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Summary. Extreme value theory focuses on the study of rare events and uses asymptotic

properties to estimate their associated probabilities. Easy availability of georeferenced data

has prompted a growing interest in the analysis of spatial extremes. Most of the work so far

has focused on models that can handle block maxima, with few examples of spatial models

for exceedances over a threshold. Using a hierarchical representation, we propose a spatial

process, that has generalized Pareto distributions as its marginals. The process is in the

domain of attraction of the max-stable family. It has the ability to capture both, asymptotic

dependence and independence. We use a Bayesian approach for inference of the process

parameters that can be efficiently applied to a large number of spatial locations. We assess

the flexibility of the model and the accuracy of the inference by considering some simulated

examples. We illustrate the model with an analysis of data for temperature and rainfall in

California.

Keywords: Generalized Pareto distribution; Max-Stable process; Bayesian hierarchical
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1. Introduction

The statistical analysis of extreme values focuses on inference for rare events that cor-

respond to the tails of probability distributions. As such, it is a key ingredient in the

assessment of the risk of phenomena that can have strong societal impacts like floods,

heat waves, high concentration of pollutants, crashes in the financial markets, among oth-

ers. The fundamental challenge of extreme value theory (EVT) is to use information,

collected over limited periods of time, to extrapolate to long time horizons. This is pos-

sible thanks to theoretical results that give asymptotic descriptions of the probability
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distributions of extreme values. The development of EVT dates back at least to Fisher

and Tippett (1928). Inferential methods for the extreme values of univariate observations

are well established and software is widely available (see, for example, Coles, 2001). The

most traditional approache to analyze extreme data for one variable, is to consider its

maxima over a given period of time. As an example, we can consider the annual maxima

of daily temperature at a given location. The results in von Mises (1954) and Jenkinson

(1955) show that the distribution of the block maxima, as the number of observations go

to infinity, belongs to the family of generalized extreme value (GEV) distributions. As

the density of such family is readily available, likelihood-based methods can be used to

estimate the three parameters that characterize the distribution. This method relies on a

drastic reduction of the original data to a small set of block maxima. An alternative, that

uses additional information, is to fix a threshold, say, u, and obtain the exceedances over

that threshold. Pickands (1975) shows that, when u → ∞, the exceedance distribution

converges to the generalized Pareto distribution (GPD). This asymptotic result is used for

inference, after setting a high threshold and filtering the original sample with respect to

it.

It is typical of environmental data to be collected over networks of geographically

scattered locations. In these cases, an extension of the geostatistical methods used for

inference on spatial fields (see, for example, Banerjee et al., 2004) is needed to infer the

joint distribution of extremes at different locations. This requires an extension of the EVT

to multidimensional variables and, more generally, to stochastic processes indexed in space.

Inference for multivariate block maxima relies on multivariate extreme value distributions

that are based on the notion of max-stability. The work of Pickands (1981), Coles and Tawn

(1991) and Heffernand and Tawn (2004) are some examples of the use of these methods.

For exceedance over a threshold in multivariate settings, the work of Rootzen and Tajvidi

(2006) defines the multivariate generalized Pareto distribution. Further analysis of these

classes of distributions is presented in Falk and Guillou (2008). In this context, Michel

(2008) provides a detailed discussion of different inferential approaches.

To tackle the associations that arise when considering observations that are collected

at different spatial locations it is natural to consider hierarchical models. These are based

on assuming that the block maxima at a given site follow a GEV whose location, scale

and shape parameters depend on that site. The second level of the hierarchy consists

of assuming that such parameters correspond to spatial random fields. Geostatistical

models are then used to describe their variability. Examples of this approach are found
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in Huerta and Sansó (2007) and Sang and Gelfand (2009). For the exceedances approach,

Cooley et al. (2007) develop a model where the scale parameter of the GPD distribution

varies spatially. The hierarchical approach is very appealing computationally. It has

been criticized, though, for not adequately capturing the spatial dependence structure of

complex fields, like the ones that correspond to rainfall. Comprehensive summaries of the

methods used for spatial extremes can be found in Cooley et al. (2012) and Davison and

Gholamreazee (2012), which include a thorough list of relevant references. .

1.1. Max-stable processes

A fundamental concept in EVT is that of max-stability. A distribution G has the max-

stable property if Gn(y) = G(Any + Bn) for some constants An and Bn. In other words,

a collection of random variables Y1, . . . , Yn, i.i.d. from G, is such that the distribution

of its maximum, given by Gn, is a rescaled and shifted version of G. The central role of

GEV distributions in EVT is due to the fact that they correspond to the only family that

satisfies the max-stable property. Max-Stable processes represents a infinite dimensional

extension of multivariate extreme value theory. According to Smith (1990), they form a

natural class of processes to model block maxima observed at spatially referenced sites.

