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1 Introduction

Disease incidence or mortality data are routinely recorded as summary counts for contiguous ge-

ographical regions (e.g., census tracts, zip codes, districts, or counties) and collected over discrete

time periods. The count responses are typically accompanied by covariate information associated

with the region (e.g., median family income, or percent with a specific type of education), and

occasionally, by covariate information associated with each incidence case (e.g., sex, race, age),

even though we only know the region into which the case falls. A key inferential objective in the

analysis of disease incidence data is identification and explanation of spatial and spatio-temporal

patterns of disease risk (disease mapping). Also of interest is forecasting of disease risk.

The statistical literature of the past twenty five years or so has witnessed a growing emphasis

on fairly sophisticated methods to model heterogeneity in disease event rates. Most of the

methodology has been developed within a hierarchical framework through introduction of spatial

and spatio-temporal models tailored to the disease mapping inference goals. In this context, the

Bayesian approach to modeling and inference is naturally attractive.

In this chapter, we review Bayesian nonparametric spatial and spatio-temporal modeling

approaches for disease incidence data. Section 2 provides the necessary background on nonpara-

metric priors, mainly the Dirichlet process prior, and its extension to spatial Dirichlet process

models. Bayesian nonparametric work has focused on modeling methods for the stochastic mech-

anism that generates the region-specific count responses, and this is where we place the emphasis

in this review, providing only brief discussion on modeling the covariate information. We thus

focus on distributional specifications for the disease incidence counts (number of observed cases

of the disease). These count responses are denoted by yit, where i = 1, ...,m indexes the ge-

ographic regions Ai, and t = 1, ..., T indexes the (discrete) time periods. Note that although

cases occur at specific spatial point locations, the available responses are associated with entire
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subregions, A1, ..., Am, that form a partition of the study region. As a consequence, there exist

two distinct perspectives to model formulation. The more straightforward approach is to develop

the hierarchical spatio-temporal model building the spatial dependence through a finite set of

spatial random effects, one for each region. An alternative prior specification approach emerges

by modeling the underlying continuous-space disease risk surface, which yields an implied prior

for the finite dimensional distribution of the spatial random effects through aggregation of the

continuous surface. Sections 3 and 4 discuss Bayesian nonparametric methods under these two

modeling frameworks. In the former case, nonparametric mixtures of Poisson distributions have

been used to model directly the distribution for the disease incidence counts (e.g., Hossain et al.,

2013). In the latter setting, nonparametric spatial or spatio-temporal prior models have been

considered for the disease risk (or rate) surface (e.g., Kelsall and Wakefield, 2002; Kottas et al.,

2008). Finally, Section 5 provides concluding remarks.

2 Background on Bayesian nonparametrics

Bayesian nonparametric methods enable flexible modeling and inference for a wide range of

problems, since they built from prior probability models for entire spaces of distributions or

functions instead of scalar or vector parameters as in traditional parametric Bayesian modeling.

Such methods have led to substantive applications in several fields, since they free the data

analyst from customary parametric modeling restrictions yielding more accurate inference and

more reliable predictions. Bayesian nonparametrics is at this point a burgeoning area of Bayesian

statistics; we refer to Hjort et al. (2010) and Müller and Mitra (2013) for general reviews of related

theory, methods, and applications.

Most of the Bayesian nonparametric methods for disease mapping discussed here are based

on (extensions of) the Dirichlet process (DP) prior (Ferguson, 1973), the earliest example of

a nonparametric prior for spaces of distributions. The DP can be defined in terms of two

parameters: a parametric baseline distribution G0, which defines the expectation of the process;

and a scalar parameter α > 0, which can be interpreted as a precision parameter, since larger

α values result in DP realizations that are closer to G0. We use G ∼ DP(α,G0) to denote

that a DP prior, with parameters α and G0, is placed on random distribution G. The most

widely used definition of the DP is the constructive definition given by Sethuraman (1994).

