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Abstract
As applications scale to new levels and migrate into cloud
environments, there has been a significant departure from the
exclusive reliance on the POSIX file I/O interface. However
in doing so, application often discover a lack of services,
forcing them to use bolt-on features or take on the respon-
sibility of critical data management tasks. This often results
in duplication of complex software with extreme correctness
requirements. Instead, wouldn’t it be nice if an application
could just convey what it wanted out of a storage system,
and have the storage system understand?

The central question we address in this paper is whether
or not the design delta between two storage systems can
be expressed in a form such that one system becomes lit-
tle more than a configuration of the other. Storage systems
should expose their useful services in a way that separates
performance from correctness, allowing for their safe reuse.
After all, hardened code in storage systems protects count-
less value, and its correctness is only as good as the stress
we place on it. We demonstrate these concepts by synthesiz-
ing the CORFU high-performance shared-log abstraction in
Ceph through minor modifications of existing sub-systems
that are orthogonal to correctness.

1. Introduction
Applications are increasingly opting for non-POSIX file I/O
interfaces in order to simplify design, increase scalability,
and enhance performance. As a result, complex middleware
or entirely new storage systems are being constructed to
meet the demand. This trend has resulted in the duplica-
tion of mission critical software that underlies virtually all
storage systems—software which takes often many years of
code hardening to reach an acceptable level of correctness.
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Figure 1. Growth in the use of co-designed object storage
interfaces in Ceph.

But this duplication isn’t without reason. Often domain-
specific features and optimizations are necessary. What is
needed is first-class support for storage system extensibil-
ity enabling applications and providers alike to exploit sys-
tem services in order construct domain-specific storage in-
terfaces without duplicating hardened software that protects
information of untold value.

Storage sub-systems are typically designed from day-one
as internal services, leading to a design that tightly inter-
twines safety and performance engineering goals. Thus, ex-
posing these reusable services may be ad-hoc at best, and
at worst opens up many channels of interference between
monolithic system components. Existing approaches to ex-
tensibility have primarily focused on code injection (e.g.
active storage [14]). For instance, Figure 1 shows a dra-
matic growth in new object interfaces available in Ceph via
code-injection techniques. While this growth serves as an
indicator of value, interface development and management
doesn’t currently match the needs of developers. Tied to
sparse system upgrade cycles, interface changes typically re-
quire client and server restarts resulting in increased down-
time the more frequently the feature is utilized.

In contrast to software-defined storage that focuses on
centralized policies controlling fixed sets of abstractions, we
argue for the creation of programmable storage that virtual-
izes, and safely exposes, well-trusted system services allow-
ing new interfaces to be packaged, versioned, and dynam-
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ically deployed allowing developers to custom tailor their
“view” of the system.

The standardization of the POSIX file I/O interface has
been a major success, allowing application developers to
avoid vendor lock-in. However, large-scale storage systems
have been dominated by proprietary products, preventing ex-
ploration of alternative interfaces and complicating future
migration paths, eliminating the benefits of commodity sys-
tems. But the recent availability of high-performance open-
source storage systems is changing this because these sys-
tems are modifiable, enabling interface change, and reduc-
ing the risks of lock-in. While vendor lock-in can largely
be avoided through open-source usage, platform lock-in is a
concern as applications become tied to a modified system.
However, by finding and exposing common, key customiza-
tion points in a system that are orthogonal to correctness, the
cost of porting system extensions can be minimized.

In the remainder of this paper we demonstrate how a
non-trivial storage interface can be constructed in an exist-
ing open-source storage system with relatively small mod-
ification to common storage system services. In particular,
we reuse existing sub-systems in the Ceph distributed stor-
age system [16] to synthesize the CORFU high-performance
shared-log abstraction [2].

2. Programmable Storage
When application goals are not met by a storage system
the most common reaction is to design a workaround.
Workarounds roughly fall into one of two categories: so
called “bolt-on” services that introduce a 3rd party system
(e.g. a metadata service), or expanded application respon-
sibility in the form of data management (e.g. a new data
layout).