Following Huser and Davison (2013) we say that a spatial process Y (x) defined for x ∈ X

is max-stable if for any finite set D = {x1, ..., xD} ⊂ X , and any function defined on D we

have that

Pr(Y (x)/n ≤ y(x), x ∈ D)n = Pr(Y (x) ≤ y(x), x ∈ D)

for all integers n. As mentioned above, in the univariate case, the family of GEV dis-

tributions is the only max-stable class. Thus, the marginals of a max-stable process

must be GEV. These can be transformed to the unit Fréchet distribution, implying that,

without loss of generality, Pr(Y (x) ≤ y) = exp(−1/y), y > 0. For D different sites we

have that P (Y (x1) ≤ y1, ..., Y (xD) ≤ yD) = exp{−V (y1, ..., yD)}, where the function

V measures dependence among the different sites. For yi = y for all i, we have that

P (Y (x1) ≤ y, ..., Y (xD) ≤ y) = exp{−1/y}V (1,...,1). Letting θ = V (1, ..., 1), we have that

θ = D implies complete independence and θ = 1 implies complete dependence. A drawback

of the max-stable processes that have been proposed in the literature is that, typically,

only the bivariate marginals have closed form expressions. As a consequence, standard

likelihood-based approaches to inference are not practical. The most common alternative

is the use of pairwise log-likelihoods (Padoan et al., 2010; Cooley et al., 2010). Spatial

analyses of exceedences over a threshold are presented in Huser and Davison (2013) and
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Jeon and Smith (2012), using the relationship between the densities of the GPD and GEV

to build pairwise likelihoods for the exceedances. A restriction of the pairwise likelihood

is that the variability of pairwise estimators is usually underestimated (Pauli et al., 2011).

Of particular relevance for the model developed in this paper is the hierarchical max-

stable model in Reich and Shaby (2012). Let Y (s) be the block maximum at location

s ∈ S. Assuming that the process is max-stable, we have that marginally, Y (s) ∼

GEV (µ(s), σ(s), ξ(s)), or Y (s) = µ(s)+σ(s)/ξ(s)[X(s)ξ(s)−1], whereX(s) ∼ GEV (1, 1, 1).

The process X(s) is written as a product of two terms, X(s) = U(s)θ(s). U(s) ∼

GEV (1, α, α), α ∈ (0, 1). θ(s) is a nugget effect that captures the spatial dependence,

and it is written as a power function of a linear combination of positive stable distribu-

tions, where the weights are defined by spatial kernels.

In this paper, we propose a hierarchical Bayesian model for excedances in a spatial

domain using a process with GPD univariate marginals. The hierarchy that defines the

process is similar to the one proposed in Reich and Shaby (2012), and it is inspired in

the representation discussed in Ferreira and de Haan (2014). We show that our proposed

model can capture a wide range of spatial dependencies. Moreover, the model allows for

asymptotic dependence as well as independence between any two points. In addition, the

resulting process belongs to the domain of attraction of a max-stable process, for some

parameter values. Section 2 presents the definition of the generalized Pareto process, and

discusses the difficulties to obtain a viable estimation method. We then introduce our

proposed model and develop the estimation procedure. Section 3 presents some numerical

simulations of the proposed model using different parameter configurations. Section 4

presents an illustration on data for winter temperature and rainfall in California during

the last five years. Finally, Section 5 discusses the results obtained with the proposed

model, as well as possible future extensions.

2. The Model

To perform inference on the distribution of the exceedances over a threshold, consider a

random variable Y and a threshold u, and consider the Fu(y) = Pr(Y ≤ y − u|Y > u).

Then, for large enough u, and for the number of observations on Y tending to infinity,

Fu(y) can be approximated by a properly scaled GPD whose cumulative distribution is

given as

H(y|u, σ, ξ) =

 1−
(

1 + ξ (y−u)σ

)−1/ξ
, if ξ 6= 0

1− exp{−(y − u)/σ}, if ξ = 0
, (1)
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where y − u > 0 for ξ ≥ 0 and 0 ≤ y − u < −σ/ξ for ξ < 0. Thus, the GPD is always

bounded from below by u, is bounded from above by u−σ/ξ if ξ < 0 and unbounded from

above if ξ ≥ 0. In the univariate case, the relationship between GEVs and GPDs is made

explicit by observing that, if G is a GEV distribution, then H(y) = 1+ log(G(y)), for all y

such that log(G(y)) ∈ [−1, 0]. In Michel (2008) this relationship is used to generalize the

definition of a GPD distribution to the multivariate setting.

2.1. The generalized Pareto process

An infinite dimensional generalization of the GPD is given by the generalized Pareto

process proposed in Ferreira and de Haan (2014). A constructive definition of a simple

Pareto process is given as follows:

Definition 1. Let W (s) be a stochastic process indexed in s ∈ S and w0 a positive constant.