According to this definition, a distribution G generated from a DP(α,G0) prior is (almost surely)

of the form G =
∑∞

i=1wi δϑi , where δx denotes a point mass at x. Here, the ϑi are i.i.d.

from G0, and the weights are constructed through a stick-breaking procedure, specifically, w1 =

ζ1, wi = ζi
∏i−1
k=1(1 − ζk), i = 2, 3, . . ., with the ζk i.i.d. Beta(1, α); moreover, the sequences

{ζk : k = 1, 2, . . .} and {ϑi : i = 1, 2, . . .} are independent. Hence, the DP generates discrete

2



distributions that can be represented as countable mixtures of point masses, with locations drawn

independently from G0 and weights generated according to a stick-breaking mechanism based

on i.i.d. draws from a Beta(1, α) distribution.

A natural way to increase the applicability of DP-based modeling is by using the DP as a

prior for the mixing distribution in a mixture model with a parametric kernel density function

(or probability mass function) k(· | θ). This approach yields the class of DP mixture models,

which can be generically expressed as f(· | G) =
∫
k(· | θ) dG(θ), with G ∼ DP(α,G0). The

model is typically extended by adding hyperpriors to the DP precision parameter α and/or the

parameters of G0. Semiparametric versions are also possible by mixing on only a portion of

the kernel parameters. The kernel can be chosen to be a (possibly multivariate) continuous

distribution, thus overcoming the discreteness of the DP. In fact, the discreteness of G is an

asset in this context, since, given the data, it enables ties among the corresponding mixing

parameters. Thus, the class of DP mixture models offers an appealing choice for applications

where clustering is anticipated, as in, e.g., density estimation, classification, and regression, and

is indeed the most widely used Bayesian nonparametric method in applications.

The DP constructive definition has motivated extensions in several directions. One such

extension is the spatial DP (Gelfand et al., 2005), a nonparametric prior for the distribution

of random fields WD = {W (s) : s ∈ D} over a region D ⊆ Rd. To model the distribution

of WD, the atoms in the DP stick-breaking representation, ϑi, are extended to realizations

from a random field, ϑi,D = {ϑi(s) : s ∈ D}. Thus, G0 is extended to a spatial stochastic

process G0D over D. For instance, a Gaussian process (GP) can be used for G0D. The resulting

spatial DP provides a random distribution for WD, with realizations GD given by
∑∞

i=1wiδϑi,D
.

Consequently, for any (finite) set of spatial locations in D, s = (s1, ..., sM ), GD induces a random

distribution G
(M)
s for (W (s1), ...,W (sM )). In fact, G

(M)
s ∼ DP(α,G

(M)
0 ), where G

(M)
0 is the M -

variate normal distribution induced by the GP for G0D at (s1, ..., sM ). It can be shown that

the random process GD yields non-Gaussian finite dimensional distributions, has nonconstant

variance, and is nonstationary, even if it is centered around a stationary GP G0D. Moreover,

if G0D has continuous sample paths, then as the distance between two spatial locations s and

s′ becomes smaller, the difference between distributions Gs and Gs′ becomes smaller; formal

details can be found in Gelfand et al. (2005) and Guindani and Gelfand (2006). For alternative

constructions of nonparametric prior models for spatial random surfaces, we refer to Griffin

and Steel (2006), Duan et al. (2007), Reich and Fuentes (2007), and Rodriguez and Dunson

(2011). Bayesian nonparametric mixture modeling has also been explored for spatial (marked)

point processes, including the work of Wolpert and Ickstadt (1998), Ishwaran and James (2004),

Kottas and Sansó (2007), and Taddy and Kottas (2012).
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3 Nonparametric mixture modeling for incidence counts

In order to model heterogeneity or discontinuity in disease event rates one is naturally led to

mixture models. Indeed, various types of parametric mixture model specifications have been

explored in the disease mapping literature. Chapter 20 in this volume reviews several of the

existing methods based on both spatial and spatio-temporal mixture models. As discussed in

Section 2, a significant portion of methodological and applied work in Bayesian nonparametrics

has built from (countable) nonparametric mixtures. It is therefore natural to consider nonpara-

metric mixture prior models for the disease incidence count distribution in order to expand on

the inferential power of corresponding parametric finite mixtures.