Extra Services. “Bolt-on” services are designed to im-
prove overall application performance, but come at the ex-
pensive of additional sub-systems and dependencies that the
application must manage, as well as trust. For example, it is
well understood that MapReduce performs poorly for itera-
tive and interactive computation due to its failure model that
heavily relies on on-disk storage of intermediate data. Many
have added services to Hadoop to keep more data in the run-
time (e.g., HaLoop [8], Twister [11], CGL-MapReduce [10],
MixApart [13]). While performance improves, it comes at
a cost: “bolt-on” services frequently result in overly com-
plex systems that re-implement functionality and re-execute
redundant code, unnecessarily increasing the likelihood of
bugs.

Application Changes. The second approach to adapt-
ing to a storage system deficiency is to change the appli-
cation itself by adding more data management intelligence,
often into the application itself, or as domain-specific mid-
dleware. For instance, an application may change to exploit
data locality or I/O parallelism in a distributed storage sys-
tem. This isn’t a bad proposition, but creates a coupling that

Category Specialization Methods

Locking Shared 6Exclusive

Logging
Replica 3
State 4
Timestamped 4

Garbage Collection Reference Counting 4

Metadata Management

RBD 37
RGW 27
User 5
Version 5

Table 1. A variety of RADOS object storage classes exist
that expose reusable interfaces to applications.

is highly tied to the underlying physical properties of the
system, making it difficult to adapt to future changes at the
storage system level.

Storage Changes. When these two approaches fail to
meet an application’s needs, developers turn their attention
to the storage system itself. For example, HDFS has been
the focus of scalability concerns, especially for metadata-
intensive workloads [15]. This has lead to modifications to
its architecture or API [4] to improve performance. Yet an-
other approach is to “modify” a storage system using auto-
tuning techniques that attempt to find a good solution among
a huge space of available system configurations. However,
in practice auto-tuning is limited to only the configuration
“knobs” that the storage system exposes (e.g. block size).
For instance, auto-tuning may be capable of identifying in-
stances in which new data layouts would benefit a workload,
but unless the system can provide such a transformation, the
option is left off the table.

2.1 Programmability
We advocate a new approach that we refer to as storage
programmability which is a method by which an applica-
tion communicates its requirements to the storage system
in a way that allows the application to realize a new be-
havior without sacrificing the correctness of the underlying
system. The general concept is not new—active storage re-
search has advocated pushing computation closer to the data.
For instance, active storage techniques are used extensively
in production Ceph environments. Table 1 shows the wide-
variety of object interfaces that have been co-designed with
applications that run on top of Ceph, and Figure 1 shows a
dramatic growth in the use of co-designed interfaces since
2011. While we consider active storage to be an excellent
example of programmability, what separates our proposal
from previous work is the observation that so much more
of the storage system can be reused to construct advanced,
domain-specific interfaces. Designing more programmabil-
ity into storage systems has the following benefits:
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1. Separation of storage performance engineering from reli-
ability engineering, enabling unique optimizations with-
out risking years of code hardening efforts.

2. Encourages developers to create a new stack of storage
systems abstractions, both domain-specific and across
domains (e.g. RBD and locking in Table 1).

3. Encourages developers to generalize sophisticated tech-
niques in other fields, such as database query optimizers,
for re-use in storage systems.

4. Provides the opportunity for a well-defined environment
for evolving optimizations which cannot affect correct-
ness.

5. Improves collaboration by informing commercial parallel
file system vendors on the design of low-level APIs for
their products so that they match the versatility of open-
source storage systems.

6. Eases tension between versatile open source storage sys-
tems and reliable proprietary systems so they can work
together to lead the community of storage designers.

Our notion of programmable storage differs from “software-
defined storage” (SDS) in terms of goals and scope, although
definitions of SDS are still in flux. According to a recent
SNIA working draft [9] the primary goal of SDS is to control
and facilitate flexible and dynamic provisioning of storage
resources of different kinds, including flash memory and
disk drives, to create a virtualized mapping between com-
mon storage abstractions (e.g. files, objects, and blocks) and
storage devices taking data service objectives in terms of
protection, availability, performance, and security into ac-
count. Programmable storage on the other hand facilitates
the customization of storage system software to create new
storage system services and abstractions.

