ate distribution. By establishing its KL support, we have shown that the prior probability model

can accommodate any mixed ordinal-continuous distribution, without imputing cut-off points

or restricting the covariance matrix of the normal kernel for the DP mixture model. From a

practical point of view, this is a particularly appealing feature of the modeling approach relative

to the multivariate probit model and related semiparametric extensions.

The multivariate normal mixture kernel can accommodate any type of continuous covariates

(using transformation as needed). Discrete ordinal covariates can also be included by introducing

latent continuous variables; this was implemented in the example of Section 3.3, in which the

continuous covariate income was recorded on an ordinal scale. In order to handle discrete nominal

covariates, the kernel can be modified adding appropriate components to the multivariate normal

density, using either a marginal or conditional specification (e.g., Taddy and Kottas, 2010).

The version of the multivariate probit model discussed in the Introduction, and the setting

we consider for our model, involves a common vector of covariates X = (X1, ..., Xp) for each

response vector Y . That is, the covariates are not specific to particular response variables,

but rather (Y ,X) arises as a multivariate vector. An alternative version of the probit model

involves pj covariates (Xj,1, . . . , Xj,pj ) specific to response variable Yj . This regression setting

was described for multivariate continuous responses by Tiao and Zellner (1964), and this is the

version of the multivariate binary probit model considered in Chib and Greenberg (1998).

Scenarios which make use of response specific covariates fall broadly into two categories. The

first consists of problems in which only a portion of the covariate vector is thought to affect a
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particular response, but there may be some overlap in the subset of covariates which generate

the responses. Chib and Greenberg (1998) considered a voting behavior problem of this kind

in which the first of two responses was assumed to be generated by a subset of the covariates

associated with the second response. This data structure can also be accommodated by modeling

all covariates X jointly with Y , and conditioning on the relevant subset of X in the regression

inferences.

The other type of data structure which is occasionally handled with a multivariate regression

model with response specific covariates involves univariate ordinal responses that are related

in a hierarchical/dynamic fashion. For instance, Chib and Greenberg (1998) illustrate their

model with the commonly used Six Cities data, in which Y = (Y1, . . . , Y4) represents wheezing

status at ages 7 through 10. Such settings are arguably more naturally approached through

hierarchical/dynamic modeling. Indeed, a possible extension of the methodology developed here

involves dynamic modeling for ordinal regression relationships, such that at any particular time

point a unique regression relationship is estimated in a flexible fashion, while dependence is

incorporated across time. We will report on this modeling extension in a future manuscript.

Appendix A: Proof of Lemma 1

Under the normal kernel, N(z,x;µ,Σ), of the DP mixture model for the latent responses, z =

(z1, ..., zk), and covariates, x, the kernel of the implied mixture model for the ordinal responses,

y = (y1, ..., yk), and covariates is given by k(y,x;µ,Σ) =
∫ γk,yk
γk,yk−1

···
∫ γ1,y1
γ1,y1−1

N(z,x;µ,Σ)dz1 . . . dzk.

We assume fixed cut-off points, and yj ∈ {1, . . . , Cj} with Cj > 2, for j = 1, . . . , k.

We establish likelihood identifiability for parameters µ and Σ in k(y,x;µ,Σ). That is, from

k(y,x;µ1,Σ1) = k(y,x;µ2,Σ2), (7)

for all (y,x), with yj ∈ {1, . . . , Cj} and x ∈ Rp, we will obtain µ1 = µ2 and Σ1 = Σ2.
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Marginalizing over y both sides of (7), we obtain N(x;µx1 ,Σ
xx
1 ) = N(x;µx2 ,Σ

xx
2 ), for all

x ∈ Rp, and thus µx1 = µx2 ≡ µx, and Σxx
1 = Σxx

2 ≡ Σxx. We also have from (7) that for each

j = 1, . . . , k, k(yj | x;µ1,Σ1) = k(yj | x;µ2,Σ2), for all yj ∈ {1, . . . , Cj} and x ∈ Rp. Hence,

Pr(Yj ≤ l | x;µ1,Σ1) = Pr(Yj ≤ l | x;µ2,Σ2), for l = 1, . . . , Cj − 1, and for all x ∈ Rp. That is,

Φ

(
γj,l − µ

zj
1 −Σ

zjx
1 (Σxx)−1(x− µx)

(Σ
zjzj
1 −Σ

zjx
1 (Σxx)−1Σ

xzj
1 )1/2

)
= Φ

(
γj,l − µ

zj
2 −Σ

zjx
2 (Σxx)−1(x− µx)

(Σ
zjzj
2 −Σ

zjx
2 (Σxx)−1Σ

xzj
2 )1/2

)
, (8)

for all x ∈ Rp, and for l = 1, . . . , Cj −1. Because Φ(·) is an increasing function, its arguments in

equation (8) must be equal. The resulting equation can be expressed in the form aTx+ b = 0.