To arrive at a generic mixture model formulation, and to fix notation, recall the typical

assumption for the disease incidence counts: yit | θit
ind.∼ Poisson(yit | eitθit), that is, conditionally

on parameters θit, the yit are independent Poisson distributed with mean eitθit. Here, eit is the

expected disease count for region i at time period t, and θit is the associated relative risk. The

expected counts are typically computed through eit = Rnit, where nit is the specified number

of individuals at risk in region i at time t, and R is an overall disease rate. The given data

set can be used to obtain R, for example, R =
∑

i,t yit/
∑

i,t nit (internal standardization),

or R can be developed from reference tables (external standardization). Standard parametric

hierarchical models explain the relative risk parameters through different types of random effects.

For instance, a specification with random effects additive in space and time is

log θit = µit + ui + vi + δt (1)

where µit is a component for the regional covariates, ui are regional random effects (typically,

assumed i.i.d. from a zero-mean normal distribution), δt are temporal effects (say, with an au-

toregressive prior), and vi are spatial random effects with prior typically built from a conditional

autoregressive (CAR) structure. For further details, we refer to Banerjee et al. (2015), as well as

to chapters 7 and 15 in this volume. When spatio-temporal interaction is sought, vi + δt in (1)

may be replaced by space-time random effects vit, which have been modeled using independent

CAR structures over time, dynamically with independent CAR innovations, or as a CAR in

space and time; see chapter 19 in this volume for related references.

A general (finite) mixture model formulation arises by replacing the continuous mixing dis-

tribution for the vi (or the vit), implied by the CAR prior, with a discrete distribution taking K

possible values. These values represent the relative risks for K underlying space or space-time

clusters, and have corresponding mixing weights that form probability vector(s) on the (K − 1)-

dimensional simplex. The simplest form for the discrete mixing distribution involves values

φj with corresponding probabilities ωj , for j = 1, ...,K, which upon marginalization over the
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random effects, results in the mixture
∑K

j=1 ωjPoisson(yit | eitφj) (e.g., Böhning et al., 2000).

In the setting without a temporal component, related is the work of Knorr-Held and Rasser

(2000), Denison and Holmes (2001), and Hegarty and Barry (2008) based on spatial partition

structures, which divide the study region into a number of distinct clusters (sets of contiguous

regions) with constant relative risk, assuming a priori random number, size, and location for

the clusters. More flexible mixture model specifications arise through use of spatially dependent

vectors of weights, ωij , such that
∑K

j=1 ωij = 1, for all regions i. For instance, for spatial only

incidence counts, Fernández and Green (2002) model ωij through a logistic transformation, ωij =

exp(ηij/ψ)/
∑K

`=1 exp(ηi`/ψ), where the vectors (η1j , ..., ηmj), for j = 1, ...,K, arise conditionally

independent from a Markov random field prior model, inducing spatial dependence to the col-

lection of weights (ω1j , ..., ωmj) for each mixture component. Finally, as discussed in chapter 20,

for spatio-temporal disease incidence data one can envision the further extension to space-time

dependent weights, ωitj , where now
∑K

j=1 ωitj = 1, for any region i and any time period t.

As a nonparametric version of this last modeling scenario, Hossain et al. (2013) developed

mixtures of Poisson distributions for the count responses with weights that depend on both space

and time. In particular, Hossain et al. (2013) propose the model

yit | ω,φ ∼
K∑
j=1

ωitjPoisson(yit | eitφj) (2)

where φ = (φ1, ..., φK) is the vector of mixing relative risk parameters that are common across

both space and time, and ω = {(ωit1, ..., ωitK) : i = 1, ...,m; t = 1, ..., T} collects the space-time

dependent mixing weights, which satisfy
∑K

j=1 ωitj = 1, for any i and t. The weights are defined

through ωitj = Bitj
∏j−1
k=1(1 − Bitk). Here, Bitj = qitjζj , where qitj is a space-time dependent

kernel function (that may also depend on regional covariates), and the ζj are i.i.d. Beta(1, α).

This construction can be recognized as an extension of the stick-breaking representation for the

DP weights, and is an example of a kernel stick-breaking process (Dunson and Park, 2008).

The kernel function is specified by an extension of the logistic form from Fernández and Green

(2002). More specifically, qitj = exp(ηitj/ψ)/
∑K

`=1 exp(ηit`/ψ), where ψ > 0 plays the role of

a smoothness parameter, and the ηitj may be modeled through different types of spatial and

temporal random effects, and possibly also as a function of time-varying regional covariates.