In the remainder of this paper we will demonstrate the
power of these ideas by synthesizing an entirely new storage
system service in an existing system through configuration
and small changes. Next we discuss programmable storage
in more depth. Then we describe the CORFU system and
show how its components can be mapped onto components
found in existing systems. Finally we introduce new con-
cepts to handle an optimization found in CORFU and finish
by performing an evaluation.

3. A Distributed Shared Log Service
In this section we describe an existing storage system
called CORFU [2] that exposes the abstraction of a high-
performance shared log, and use the architecture throughout
the remainder of this paper as a driving example for dynam-
ically constructing new services in existing storage systems.
The value of the shared log abstraction as a storage service
is highlighted by its role as a fundamental building block
in many distributed systems, as well as in several recent
research efforts focused on cloud-based metadata manage-
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Figure 2. High-level view of the CORFU architecture on
top of Ceph. Clients request positions from a sequencer
service and interact directly with the log striped across a set
of object servers.

ment [3] and elastic database storage engines [5–7]. Next
we’ll provide an overview of the CORFU architecture and
then extract analogies between its design and existing stor-
age systems.

3.1 The CORFU Shared-log Storage System
While the shared log abstraction is a very important building
block in many distributed systems, typical implementations
are based on consensus protocols such as Paxos [12] which
serialize requests through a primary server, making through-
put scalability a difficult property to achieve. We now pro-
vide an overview of the novel CORFU [2] log service that
eliminates this bottleneck allowing log operations to scale to
very high rates.

The high-level architecture of CORFU is shown in Fig-
ure 2. In the middle the abstract log is shown to which clients
submit reads (2) and appends (3). These I/Os are directed di-
rectly at the storage system. In the original CORFU design
a set of raw flash devices were used. We’ve tailored the di-
agram for our discussion and instead shown that the log is
mapped onto a set of object storage servers according to a
striping policy. Importantly, the sequencer service shown in
the upper right side is responsible for assigning a global or-
dering to the log by responding to tail queries (3) made by
clients when appending.

The key to high-performance in CORFU is two fold.
First, clients perform all bulk I/O directly to storage tar-
gets enabling horizontal bandwidth scalability. However,
this alone is not sufficient as append operations are seri-
alized through the sequencer service that maintains a global
ordering on log entries. The second feature of CORFU that
enables high-performance is its novel protocol that allows
the sequencer to be implemented as a volatile, in-memory
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network counter, eliminating all I/O from the fast path, while
still remaining robust to sequencer failures. For instance, the
sequencer used in the CORFU paper was able to achieve
200K requests per second [2]. A complete description of
the CORFU system is beyond the scope of this paper, and
includes additional log operations such as trimming and po-
sition invalidation. Next we describe the salient features of
the system that are used to achieve high-performance while
maintaining correctness.

3.2 System Design
Maintaining correctness in CORFU is achieved through
a combination of a co-designed storage interface and se-
quencer recovery protocol.

Sequencer. The sequencer component of CORFU is a
network server that enforces log serializability by assigning
sequential log positions to clients appending to a log. High-
performance is achieved by storing the log tail exclusively in
main memory, avoiding all I/O to persistent storage during
normal operation. The challenge faced by the sequencer re-
covery process following a failure is to repopulate the cached
tail value in a way that maintains correctness. To achieve this
CORFU depends on a mechanism that tags all operations
with an epoch value, and efficiently invalidates outstanding
client requests between sequencer instances through the use
of smart storage devices.

Storage Interface. The storage interface is a critical
component in the CORFU design. Storage devices provide
a relatively simple write-once, random read interface for
reading and writing log entries. The key to correctness in
CORFU lies with the enforcement of up-to-date epoch tags
on client requests; requests tagged with out-of-date epoch
values are rejected, and clients are expected to request a new
tail from the sequencer. This mechanism forms the basis for
sequencer recovery.