Then W (s) = Zθ(s), ∀s ∈ S is a simple Pareto Process if

(a) θ is a stochastic process with sups θ(s) = w0 and E(θ(s)) > 0, ∀s ∈ S,

(b) Z is a standard Pareto random variable,

(c) Z and θ are independent.

This definition provides a very simple constructive approach to generalize the univariate

GPD to an infinite-dimensional setting. In fact, a Pareto process can be obtained from a

bounded process and a standard Pareto random variable. To obtain a generalized Pareto

process we rescale a simple Pareto process W as

W ∗(s) = u+ σ
W (s)γ − 1

γ
.

Following Ferreira and de Haan (2014) we have that the dependence between realizations

of the process at two sites can be quantified by the identity

Pr(W (s1) > x,W (s2) > x) =
E(θ(s1) ∧ θ(s2))

x

where a∧ b = min(a, b). As a consequence, there can not be independence between W (si)

and W (sj) for any two locations si and sj . Moreover, the process is completely dependent

when θ ≡ w0. In addition, for for n sites s1, . . . , sn, we have that

Pr(W ∗(si) > xi |W ∗(si) > w0, θ(si); i = 1, ..., n) = w0

mini

{
θ(si)

[
1 + ξ

σ (xi − u)
]−1/ξ}

mini{θ(si)}
.

From the above expression it is clear that likelihood-based inference is not possible as,

in general, the cumulative joint distribution function is not absolutely continuous. Thus,
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it does not have a derivative with respect to (x1, ..., xn). This is also the case, even for

pairwise likelihood approach. Due to this limitation, we propose an alternative hierarchical

representation of the generalized Pareto process.

2.2. A hierarchical generalized Pareto process

We consider an unscaled process X(s), and, in the spirit of Reich and Shaby (2012), we

factorize it as in X(s) = U(s)θ(s), where U(s) are spatially uncorrelated random variables,

and θ(s) is a process that controls the spatial dependence. More specifically, we set U(s) ∼

GPD(1, 1/β, 1/β), i.i.d., so that Pr(U(s) > u) = 1/uβ, u > 1. Then, we select a set of

L points s∗1, . . . , s
∗
L in S and propose the model θ(s) = exp{−

∑L
l=1Alwl(s)

1/α}1/β. Here

the random variables Al, l = 1, . . . , L, follow a positive stable distribution, and wl(s) =

k(s − s∗l ) = for some kernel k such that, wl(s) ≥ 0 and
∑L

l=1wl(s) = 1, ∀s ∈ S. Notice

that θ(s) is a bounded process, thus, it satisfies the first condition in Definition 1. But,

as opposed to the random variable Z in Definition 1, U(s) depends on location. Because

of this dependence, our model does not conform to the constructive definition of a Pareto

process. Nevertheless, as the following results will show, we have defined a process with a

number of properties that make it suitable for the analysis of spatial exceedances over a

threshold.

The following proposition gives the joint distribution of a vector corresponding to the

process at an arbitrary collection of sites.

Proposition 1. For s1, . . . sn in S

Pr(X(si) > xi; i = 1, ..., n) =

(
n∏
i=1

(1/xβi )

)
exp

{
−

L∑
l=1

(
n∑
i=1

wl(si)
1/α

)α}
, (2)

providing an explicit formula for the finite dimensional distributions of X(s).

Proof. Denote A = (A1, . . . , AL), thus

Pr(X(si) > xi, i = 1, ..., n) =

∫
A
Pr(X(s1) > x1, ..., X(sn) > xn|A)p(A|α)dA.

Use the independence of the components of A to write the integral as a product of

integrals. From the definition of X(s) and the fact that Pr(U(si) > xi/θ(si)|A) =

(θ(si)/xi)
β, we have that the above integral is equal to

∏n
i=1(1/x

β
i )
∫
A θ(s1)

β × . . . ×

θ(sn)βP (A|α)dA. Recall that, if A follows a positive stable distribution with parame-

ter α, then
∫∞
0 exp{−At}p(A|α)dA = exp{−tα}. The result follows from the use of this

identity in each of the n terms of the product.
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Corollary 1. The univariate marginal distribution of X(s) for a given point s ∈ S is

obtained from Pr(X(s) > x) = (exβ)−1.

Corollary 2. α = 1 corresponds to complete independence.

Corollary 3. α = 0 corresponds to complete dependence yielding

Pr(X(si) > xi, i = 1, ..., n) =

(
n∏
i=1

x−βi

)
exp

{
−

L∑
l=1

max
i=1,...,n

wl(si)

}

Proof. The proof of the corollary is obtained by recalling that limα→0

(∑n
i=1wl(si)

1/α
)α

=

maxi=1,...,nwl(si).