Hossain et al. (2013) implemented the model in (2) with a specified number of components K,

which is a finite truncation approximation to the general kernel stick-breaking mixture model

that involves a countable number of components in the prior. This approximation allows ready

Markov chain Monte Carlo (MCMC) posterior simulation for the model through use of routine

techniques for discrete finite mixture models.
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Structured nonparametric mixtures of Poisson distributions are also explored in Li et al.

(2015) for spatial only count data. In particular, the development of their “areal referenced

spatial stick breaking process” prior model is along the lines of the finite mixture models discussed

above. Using the previous notation, but excluding the time component, that model involves the

first-stage specification: yi | µi, vi
ind.∼ Poisson(yi | ei exp(µi + vi)), for i = 1, ...,m, where the µi

are defined through a linear regression on regional covariates. The prior for the spatial random

effects is built from vi | G(i) ind.∼ G(i), where G(i) =
∑K

j=1 ωijδϕj , with a normal prior for the

mixing parameters ϕj , and a kernel stick-breaking structure for the weights. More specifically,

ωij = qijζj
∏j−1
k=1(1 − qikζk), where the ζj are i.i.d. Beta(1, α), and a CAR prior on the logit

scale is used for (q1j , ..., qmj). Evidently, collapsing the two stages of the model by marginalizing

over the vi, yields a finite mixture of Poisson distributions with spatially dependent vectors of

weights, in the spirit of the model specification in Fernández and Green (2002). The focus in

Li et al. (2015) is on detection of boundaries between disparate neighboring regions. This is

formulated as a multiple hypothesis testing problem, based on the posterior probabilities of the

events {vi = vi′} for each pair of adjacent regions Ai and Ai′ , for which discreteness is a necessary

property of the prior probability model for the spatial random effects.

Finally, we note that a different semiparametric extension of the hierarchical structure for the

relative risks in (1) can be developed by replacing the normal distribution for the regional random

effects, ui, with a nonparametric prior. Malec and Müller (2008) provide an example in the

context of small area estimation with binary responses under a setting that involves multivariate

regional random effects, modeled with a DP mixture of multivariate normal distributions.

4 Nonparametric prior models for continuous-space risk surfaces

Here, we review methods that build the hierarchical model for disease incidence counts (and

related covariates) from prior models for the underlying continuous-space relative risk (or rate)

surface, which is aggregated to provide the induced prior for the relative risk (or rate) spatial

random effects. Although less commonly used in disease mapping, this approach offers a more

coherent modeling framework, since it avoids the dependence of the prior model on the data

collection procedure (e.g., the number, shapes, and sizes of the regions in the particular study),

and it can more naturally accommodate data sources available at different levels of spatial

aggregation. Focusing in all cases on the modeling for the spatial or space-time random effects,

Section 4.1 provides an overview of two methods for spatial only data (Best et al., 2000; Kelsall

and Wakefield, 2002), and Section 4.2 discusses a spatio-temporal approach (Kottas et al., 2008).
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4.1 Spatial models

For disease counts recorded over space only, Kelsall and Wakefield (2002) construct a hierarchical

model the first stage of which assumes yi | θi
ind.∼ Poisson(yi | eiθi), for i = 1, ...,m (again, the

notation is similar to the one in Section 3, excluding the temporal component). This familiar

specification is derived through Poisson process continuous-space models for the area/stratum

population at risk and corresponding cases. In particular, the population at risk within stratum

k is assumed to follow a non-homogeneous Poisson process (NHPP) with intensity λk(s), and the

cases are viewed as a spatial point pattern from a NHPP with intensity λk(s)pk(s), where pk(s)

denotes the probability of disease for stratum k at location s. It is further assumed that pk(s) =

pkθk(s), where θk(s) is the relative risk for stratum k at location s, and pk is the reference disease

probability in stratum k. For locations s in region Ai, the intensity λk(s) is conceptualized as

λk(s) = Nikfik(s), where Nik is the area/stratum population count, and fik(s) is the density

function for the spatial distribution of the population in stratum k and region Ai. Then, using