Sequencer Recovery. In order to repopulate the cached
tail value during recovery of a sequencer, the maximum po-
sition in the log must be obtained. To do this, the storage
interface exposes an additional seal method that returns the
maximum log position that has been written to that device.
In order to maintain correctness while racing with in-flight
client requests, the seal method also takes a new epoch value
that is registered with the device, rejecting all old requests
and guaranteeing the validity of the maximum position until
the sequencer has determined a global maximum, and re-
sumes responding to client operations. Recovery of the se-
quencer server itself can be handled using an existing proto-
col such as leader election, or master-slave recovery as long
as exactly one sequencer per logical log is active at a time.

Metadata Management. There are several pieces of
metadata in CORFU that must be saved durably. This meta-
data includes the current epoch value, the current sequencer
instance, and metadata related to log configuration such as
the set of devices the log is being striped across. An auxil-
iary service implemented using Paxos is one way to manage

this data as update performance is not critical; it is only used
during sequencer recovery or system reconfiguration.

Fault-tolerance. Client-driven chained replication is
used to achieve fault-tolerance and availability for log data in
CORFU by organizing raw devices into replication groups.
The state of storage devices (e.g. active, failed) is recorded
in a cluster map and stored durably along side other meta-
data previously described. Clients update this map as they
interact with the cluster of storage devices, and reconfigu-
rations are propagated through the invalidation mechanism
based on out-of-date epoch values.

3.3 Mapping CORFU to Common Storage Services
We now begin the process of mapping the components of
CORFU onto commonly available storage sub-systems in
an attempt to derive CORFU from customized versions of
existing storage systems. First let’s consider fault-tolerance.
Virtually all storage systems today contain some form of
fault-tolerance and availability, typically in some form of
replication or erasure coding. Of course, for CORFU we are
only interested in strong consistency so this eliminates some
systems, but by and large, this is a first class sub-system
found in distributed storage systems.

Enforcement of the CORFU protocol at the storage de-
vice layer is more challenging. While CORFU purposes a
custom device-level interface, storage virtualization tech-
nologies allow new interfaces to be constructed at higher
levels in systems software (e.g. a server daemon). Typically
these features are only available to developers and privi-
leged users such administrators, and closely resemble the
ideas found in a large body of work related to active stor-
age (e.g. [1, 14]).

Third, management of configuration information (e.g.
cluster membership) in distributed storage systems closely
mirrors the data management requirements of CORFU. For
instance, all clients must agree on the striping strategy that
maps log positions onto storage devices, and configuration
changes must be propagated in a consistent way to avoid
data loss.

The final component of CORFU, the sequencer, poses the
largest challenge when identifying candidate sub-systems
to customize. In CORFU a sequencer is effectively noth-
ing more than a named service with domain-specific opti-
mizations and service fail-over. Comparing this description
to that of object extensibility highlighted above, it is easy
to see the similarities. Specifically, objects with an extended
interface behave as a named service, and when the system
provides fault-tolerance and availability, service fail-over be-
comes a side effect. Unfortunately it isn’t as easy to achieve
the domain-specific optimizations used by the CORFU se-
quencer. The durability of object state achieved through the
use of non-volatile media ensures less than optimal perfor-
mance. Thus, in Section 5 we describe programmable per-
sistence that allows us to realize a similar optimization.
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There are additional benefits that arise when constructing
interfaces within an existing system beyond taking advan-
tage of institutional stability. The design of CORFU assumes
a cluster of raw flash devices because log-centric systems
tend to have a larger percentage of random reads making
it difficult to achieve high-performance with spinning disks.
However, the speed of the underlying storage does not af-
fect correctness. Thus, in a software-defined storage system
such as Ceph a single implementation can transparently take
advantage of any software or hardware upgrades, and make
use of data management features such as tiered storage, al-
lowing users to freely choose between media types such as
SSD, spinning disks, or future NVRAMs.

4. Programmable Object Storage Interface
We’ve chosen to implement the CORFU storage interface
using extensibility features found in the RADOS object
store [17] that underlies the Ceph storage system. Briefly,
RADOS consists of a cluster of object storage servers
(OSDs) to which clients direct object operations. Each OSD
contains local resources such as CPU, memory, and various
types of non-volatile media that store object data.