For this equation to hold true for any x, we must have a = 0 and b = 0, which yield

Σ
zjx
1

(Σ
zjzj
1 −Σ

zjx
1 (Σxx)−1Σ

xzj
1 )1/2

=
Σ
zjx
2

(Σ
zjzj
2 −Σ

zjx
2 (Σxx)−1Σ

xzj
2 )1/2

, (9)

and

γj,l − µ
zj
1 + Σ

zjx
1 (Σxx)−1µx

(Σ
zjzj
1 −Σ

zjx
1 (Σxx)−1Σ

xzj
1 )1/2

=
γj,l − µ

zj
2 + Σ

zjx
2 (Σxx)−1µx

(Σ
zjzj
2 −Σ

zjx
2 (Σxx)−1Σ

xzj
2 )1/2

, (10)

for l = 1, . . . , Cj − 1. Using (9), (10) can be expressed as (γj,l − µ
zj
1 )Σ

zjx
2 = (γj,l − µ

zj
2 )Σ

zjx
1 , for

each j = 1, ..., k. Working with 2 of these Cj − 1 equations, the system can be shown to have

solution Σ
zjx
1 = Σ

zjx
2 ≡ Σzjx. Then, from (10) and (9), we obtain µ

zj
1 = µ

zj
2 ≡ µzj and Σ

zjzj
1 =

Σ
zjzj
2 ≡ Σzjzj , respectively.

Notice that we required 2 of the Cj−1 equations of the form in (10) to arrive at this solution.

If Cj = 2 for some j, we are unable to identify the full covariance matrix Σ. In this case, if we

fix Σzjzj , we can identify µzj and Σzjx, as in DeYoreo and Kottas (2014). Although we do not

require free cut-offs here due to the flexibility provided by the mixture, if Cj > 3, the cut-off

points γj,3, . . . , γj,Cj−1 are also identifiable.

Finally, we need to establish identifiability for Σzjzj′ , where j 6= j′. To this end, note that (7)

implies k(yj , yj′ ;µ1,Σ1) = k(yj , yj′ ;µ2,Σ2), for any j, j′ ∈ {1, . . . , k}, with j 6= j′. Hence, for any

yj ∈ {1, . . . , Cj} and yj′ ∈ {1, . . . , Cj′},
∫ γj′,yj′
γj′,yj′−1

∫ γj,yj
γj,yj−1

N((zj , zj′)
T ; (µzj , µzj′ )T ,V 1) dzjdzj′ =∫ γj′,yj′

γj′,yj′−1

∫ γj,yj
γj,yj−1

N((zj , zj′)
T ; (µzj , µzj′ )T ,V 2) dzjdzj′ . Here, matrices V 1 and V 2 have the same
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diagonal elements (given by Σzjzj and Σzj′zj′ ) and off-diagonal element given by Σ
zjzj′
1 and Σ

zjzj′
2 ,

respectively. We will therefore obtain Σ
zjzj′
1 = Σ

zjzj′
2 , for j 6= j′, if the bivariate normal distribu-

tion function is increasing in the correlation parameter ρ (assuming, without loss of generality,

zero means and unit variances). To this end, note that ∂
∂ρN((x, y)T ; 0,R) = ∂2

∂x∂yN((x, y)T ; 0,R),

whereR has unit diagonal elements, and off-diagonal element ρ (e.g., Plackett, 1954). Therefore,

∂
∂ρ

∫ a
−∞

∫ b
−∞N((x, y)T ; 0,R) dxdy = N((a, b)T ; 0,R) > 0, and thus the result is obtained.

Appendix B: Proof of Lemma 2

We first show that there exists at least one f0(x, z) ∈ D for any p0(x,y) ∈ D∗, as defined in

(6). This is related to the example in Canale and Dunson (2011) for modeling count data, in

which a univariate continuous density f0(z) induces probability mass function p0(y). Consider

yj ∈ {1, . . . , Cj}, for j = 1, ..., k, and define

f0(x, z) =
∑
y1

· · ·
∑
yk

p0(x, y1, . . . , yk)
∏k
j=1 1(γ∗j,yj−1,γ

∗
j,yj

](zj)∏k
j=1(γ

∗
j,yj
− γ∗j,yj−1)

where γ∗j,l = γj,l if l ∈ {1, . . . , Cj − 1}, γ∗j,0 = bj , and γ∗j,Cj
= dj , with −∞ < bj < γj,1 and

γj,Cj−1 < dj <∞, for j = 1, . . . , k. Then, f0(x, z) satisfies the relationship in (6).