(for rare diseases) the Poisson approximation to the Binomial distribution for the number of

cases in stratum k and region Ai, and summing over k, the distribution for yi arises as Poisson

with mean
∑

kNikpk
∫
Ai
θk(s)fik(s)ds. The mean can be re-written as ei

∑
k wikθik, where ei =∑

kNikpk and θik =
∫
Ai
θk(s)fik(s)ds, such that the relative risk for region Ai is given by θi =∑

k wikθik, a weighted average of stratum-specific relative risks θik, with weights wik = Nikpk/ei,

the expected proportions of cases in region Ai that are in stratum k. Kelsall and Wakefield (2002)

make two simplifying assumptions/approximations to arrive at the final form for the θi. First, the

relative risk surface is assumed constant across strata, that is, θk(s) = θ(s), for all k and s. This

results in θi =
∫
Ai
θ(s)fi(s)ds, where fi(s) =

∑
k wikfik(s) is a weighted average of the stratum-

specific population densities over region Ai. Finally, the population density is assumed uniform

across regions (an assumption implicitly made in most disease mapping modeling approaches),

such that fi(s) = |Ai|−1, for all s ∈ Ai.
The model is completed with a prior for the vector of log-relative risk random effects,

(log(θ1), ..., log(θm)), where, based on the argument above, θi = |Ai|−1
∫
Ai
θ(s)ds. This prior

is given by an m-dimensional normal distribution with a structured covariance matrix H, in-

duced by a GP prior for the underlying log-relative risk surface, {log(θ(s)) : s ∈ D}, where D is

the region under study. Kelsall and Wakefield (2002) use an isotropic GP with cubic correlation

function defined in terms of a single range of dependence parameter. For computational feasibil-

ity, in particular, to simplify the form of the elements for the covariance matrix H, an additional

approximation is applied. More specifically, the distribution of log(θi) = log(|Ai|−1
∫
Ai
θ(s)ds)

is approximated by the distribution of |Ai|−1
∫
Ai

log(θ(s))ds. Posterior inference under the

model is implemented using standard MCMC methods for GP-based models. A benefit of the

continuous-space modeling approach is that, in addition to estimation for the relative risks,
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predictive inference for the underlying relative risk surface is also possible.

Similar in spirit is also the contribution of Best et al. (2000), although their data structure

does not exactly fit within the standard disease mapping setting. This work develops a spatial

regression model to study the effect of traffic pollution on respiratory disorders in children. The

particular study encompasses data on: the residential postcode for “severe wheezing” cases;

case-specific individual attributes (e.g., age, gender) and home environment covariates (e.g.,

home dampness, maternal smoking); population density available at a district level; and traffic

pollution levels available on a spatial grid. The modeling approach incorporates the incidence

cases essentially as spatially referenced data, using the centroid locations of the home postcode

for all 191 cases; five postcodes contain 2 cases each, with the remaining 181 cases corresponding

to a unique postcode. Best et al. (2000) model these locations of severe wheezing cases along with

the individual attributes as realizations from a marked NHPP process, using a semiparametric

formulation for its intensity measure. The parametric component of the intensity incorporates

the information from the covariates, population density, and the risk factor (traffic pollution).

The nonparametric component models the (continuous-space) spatial random effects through a

kernel mixture with a gamma process for the mixing measure, using the approach in Wolpert

and Ickstadt (1998). The specific model for the spatial random effects can also be represented as

a DP mixture, using the direct connection between the gamma process and the Dirichlet process.

4.2 Space-time modeling

The model of Kelsall and Wakefield (2002) is extended in Kottas et al. (2008), where a spatial

DP prior is used for the underlying disease rate surface under a dynamic setting that handles

disease incidence data collected over both space and time. We first discuss the spatial component

of the modeling approach, followed by the dynamic spatial extension.