The object interface provided by RADOS is very rich,
consisting of both bulk data I/O as well as key-value data
stored internally in LevelDB or RocksDB. In addition to sup-
porting multiple data models, many other features exist such
as cloning, trimming, server-side caching hints, and tiered
placement. One of the most powerful features in RADOS is
the ability to extend object interfaces by grouping a set ob-
ject operations along with arbitrary logic (via a C++ module)
into an atomic transaction applied locally at an OSD. This
allows powerful interfaces to be constructed such as atomic
compare and swap. Figure 3 shows a high-level view of the
internal OSD structure. A request first enters a complex re-
quest processing pipeline. A request is processed inside of
a transaction by sequentially applying a set of user-defined
methods to the object state which in turn access state in the
storage layer.

One of the major challenges of providing extensibility
as a service is to decide on how it is exposed. The exten-
sibility features in Ceph are accessible exclusively through
heavy-weight C++ modules that require distribution of ar-
chitecture specific binaries, and servers and clients must be
restarted when upgrades are made. This also has the side ef-
fect of effectively restricting the feature to system developers
and administrators. In order to provide extensibility as a ser-
vice, both to system providers, as well as developers seeking
to construct application-specific features, a different mecha-
nism is necessary.

In this paper we stop short of purposing a specific, com-
prehensive language for describing new interfaces. Rather,
we acknowledge this as the primary goal of our on going re-
search, and utilize a feature we have added to Ceph that al-
lows us to use the Lua embedded language for dynamically

Request Processing

LuaVM Object Methods

HDD SSD LRU Cache
Tx

Cache
Request Response

Figure 3. High-level architecture of RADOS OSD. The
shaded components are what we have added or proposed.

altering the behavior of different components in Ceph. The
Lua language provides a good baseline as it can achieve very
high-performance which we use as a proxy for later language
development. The shaded box labeled LuaVM in Figure 3
represents extensions we have made that expose the object
methods in a transactional context through the Lua virtual
machine enabling dynamic object methods to be executed.

4.1 The CORFU Storage Interface in RADOS
The transaction context available in RADOS enables the
CORFU storage interface semantics to be built in a very
compact way. In this particular case we have chosen to store
all log entries in the underlying key/value store (e.g. Lev-
elDB or RocksDB) that is provided as a basic service within
Ceph as alternative data model for storing data in objects
along side bulk byte-stream like data. Note that this decision
to store log entries in the key/value store is related to the
striping strategy. Other strategies exist such as mapping the
entries onto the bulk binary data model and using the key/-
value store as an index.

Recall from previous section, that every operation is
tagged with an epoch to support client request invalidation
during sequencer recovery. Listing 1 shows a helper function
used to enforce up-to-date epoch tags on client requests. The
Lua function takes as input an epoch value extracted from
the request, and compares it to the stored epoch value con-
tained in the object’s key-value store, returning an error if
the epoch is too old. Note that all unrecoverable I/O errors
are unchecked; these are handled transparently by the Lua
runtime and are returned to the client.

Next we examine the interface that clients use to write the
contents of a log entry, shown in Listing 2. First the epoch
guard shown in Listing 1 enforces that clients have an up-
to-date view of the log. Next the write-once semantics of the
CORFU storage interface are implemented by returning a
read-only error if the log position has already been written.
If the position is free then the entry is written, and the
stored maximum log position is conditionally updated. The
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def check_epoch(epoch)

curr_epoch = omap_read("epoch.key")

if epoch < curr_epoch

return STALE_EPOCH

else

return OK

Listing 1: Helper function used to enforce up-to-date epoch
tags on client requests.

important thing to take note of is that this entire function
(including the check epoch helper) is executed atomically,
enabling clients to simplify their design.

def write(op)

ret = check_epoch(op.epoch)

if ret != OK

return ret

if omap.exists(op.position)

return READ_ONLY

omap.set(op.position, op.entry_data)

maxpos = omap.get("max.pos")

if op.position > maxpos

omap.set("max.pos", op.position)

return OK

Listing 2: Object interface for writing to a log position.