Turning to the proof of the lemma, let KL(f0, f) =
∫
f0(w) log(f0(w)/f(w))dw be the KL

divergence between densities f0 and f . Based on the chain rule for relative entropy,

KL(f0(x, z), f(x, z)) = KL(f0(x), f(x)) + KL(f0(z | x), f(z | x))

where the KL divergence between conditional densities is defined as KL(f0(z | x), f(z | x)) =∫
f0(x){

∫
f0(z | x) log(f0(z | x)/f(z | x))dz}dx. Hence, KL(f0(x), f(x)) ≤KL(f0(x, z), f(x, z)),

and thus, for any ε > 0, Kε(f0(x, z)) ⊆ Kε(f0(x)) = {f(x, z) : KL(f0(x), f(x)) < ε}. Using the

KL property of the prior model for f(x, z), P(Kε(f0(x))) ≥ P(Kε(f0(x, z))) > 0, such that the

prior assigns positive probability to all KL neighborhoods of the true covariate density f0(x).

The proof relies on the following inequality for two densities g1(t) and g2(t), where t ∈ Rs,
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and for general subsets A1, ..., As of R,

∫
As

· · ·
∫
A1

g1(t) log

(
g1(t)

g2(t)

)
dt ≥

∫
As

· · ·
∫
A1

g1(t)dt× log

(∫
As
· · ·
∫
A1
g1(t)dt∫

As
· · ·
∫
A1
g2(t)dt

)
. (11)

To prove the inequality, let Br =
∫
As
· · ·
∫
A1
gr(t)dt, for r = 1, 2, such that hr(t) = gr(t)/Br,

r = 1, 2, are densities on A1 × ... × As. Then, the left-hand-side of (11) can be written as

B1

∫
As
···
∫
A1
h1(t) log

(
B1h1(t)
B2h2(t)

)
dt =B1 log(B1

B2
) +B1

∫
As
···
∫
A1
h1(t) log

(
h1(t)
h2(t)

)
dt ≥B1 log(B1

B2
),

since
∫
As
· · ·
∫
A1
h1(t) log (h1(t)/h2(t)) dt is the KL divergence for densities h1 and h2.

Now, consider density f(x, z) ∈ Kε/2(f0(x, z)). By the chain rule, KL(f0(x), f(x)) < ε/2,

and KL(f0(z | x), f(z | x)) < ε/2. We apply (11) with s = k, g1(t) = f0(z | x), g2(t) = f(z | x),

and Aj = (γj,yj−1, γj,yj ), for j = 1, . . . , k. This yields

∫ γk,yk

γk,yk−1

· · ·
∫ γ1,y1

γ1,y1−1

f0(z | x) log

(
f0(z | x)

f(z | x)

)
dz ≥ p0(y | x) log

(
p0(y | x)

p∗(y | x)

)
(12)

for any configuration of values y = (y1, ..., yk) for the ordinal responses. Here, p∗(y | x) =∫ γk,yk
γk,yk−1

· · ·
∫ γ1,y1
γ1,y1−1

f(z | x)dz, such that p∗(x,y) = f(x)p∗(y | x). Next, we sum both sides of

(12) over y, then multiply both sides by f0(x), and finally integrate both sides over x, to obtain

∫
Rp

f0(x)

∫
Rk

f0(z | x) log

(
f0(z | x)

f(z | x)

)
dzdx ≥

∫
Rp

f0(x)

Ck∑
yk=1

···
C1∑
y1=1

p0(y | x) log

(
p0(y | x)

p∗(y | x)

)
dx

that is, KL(f0(z | x), f(z | x)) ≥ KL(p0(y | x), p∗(y | x)). Since KL(f0(z | x), f(z | x)) < ε/2,

we have KL(p0(y | x), p∗(y | x)) < ε/2, which in conjunction with KL(f0(x), f(x)) < ε/2,

further implies KL(p0(x,y), p∗(x,y)) < ε, by the chain rule. We have thus obtained

Kε/2(f0(x, z)) ⊆ Kε/2(p0(y | x)) and Kε/2(f0(x, z)) ⊆ Kε(p0(x,y))

where Kε(p0(x,y)) = {f(x, z) : KL(p0(x,y), p∗(x,y)) < ε}, from which the result emerges using

the KL property of the prior model for f(x, z).
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