The first stage of the hierarchical model involves Poisson(yit | nit exp(γit)) distributions,

where nit is the number of individuals at risk for region Ai and time t, and pit = exp(γit) is

the corresponding disease rate (with rare diseases, the logarithmic and logit transformations are

practically equivalent). Kottas et al. (2008) argue for this form for the Poisson mean instead of

eitθit, since it avoids the need to develop the eit through standardization. The γit are viewed

as log-rate spatial effects arising by aggregating log-rate surfaces γt,D = {γt(s) : s ∈ D} over

the regions Ai. That is, γit = |Ai|−1
∫
Ai
γt(s)ds is the block average of the surface γt,D over

region Ai. Similar to Kelsall and Wakefield (2002), the first-stage Poisson specification is derived

through aggregation of an underlying NHPP under certain assumptions and approximations. For

time period t, the disease incidence cases are assumed to follow a NHPP with intensity function

nt(s)pt(s), where {nt(s) : s ∈ D} is the population density surface, and pt(s) = exp(γt(s)) is

the disease rate at time t and location s. Assuming a uniform population density over each
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region at each time period, nt(s) = nit|Ai|−1, for s ∈ Ai. Hence, aggregating the NHPP over

the regions Ai, each yit follows a Poisson distribution with mean
∫
Ai
nt(s)pt(s)ds = nitp

∗
it, where

p∗it = |Ai|−1
∫
Ai
pt(s)ds. If the distribution of the p∗it is approximated by the distribution of the

exp(γit), one obtains yit | γit
ind.∼ Poisson(yit | nit exp(γit)) for the first stage distribution.

To develop the prior model for the spatial log-rate random effects, first, the log-rate surfaces

γt,D are taken as realizations from a mean-zero isotropic GP with variance σ2 and exponen-

tial correlation function exp(−ϕ||s − s′||). The induced distribution for γt = (γ1t, ..., γmt) is

an m-dimensional normal with covariance matrix σ2H(φ), where the (i, j)-th element of H(φ)

is given by |Ai|−1|Aj |−1
∫
Ai

∫
Aj

exp(−ϕ||s − s′||)dsds′. Next, a DP prior is assumed for the

distribution of the γt with centering distribution given by the m-dimensional normal above,

Nm(0, σ2H(φ)). The choice of the DP in this context allows for data-driven deviations from the

normality assumption for the spatial random effects.

Note that this structure implies for the vector of counts yt = (y1t, ..., ymt) a Poisson DP

mixture model:
∫ ∏m

i=1 Poisson(yit | nit exp(γit))dG(γt), where G ∼ DP(α,Nm(0, σ2H(φ))). To

overcome the discreteness of the distribution for the log-rate vectors (induced by the discreteness

of DP realizations), the DP prior for the γt can be replaced with a DP mixture prior,

γt | τ2, G ∼
∫

Nm(γt | γ∗t , τ2Im)dG(γ∗t ), G ∼ DP(α,Nm(0, σ2H(φ))),

where γ∗t = (γ∗1t, ..., γ
∗
mt). This extension essentially involves the introduction of a heterogeneity

effect, writing γit = γ∗it + uit, with uit i.i.d. N(0, τ2). The mixture model for the yt now

becomes f(yt | τ2, G) =
∫ ∏m

i=1 p(yit | τ2, γ∗it)dG(γ∗t ), where p(yit | τ2, γ∗it) =
∫

Poisson(yit |
nit exp(γit))N(γit | γ∗it, τ2)dγit is a Poisson-lognormal mixture. In full hierarchical form, the

model is given by

yit | γit
ind.∼ Poisson(yit | nit exp(γit)), i = 1, ...,m, t = 1, ..., T

γit | γ∗it, τ2
ind.∼ N(γit | γ∗it, τ2), i = 1, ...,m, t = 1, ..., T

γ∗t | G
i.i.d.∼ G, t = 1, ..., T

G | α, σ2, φ ∼ DP(α,Nm(0, σ2H(φ))).

(3)

The model is completed with independent hyperpriors for τ2 and for the DP prior parameters.

Both to establish the connection with a spatial DP prior, and for MCMC posterior simulation,

it is useful to marginalize the random mixing distribution G in (3) over its DP prior (Blackwell

and MacQueen, 1973). The resulting joint prior distribution for the γ∗t is given by

Nm(γ∗1 | 0, σ2H(φ))
T∏
t=2

{
α

α+ t− 1
Nm(γ∗t | 0, σ2H(φ)) +

1

α+ t− 1

∑t−1

j=1
δγ∗j (γ∗t )

}
. (4)
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Hence, the γ∗t arise according to a Pólya urn scheme, which highlights the DP-induced clustering:

γ∗1 is drawn from the centering distribution, and then for each t = 2, ..., T , γ∗t is either set equal

to γ∗j , j = 1, ..., t− 1, with probability (α+ t− 1)−1 or is drawn from the centering distribution

with the remaining probability.