From Equation (2) it is clear that the spatial dependence is controlled by the α-norm

of the weigths. The next proposition provides information about the asymptotic max-

stability of the process.

Proposition 2. The process X(s) belongs to the domain of attraction of a max-stable

process when β = 1.

Proof. The proof follows along the lines of a similar proof in Reich and Shaby (2012).

Recalling that X(s) = U(s)θ(s), we have

Pr(X(s1) ≤ tc1, ..., X(sn) ≤ tcn)t =

(∫
A

n∏
i=1

(
1− θ(si)

tci

)
p(A|α)dA

)t
. (3)

This expression has the form (1 + a1/t+ a2/t
2 + . . .+ an/t

n)t for appropriate coefficients

ai, i = 1, . . . , n. The limit, when t → ∞, is exp{a1}, where a1 = (1/e)
∑n

i=1 1/ci. This

shows that the limit of the expression in Equation (3) is the product of n independent

GEV (e−1, e−1, 1) distributions.

We notice that, when the above result is compared to the function V described in Sec-

tion 1.1, we have that V (z1, ..., zD) = 1
e (1/z1 + ...+ 1/zD). As a consequence, when β = 1

the process is in the domain of attraction of a max-stable process that has asymptotic

independence. Asymptotic dependence can be obtained by considering a probability dis-

tribution on β, instead of fixing its value. We will postpone the discussion of this feature

of the model to Section 2.3.

The two propositions and the three corollaries above have explored the properties of

the proposed hierarchical process. We have established that the model has the appropriate

marginal distributions to generalize the GPD analysis, for β = 1 it belongs to the domain

of attraction of a max-stable process, and has a dependence structure, controlled by the
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parameters α that allows for a wide range of possibilities. For inferential purposes, we now

extend the model to include shape, scale and location parameters, letting

Y (s) =

(
u+

σ(X(s)ξ − 1)

ξ

)
,

for σ > 0 ,ξ and u ∈ R. The univariate marginal is given in the next proposition whose

proof follows along the lines of the proof to Proposition 1. Its corollary provides the basis

of a model that is conditional on exceeding a threshold u.

Proposition 3.

Pr(Y (s) > y) =

(
1 +

ξ(y − u)

σ

)−β/ξ
e−1 .

Corollary 4. Given a threshold u, the conditional probability of Y (s), given that Y (s) > u

is a GPD(u, σ/β, ξ/β).

Proof.

Pr(Y (s) > y | Y (s) > u) =

∫
A

Pr(Y (s) > y | θ(s))
Pr(Y (s) > u | θ(s))

p(A|α)dA =

(
1 +

ξ(y − u)

σ

)−β/ξ
.

The final step to determine the distribution of the different levels of a hierarchical

model consists of obtaining Pr(Y (s) > y|θ(s)). The following result is a consequence of

Corollary 1.

Corollary 5. Pr(Y (s) > y | θ(s)) = θ(s)β
(

1 + ξ(y−u)
σ

)−β/ξ
.

As a special case of the above, when y = u we have that Pr(Y (s) > u|θ(s)) = θ(s)β.

To obtain a hierarchical specification of a model for the exceedences of Y (s) above

the threshold u(s) we assume that we have a number of replicates of the process Y .

These are denoted as Yj(s). The probability that Yj(s) is larger than u(s) is θ(s)β =

exp{−
∑L

l=1Alwl(s)}. Denote as Vj(s) a latent variable that is equal to 1 if Yj(s) > u(s)

and 0 otherwise. We have that Vj(s) ∼ Bernoulli(θ(s)β). With these properties, we

propose the following hierarchical model:

Vj(si) | θ(si)β
indep∼ Bernoulli(θ(si)

β)

Yj(si) | Yj(si) > u(si)
indep∼ GPD(u(si), σ/β, ξ/β)

Al
iid∼ PS(α), (4)

for i = 1, . . . , n and j = 1, . . . ,mi.

For a dataset corresponding to s1, ..., sn points in space, assume that we have mi repli-

cates at each location si. Let Yj(si) be the quantity of interest at location si, replicate
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Fig. 1. Random draws from the HGP model with different parameter configurations. Columns

from left to right: α = (0.2, 0.5, 0.8). Top row, τ = 1, second row, τ = 5. σ = 1, ξ = .2,

j. If this quantity is higher than a threshold u(si), its resulting distribution is a GPD.

The auxiliary variable Vj(si) indicates if a point is higher than u(si), where the result-

ing probability follows from a Bernoulli distribution with parameter θ(sj)
β. In practice

the condition that values above a threshold are independent replicates is seldom satisfied.

Thus, it is common to decluster the data in a preprocessing stage (Coles, 2001).