As shown in Listing 3 reading from the log is very simi-
lar. First the epoch of the request is checked. If the entry at
the requested position does not exist a not-written error is
returned. This state is very important to clients that require
strict ordering such as state machine replication, which can-
not process later entries. Finally the entry is read and the
entry data is returned to the client. Note that the invalidated
state is used to by the client protocol to mark positions as
junk if writers are too slow.

Other interfaces exist which we don’t show here. For in-
stance, the seal command updates the stored epoch value and
returns the stored maximum position. In Section 6 we dis-
cuss how interfaces and metadata are consistently versioned
and dynamically deployed and installed using existing ser-
vices found in Ceph.

5. Virtual Object Persistence
One of the more tricky challenges in mapping the compo-
nents of CORFU onto an existing storage system is finding
a mapping target for the sequencer service. As mentioned in
Section 3.3, one option is to use the object interface exten-
sibility feature in RADOS to construct an object interface

def read(op)

ret = check_epoch(op.epoch)

if ret != OK

return ret

if !omap.exists(op.position)

return NOT_WRITTEN

entry = omap.read(op.position)

if entry.invalidated

return INVALIDATED

return entry.data

Listing 3: Object interface for reading a log entry.

that implements the sequencer protocol. This would be ex-
tremely convenient as new objects of a sequencer type can
be created at will. Listing 4 shows a candidate implementa-
tion of the sequencer as a custom object type which reads the
tail value, optionally increments, and then returns the value.
In addition to on demand sequencer service, it would provide
automatic service fail-over via existing object fault-tolerance
mechanisms as depicted in Figure 4. Unfortunately, existing
RADOS semantics force all object state to be stored durably,
a property that introduces unnecessary overhead for the se-
quencer. Next we describe programmable persistence that al-
lows us to use a cache for object state, and then describe or-
thogonal policies that can be used to optimize performance
for cached data access.

def tail(op)

tail = omap.get("tail")

if op.increment

tail++

omap.set("tail", tail)

return tail

Listing 4: Example implementation of sequencer as a custom
object type.

5.1 Programmable Persistence
In order to handle fail-over for non-durable object state, we
make the following observation about CORFU that guides
us to a solution. During sequencer recovery the log is in-
spected to determine the correct value with which to repop-
ulate the cached tail position. Where replication and era-
sure coding have very clear recovery mechanisms follow-
ing failure (copy and reconstruction, respectively), recovery
can also be expressed as a domain-specific procedure. In the
case of the CORFU sequencer, the cached value is implicitly
contained in the log. Thus, recovery of the sequencer cache
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value can be expressed as a function of the log that is stored
using traditional durability mechanisms.

In contrast with recovery using replication shown at the
top of Figure 4 in which the secondary OSD has imme-
diate access to the replicated value following fail-over re-
covery, programmable persistence interposes on the recov-
ery process to install domain-specific actions to restore non-
replicated state. The bottom of Figure 4 illustrates the con-
cept. As a secondary recovers durable state has been repli-
cated, but cached state is lost (label 4). Normally the OSD
resumes operation once durable state is consistent. By inter-
posing on the basic state machine we delay this transition
until the domain-specific recovery process that repopulates
the cache has completed (e.g. reading the log from the sys-
tem to determine the maximum log position and installing a
new epoch value).

5.2 Cache Optimization
The final component of synthesizing the sequencer service
within Ceph is to address the optimization that places the
cached log tail in volatile memory and optimizes request per-
formance. The bottom of Figure 3 depicts an LRU cache that
maintains common object information (e.g. size, modifica-
tion time). When an operation such as a stat is able to read
from this cache, requests are satisfied without I/O. How-
ever, in order to maintain strong consistency, LRU cache
hits are still subjected to nearly the entire request process-
ing pipeline, and that can add a lot of unnecessary latency.

Rather than utilize this strongly consistent cache, we in-
stead propose the addition of a new cache, shown at the top
of Figure 3 that can be accessed at an optimal stage during
request processing, given the durability and consistency re-
quirements of the object state being accessed.