The prior model for the spatial random effects γ∗t discussed above is defined starting with

a GP prior for the corresponding surfaces {γ∗t (s) : s ∈ D}, block averaging the associated GP

realizations over the regions to obtain the Nm(0, σ2H(φ)) distribution, and finally centering a

DP prior for the γ∗t around this m-dimensional normal distribution. Kottas et al. (2008) show

that the joint prior distribution for the γ∗t is exactly as in (4) if one starts instead with a spatial

DP prior for the distribution GD of the {γ∗t (s) : s ∈ D} (centered around the same isotropic GP

used above), marginalizes GD over its spatial DP prior, and then block averages the (marginal)

realizations from the spatial DP prior over the regions. Hence, the marginal version of model (3)

(which is the one used for posterior predictive inference) is consistent with the marginal version

of the corresponding (continuous-space) spatial DP mixture model, regardless of the number and

geometry of the subregions chosen to partition the region under study.

Finally, to extend the spatial model described above to a spatio-temporal setting, Kottas

et al. (2008) use a dynamic spatial modeling framework, viewing the log-rate process γt,D as a

temporally evolving spatial process. In particular, the log-rate surface is modeled as γt(s) = ξt

+ γ∗t (s), adding temporal structure through transition equations for the γ∗t (s). (Note that, both

here as well as in the spatial model discussed above, a mean structure µt(s) would typically be

added to γt(s) to incorporate covariate information.) For instance, γ∗t (s) = νγ∗t−1(s) + ηt(s),

where the innovations ηt,D = {ηt(s) : s ∈ D} are independent realizations from a spatial

stochastic process with distribution GD. A spatial DP prior is assigned to GD, with parameters

α and G0D = GP(0, σ2 exp(−ϕ||s−s′||)). Marginalizing GD over its prior, the induced joint prior

p(η1, ...,ηT | α, σ2, φ) for the block averaged ηt = (η1t, ..., ηmt), where ηit = |Ai|−1
∫
Ai
ηt(s)ds,

is given by (4) (with ηt replacing γ∗t ). Block averaging the surfaces in the transition equations,

results in γ∗t = νγ∗t−1 + ηt. And, adding again the i.i.d. N(0, τ2) terms to the γit, the following

general form for the spatio-temporal model emerges

yit | γit
ind.∼ Poisson(yit | nit exp(γit)), i = 1, ...,m, t = 1, ..., T

γit | ξt, γ∗it, τ2
ind.∼ N(γit | ξt + γ∗it, τ

2), i = 1, ...,m, t = 1, ..., T

γ∗t = νγ∗t−1 + ηt

η1, ...,ηT | α, σ2, φ ∼ p(η1, ...,ηT | α, σ2, φ).

The ξt could be i.i.d. N(0, σ2ξ ), modeled with a parametric autoregressive structure, or explained

through a parametric trend.
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5 Conclusions

Although Bayesian nonparametric methodology is now an integral component of applied Bayesian

modeling, applications in spatial epidemiology, and more specifically in disease mapping, are rel-

atively limited. We have reviewed Bayesian nonparametric spatial and spatio-temporal models

for disease incidence data, categorizing the modeling approaches according to whether the non-

parametric prior is placed on the finite dimensional distribution of the region-specific spatial

effects or, more generally, on the latent disease risk or rate surface.

From a practical point of view, more work is needed on empirical comparison between the

existing methods as well as with more standard parametric hierarchical models. In terms of new

methodological developments, it is arguably of interest to expand the scope of existing methods

that build from modeling the underlying temporally evolving continuous-space disease risk (or

rate) surfaces. In this context, it is important to elaborate on the modeling framework to handle

spatial misalignment issues for data settings where the disease counts are observed for one set of

areal units while covariate information is supplied for a different set of units. Finally, it would

be of practical and methodological interest to explore flexible nonparametric methodology for

describing and forecasting patterns of joint incidence of multiple diseases.
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