To explore the characteristics of this model, we show, in Figure 1, random draws of the

process on a 50×50 grid, for different values of α and the bandwidth of a Gaussian kernel,

τ . From the figure, we observe that the process shows clustering patterns that are typical

of spatial processes of extremes. We also observe that lower values of α and τ increase the

smoothness of the realizations.

2.3. Shape parameters and asymptotic dependence

From the specification of the model in Equation (4), we note that the resulting marginal

GPD depends on four parameters. The shape of the GPD is given by ξ/β, while the

scale is given by σ/β. Thus, such parameterization can cause indetifiability problems

for estimation. To tackle this problem we complete the proposed hierarchical model by

assuming that the prior distribution of β has support limited to the positive real line.

The prior distribution for ξ is a discrete distribution concentrated on the values {−1, 0, 1}.

Thus ξ indicates the sign of the chape, and the β quantifies its value. This is analogous



10 Nascimento and Sansó

to the approach in Nascimento et al. (2015). We note in passing that distributions with

negative shape parameters have bounded support. Such tail behavior is radically different

to the very heavy tails, that correspond to positive shape values. It is important for the

model to have the flexibility to distinguish this feature.

According to Proposition 2 taking β = 1 provides asymptotic independence. To gain

a better understanding of the this issues we recall that, for two different locations, si and

sj , a measure of the asymptotic dependence between X(si) and X(sj) is given by (Coles

et al., 1999)

χi,j = lim
z→z∗

P (X(si) > z | X(sj) > z),

where z∗ is the upper limit of the distribution. The value χ = 0 indicates asymptotic

independence. Positive values of χ indicate some level of asymptotic dependence. For the

model proposed in this paper, it can be seen that, any fixed value of β, not only β = 1,

will produce χi,j = 0. This suggests that a model based on independent Pareto shocks

at each location is not able to capture possible extremal dependence between different

locations. To induce the sharing of information between the different sites, we assume

that β is a random variable following a gamma distribution with parameters a and b. In

this fashion the component of the vector (U(s1), . . . , U(sn)) , for any collection of n sites,

will not be independent. They will be exchangeable with a joint density proportional to∏n
i=1 u

−1
i (b+

∑n
i=1 log ui)

−n−a, ui > 1, ∀i.

For the proposed model we have that

χi,j = lim
z→∞

∫∞
0 βa−1e−β[b+2 log(z)]−βα

∑L
l=1(wl(si)

1/α+wl(sj)1/α)αdβ∫∞
0 βa−1e−β[b+log(z)]−βαdβ

.

For α = 0, χi,j = (1/2)a exp{1−
∑L

l=1 max(wl(si), wl(sj)}. For α = 1, χi,j = (1/2)a. This

indicates that asymptotic dependence can indeed be captured by the model. For 0 < α < 1,

the exact value of χ depends of integrals that cannot be computed analytically. Numerical

calculations indicate that (1/2)a exp{1 −
∑L

l=1 max(wl(si), wl(sj)} < χij < (1/2)a ,

implying that, for any value of α, the model produces asymptotic dependence.

2.4. Estimation of return levels

An important product of the analysis of extreme data is the estimation of the quantiles

of the distribution that correspond to rare events. These are traditionally given as return

levels. The return level t, denoted by rt, is the value of the quantile 1 − 1/t of the

distribution, i.e., every t years, it is expected that at least once, the value of the variable
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of interest would be equal or higher than qt. For the GPD distribution the return level is

given by

rt = u+
σ

ξ

(
(1/t)−ξ − 1

)
.

the above formula for the return level assumes that all observations are above a threshold.

Our propose model incorporates information about the probability of crossing the thresh-

old. Thus, we need to weigh the return level according to such probability to obtain the

correct quantile. According to our model P (Yj(s) > u(s) | θ(s)) = θ(s)β. Thus, the return

level for t is given by

rt(s) = u(s) +
σ

ξ

((
1/t

θ(s)β

)−ξ
− 1

)
. (5)

2.5. Posterior distribution and estimation algorithm

Let Θ be the vector of parameters {ξ, σ, α, τ, β} and let A be the positive stable random

effects in θ(s). Then, Θ and A are the unknown quantities in our model that need to be

estimated from the observations. Using a Bayesian approach, we obtain a likelihood for

Θ and A and consider prior distributions that allow us to obtain a posterior distribution

that includes all estimation uncertainties. From the model proposed in Equation (4), the

likelihood, conditional on the indicator variables Vj(si), that is obtained from m replicates

of the process is proportional to∏
i=1,...,n

∏
j=1,...,m

(
fG

(
Yj(si) | u(si),

σ(si)

β
,
ξ(si)

β

))I(Yj(si)>u(si))
×

×θ(si)βVj(si)(1− θ(si)β)(1−Vj(si)), (6)

where fG is the density of the GPD distribution.