In Section 7 we evaluate the performance improvements
that can be achieved using such a technique. We don’t pro-
pose yet any specific method for specifying the consistency
and durability properties of object state, though our main
focus has been on declarative methods that separate config-
uration from correctness.

6. Interface and Metadata Management
Enabling programmability in storage systems implies that
the extensibility features must be dynamic. Practically speak-
ing this makes sense because in multi-tenant environments,
or any system in which applications frequently modify sys-
tem interfaces and services, restarts that are typically re-
quired by traditional extensibility methods are too costly.

Throughout this paper we have shown how various com-
ponents of a storage system can be modified slightly to ex-
pose an entirely new service. All of these modifications work
in tandem to implement the desired behavior, and are typ-
ically co-designed together such that each depends on the
other to behave as expected. In highly dynamic environ-
ments such as a distributed storage system, changes to the
system propagate at variable rates, requiring all components
of the system to be able to adapt. Thus, system services
realized through extensibility should be versioned together
as a group, exposing the version to allow introspection and
domain-specific treatment of version mismatch scenarios.

And finally, it is important to not underestimate the im-
portance of the preservation of the modifications that enable
a new system service. In many (if not all) cases, interfaces
defining access to data are just as important as the data itself
by virtue of inherently providing structural context. Thus,
all components of a system service must be kept to the same
standards of protection as data in the system itself.

The Ceph storage system has a large collection of meta-
data management and cluster monitoring services that are
easily used to fulfill the requirements outlined above. For
instance, metadata describing the set of nodes in the sys-
tem is managed via a Paxos cluster, and automatically dis-
tributed to clients and servers through a scalable gossip pro-
tocol, and additionally the Ceph file system has a capabilities
sub-system used to control client caching behavior.

Figure 5 illustrates the use of Ceph’s cluster management
service. All clients and servers eventually converge to the
latest version of metadata that has been proposed, but inter-
mediate states exist in which clients and servers may have
mismatched versions of system modifications. The solution
we currently provide is to expose the current version to the
execution environment via the extensibility API. This allows
scripts to be written that introspect their environment and
thus policies for handling mismatch can be handled on a
case-by-case basis. We envision that later work in formal-
izing an extensibility language will reveal a fixed set of sce-
narios that can be codified into configuration mechanisms.
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Figure 5. Distribution of system modifications converge on
the latest version but must be robust to version mismatch.

Note that we assume in this example that a service may
be used by any client, and data may be stored on any server.
Thus, the global distribution and versioning of metadata by
the monitoring service is sufficient. However, in a system
where provisioning is important, it may be worthwhile to add
a partitioning feature to the management of interface data to
match the provisioning policies at the cluster management
level.

7. Evaluation
We perform our evaluation on a slice of the Wisconsin
CloudLab cluster. Each node in the cluster contains a 16
core Haswell processor, 128 GB of RAM, 2x 1.2 TB SAS
HDD and 1x 480 GB SAS SSD. While sporting dual 10Gb
networking ports, as of writing the system is in an alpha re-
lease with network support limited to a 1Gb control network.

7.1 Programmable Persistence
As discussed in Section 5 the ability to achieve high-
performance for a CORFU sequencer depends on an op-
timization that stores server state in volatile memory. The
important components to realizing this in Ceph are a pro-
grammatic way to describe the recovery of cached data, and
optimizations that take advantage of serving cached data.
The first experiment we highlight is the performance of a
sequencer-like workload interacting with cached state in the
OSD, and observing the ability of the system to recover from
failures. We use an 8 OSD RADOS cluster and configure the
system to make four replicas of an object representing the
sequencer service. Figure 6 shows the number of IOPS over
time experienced by clients interacting with the sequencer
before and after three failure events. The OSD with rela-
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Figure 6. Request rate to cached data before, during, and
after fail-over. The OSDs are failed by shutting down the
server daemons.

tively little tuning is able to achieve between 25K and 30K
IOPS. After each OSD failure the client experiences a short
period where the service in unavailable, after which point
Ceph automatically migrates the service and the client re-
sumes. The final drop in performance doesn’t correspond to
a failed OSD, but appears to correspond to the 300 second
delay Ceph uses before marking an OSD that is down as
being out of the cluster.