Regarding our default choices for the prior distribution for the GPD parameters, we

assume independence a priori. We use the prior for σ, p(σ) ∝ 1/σ, that corresponds to the

Jeffreys prior, as defined in Castellanos and Cabras (2007). For α we use a U(0, 1) prior,

following the choice in Reich and Shaby (2012). For the bandwidth τ , we propose to use

a weakly informative gamma prior. The proposed prior for β is a Gamma(1, 1), whose

expected valued E(β) = 1. Thus, in the mean, this corresponds to the case of max-stability

and asymptotic independence, but allows significant probability for the other cases. The

prior for ξ assigns probability 1/3 to each of the values -1,0 and 1. In order to explore the

posterior distribution of the model parameters we develop an adaptive Monte Carlo. The

details are presented in Appendix A.
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3. Simulations

To explore the characteristics of the proposed model, as well as the ability of our es-

timation approach to recover the true parameter values, we conduct a series of simula-

tions. The simulation were performed on a 10x10 grid. For each site, we generated 200

replicates. We used as many kernel knots as grid cells in the grid. We chose u = 6,

σ = 10, ξ = {−1, 0, 1} and β = {1, 3}. We simulated using a τ = 10, and three dif-

ferent values of α, α = {0.2, 0.5, 0.8}. The steps to generate the simulations are as

follows: 1) Generate Al ∼ PS(α), l = 1, . . . , L independently; 2) Generate Uj(s) iid

GPD(1, 1/β, 1/β); 3) Compute the kernel weights wl(s), for l = 1, ..., L. 4) Compute

the θ(s) = exp
(
−
∑L

l=1Alwl(s)
1/α
)1/β

; 5) Compute Xj(s) = Uj(s)θ(s), j = 1, . . . , 200; 6)

For each j, compute the transformation Yj(s) = u+ (σ/ξ)
(
Xj(s)

ξ − 1
)
.

We fit our model using the priors proposed as default. When fitting the model we let

number of knots L = 25. Thus, the fitted model has one knot for every four data locations,

compared to the true model that generated the data. Table 1 shows the posterior mean for

the different configurations of the parameter values, together with 95% credibility intervals.

From the table, we notice that we are able to recover the true parameter values for most

parameters in most of the configurations. We observe that the most challenging case is

the one where ξ = −1 and α = 0.8, where the method underestimates the value of β.

Figure 2 shows the fields of posterior expectations for the return levels corresponding

to two different values of t and three different estimation methods. The true values of the

returns can be calculated using the true values of parameters in (2.4). The first approach

uses an empirical estimate of θ(s)β, the probability of crossing the threshold. The second

uses the full model. The third method uses the empirical CDF of the data. We observe

that estimating θ(s)β produces results that are very similar to the ones obtained from the

model. We warn, though, that these examples use 200 replicates. A very large number

compared to what is typically available in real applications. We repeated the analysis for

several values of t. We observed that, empirically estimating the return levels for a large

t is inviable, even with a large number of replicates.

In Figures 3 and 4 we explore the effect of different parameter values on the estimation

of the return levels. From Figure 3 we observe that β does not seem to have a strong effect

on the spatial patterns of the resulting fields. Quite the opposite is true for ξ. This is not

surprising, as ξ controls the tails of the GPD. Thus, when ξ < 0, which corresponds to a
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Table 1. Posterior mean and 95% credibility intervals. T- True, M - Posterior mean, CI

- Credibility interval. The below of P (ξ) indicates the probability of the signal of ξ would

be 0, 1(”+”) or -1(”-”).
β = 1, ξ = 1

α = 0.2 α = 0.5 α = 0.8

T M CI T M CI T M CI

τ 1 1.014 (1.003;1.026) 1 0.921 (0.885;0.944) 1 0.838 (0.785;0.891)

α 0.2 0.213 (0.204;0.222) 0.5 0.560 (0.507;0.593) 0.8 0.812 (0.776;0.834)

β 1 0.974 (0.941;1.008) 1 0.997 (0.955;1.039) 1 0.989 (0.948;1.027)

σ 10 9.68 (9.30;10.06) 10 9.998 (9.581;10.393) 10 9.96 (9.49;10.40)

P (ξ) + 0 - + 0 - + 0 -

1 0 0 1 0 0 1 0 0

β = 1, ξ = 0

α = 0.2 α = 0.5 α = 0.8

T M CI T M CI T M CI

τ 1 0.998 (0.984;1.009) 1 0.863 (0.841;0.883) 1 1.050 (0.997;1.102)

α 0.2 0.217 (0.203;0.226) 0.5 0.577 (0.527;0.613) 0.8 0.802 (0.770;0.827)

β 1 0.986 (0.081;3.614) 1 0.345 (0.015;2.55) 1 1.187 (0.179;3.934)

σ 10 9.96 (9.76;10.14) 10 10.02 (9.80;10.20) 10 10.04 (9.83;10.26)

P (ξ) + 0 - + 0 - + 0 -

0 1 0 0 1 0 0 1 0

β = 3, ξ = 1

α = 0.2 α = 0.5 α = 0.8

T M CI T M CI T M CI

τ 1 0.998 (0.987;1.007) 1 9.905 (0.880;0.931) 1 0.984 (0.933;1.033)

α 0.2 0.217 (0.204;0.226) 0.5 0.569 (0.518;0.607) 0.8 0.840 (0.805;0.962)

β 3 2.852 (2.638;3.074) 3 2.984 (2.740;3.249) 3 2.922 (2.695;3.174)

σ 10 9.31 (8.43;10.24) 10 9.96 (8.90;11.10) 10 9.71 (8.71;10.82)

P (ξ) + 0 - + 0 - + 0 -

1 0 0 1 0 0 1 0 0

β = 3, ξ = −1

α = 0.2 α = 0.5 α = 0.8

T M CI T M CI T M CI

τ 1 0.997 (0.985;1.009) 1 0.952 (0.928;0.973) 1 0.882 (0.833;0.930)

α 0.2 0.217 (0.205;0.226) 0.5 0.551 (0.510;0.587) 0.8 0.846 (0.813;0.867)

β 3 3.048 (2.945;3.194) 3 2.998 (2.874;3.132) 3 1.709 (1.708;1.711)

σ 10 10.08 (9.87;10.38) 10 10.00 (9.78;10.28) 10 9.67 (966;9.68)

P (ξ) + 0 - + 0 - + 0 -

0 0 1 0 0 1 0 0 1
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Fig. 2. 20-years return levels in space for simulated data corresponding to β = 3, ξ = 1, α = 0.5

and τ = 10. Top left: True returns; Top right: P (Y (s) > u) = θ(s)β is estimated empirically; Bottom

left: θ(s)β estimated from the model; Bottom Right: Full empirical estimation.
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Fig. 3. 20-year return levels in space for the simulated data with α = 0.5 and τ = 1. Top Left:

ξ = 1, β = 1; Top Right: ξ = 0, β = 1: Bottom Left: ξ = 1, β = 3; Bottom Right: ξ = −1, β = 3.

bounded distribution, we obtain very low return levels. From Figure 4 we observe that the

lower the value of α the higher the clustering of the field. This is expected, as α control

the spatial dependence of the process.

4. California temperature and rainfall

As illustrative examples we analyze two datasets. The first one consists of data for max-

imum daily temperature at 665 locations in the State of California, from 2012 to 2014.

The second dataset consists of the daily accumulated volume of precipitation, in the same

period in California, at 992 locations. We limited our analysis to the winter period, and

included only observations for the months of December, January and February. These

data were obtained from the National Climatic Data Center, and are available on the

web at http://www.ncdc.noaa.gov/. The total number number of observations, for each

station, during the two years period, is 180 daily data. Figure 5 shows the locations

where the data were collected. The peaks over a threshold for these data are clearly not

independent in time, as threshold excesses often occur in clusters. Following the ideas in
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Fig. 4. 20-year return levels in space for the simulated data with ξ = 0.4 and τ = 1. Left: α = 0.2,

Center: α = 0.5. Right: α = 0.8.

(Coles, 2001, Section 5.3.2), we tackle this problem by considering cluster maxima. In this

example we calculate the maxima for blocks of four days, obtaining a total of 45 maxima

per station. The threshold for the temperature application was chosen as 10.0 ◦C Celsius

(or equivalently to 50 degrees Fahrenheit). The threshold chosen for this application was

100 mm. In both cases these thresholds are close to the corresponding 80% quantile of the

declustered data.

We perform a preliminary analysis to quantify the asymptotic behavior of the depen-

dence between observations at different locations. For this purpose we chose as illustration

some different sites, transformed the observations so that they have standard Frechet dis-

tributions, then explored the resulting scatter plots. Points along the diagonal give an

indication of asymptotic dependence. Figures 6 and 7 show the resulting plots for four

different pair of locations. Such locations are circled in Figure 7. For the temperature

data, Figure 6 shows that correlations for the stations For the rainfall data, Figure 7 shows

that relationship between the sites We observe that there are clear indications that there

is asymptotic dependence between some of the locations. The above results indicate that,

to appropriately capture the tail behavior of the joint distribution of the peaks over a

threshold for the data under consideration, we need to consider a model that can capture

asymptotic dependence. This is achieved by our model by assuming that β is a random

variable.
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Fig. 5. Locations in the State of California where the data were collected. Circle points: Temper-

ature data; Crossed points: Rainfall data.
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Fig. 6. Examples of scatter plots for temperature observations, after transforming to Fréchet

standard distributions for locations: s1 = (38.91,−120.70), s2 = (34.44,−117.85), s3 =