In this experiment failure is simulated by forcing the cur-
rent primary OSD to shutdown. However, there are other
ways in which OSDs can become unavailable, such as a
network partition, an administrative action, or hardware or
software failures. A classic challenge is tuning a system to
respond to failure without costly thrashing due to transient
problems. Figure 7 shows the same experiment as Figure 6
where the method of removing the OSD from the system is
an administrative action. Notice the degradation of perfor-
mance after each failure; this is not due to a lack of I/O par-
allelism as it may appear at first. Rather, Ceph is in a mode
where data is temporarily remapped, likely in anticipation of
a quick resolution. Removing the mappings by activating the
failed OSDs causes performance to resume.

This raises an important point regarding system configu-
ration and reuse of system components. Services such as the
CORFU sequencer implemented as an object in RADOS are
more likely to benefit not only from fast failover, but also fast
detection of failure. This stands in stark contrast to the poli-
cies that are currently used in RADOS where larger grace
periods are used to account for transient outages because
initiating failure is very expensive for large storage arrays.
Thus, extensibility features in a storage system will require
careful exposure of fail-over policies as well, at a granular-
ity fine enough to allow such distinctly different behaviors
to co-exist.

While the performance of the cache optimization allows
the sequencer to achieve roughly 25K IOPS, this is an order
of magnitude slower than what was achieved in the origi-
nal CORFU paper. We note that a significant execution cost
associated with maintaining consistency and transaction pro-
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Figure 7. Request rate to cached data before, during, and
after fail-over. The OSDs are failed using an administrative
function that removes them from operation.

cessing in the OSD is represented in the performance of our
implementation. With relaxed consistency policies on ob-
ject state we can move cached data access closer to the net-
work device avoiding the overhead of this consistency main-
tenance.

We omit the evaluation of the actual cost of recovering the
sequencer cache as this can largely be considered a constant
added onto the baseline fail-over costs introduced by Ceph.
Sequencer fail-over in our version of the system is a single
read to a fixed number of objects.

7.2 Interface and Configuration Propagation Delay
In Section 6 we discussed the challenges related to version-
ing and distribution of interface configuration and metadata.
We simulate this in Ceph by measuring the cost of propa-
gating changes to the OSD map which is a strongly consis-
tent data structure used to direct I/O operations in the cluster
to the correct servers. Changes to the OSD map are auto-
matically propagated to clients and servers, making them an
excellent proxy to evaluate the performance method for in-
terface management.

We conduct a set of experiments as follows. Using a
cluster of 128 OSDs we trigger the construction of a new
version of the OSD map and insert a unique ID into the map.
On each daemon in the system we log a message when the
new map is received and note the unique ID contained in it.
We repeat the experiment 60 times with a 5 second delay and
record the results. Using this data we generated two curves
shown in Figure 8.

The lower curve, labeled OSD Update (All), measures the
cost of for all daemons to receive a specific update. That is,
all daemons have converged on a single copy of the OSD
map. For instance, 50% of all updates were fully propagated
in the system in less than 1.1 seconds. For some interfaces
this is an important metric because they may not tolerate a
mixed set of versions.

Other applications, however, may tolerate mixed versions
using domain-specific semantics. For this case we look at
the upper curve, labeled OSD Update. This curve measures
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Figure 8. Object server request rate before, during, and
after fail-over.

the cost for any OSD to receive an update. As an example,
for any system daemon, there is a 90% likelihood that that
daemon will receive an update in less than 1.2 seconds.

8. Conclusion and Future Work
Programmable storage is a viable method for eliminating du-
plication of complex error prone software that are used as
workarounds for storage system deficiencies. However, this
duplication has real-world problems related to reliability. We
propose that system expose their services in a safe way al-
lowing application developers to customize system behavior
to meet their needs while not sacrificing correctness.

We are intend to pursue this work towards the goal of
constructing a set of customization points that allow a wide
variety of storage system services to be configured on-the-fly
in existing systems. This work is one point along that path
in which we have looked an a target special-purpose storage
system. Ultimately we want to utilize declarative methods
for expressing new services.
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