(40.72,−123.50), s4 = (35.38,−120.19) and s5 = (39.74,−122.20). This stations are circled in

red on Figure 5.
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Fig. 7. Examples of scatter plots for rainfall observations, after transforming to Fréchet standard

distributions for locations: s1 = (37.51,−122.03), s2 = (41.71,−122.50), s3 = (38.21,−119.01),

s4 = (38.21,−122.28), s5 = (36.32,−119.64) and s6 = (34.02,−118.29). This stations are circled in

green on Figure 5.

We fit our proposed model using the prior distributions suggested in Section 2.5. We

use a Gaussian kernel given by k(s − s∗) = exp(−0.5||s − s∗||2/τ2)/
√

2πτ2 for L = 100

knots distributed on regular grid over the domain. This implies that the distance between

knots is equal to 110km. Table 2 shows the posterior means and credibility interval

for the parameters. The estimated values for α, in both cases, indicate the presence of

significant spatial dependence. The posterior distribution of τ is concentrated on much

higher values for the temperature examples than for the rainfall. Thus, in the former

case, we obtain a spatial field that is much smoother than in the latter. More specifically,

for the rainfall data, the posterior mean value of τ implies that the kernels is smaller

than 0.01 for distances that are larger than abut 800 km, while for the rainfall data the

equivalent distance is about 570 km. Regarding the estimation of the shape of the tails,

we observe that the estimation of ξ is very sharp in both examples. The Monet Carlo

method selects one specific value in all the iterations. For the maximum temperature

observations ξ is estimated as 0, indicating that the distribution has exponential tails. For

the rainfall observations, ξ is estimated as 1, providing evidence of a long tail behavior.

Further evidence of differences in the tails of the temperature and rainfall distributions is

given by the posteriors of β in each case.

To quantify the effect of asymptotic dependence we show in Table 3 the ratio between

Pr(Y (si) > u(si), Y (sj) > u(sj)) and Pr(Y (si) > u(si) × Pr(Y (sj) > u(sj) calculated
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Table 2. Means and 95% credibility intervals for the different parameters in the model. M -

Posterior mean, CI - Credibility interval
Maximum Temperature

Parameter τ α β σ P (ξ){+, 0,−}

M (CI) 6.82 (6.53;7.16) 0.597 (0.595;0.600) 1.10 (0.20;4.06) 24.22 (23.56;24.88) {0,1,0 }

Rainfall

Parameter τ α β σ P (ξ){+, 0,−}

M (CI) 2.61 (2.52;2.71) 0.605 (0.603;0.607) 3.65 (3.25;4.09) 144.46 (138.37;150.64) {1,0,0 }

Table 3. Ratios of the probabilities of exceeding the threshold calculated using the joint distribution

over the product of the marginals. The values in parentheses correspond to the distances between

sites in 100 kms
Temperature Rainfall

s2 s3 s4 s5 s2 s3 s4 s5 s6

s1 1.22 (5.30) 1.50 (3.33) 1.43 (3.57) 1.60 (1.71) 1.48 (4.23) 1.56 (3.10) 1.61 (0.74) 1.50 (2.67) 1.25 (5.12)

s2 - 1.09 (8.45) 1.51 (2.52) 1.14 (6.86) - 1.40 (4.94) 1.52 (3.51) 1.32 (6.10) 1.13 (8.77)

s3 - - 1.24 (6.28) 1.61 (1.63) - - 1.53 (3.27) 1.58 (1.99) 1.35 (4.25)

s4 - - - 1.32 (4.80) - - - 1.46 (3.25) 1.21 (5.79)

s5 - - - - - - - - 1.46 (2.67)

from our fitted model, for the points in of Figures 6 and 7. The values in the table show a

strong dependence between sites, especially at short distances. This confirms the results

of the exploratory analysis. Figures 8 and 9 show maps of the probabilities of thresh-

old exceedance and those of some high quantiles for rainfall and maximum temperature,

respectively.

To explore the behavior of the return levels we consider return level plots that include

credibility intervals for each site. shows shows an exampe for one station.In Figure 10

we compare the posterior mean of the return levels for six different stations, which are

respectively the points showed in Figures 8 and 9. For the temperature data, we can see

that the highest return is in the southern coast, while the lowest return level is in extreme

north. For the rainfall data, the highest return is in the north, and the lowest is in extreme

south of state

5. Conclusion and discussion

We have presented a new model for the excesses above a threshold of spatially referenced

observations. The model is based on a multiplicative structure that is suggested by a

constructive definition of generalized Pareto processes. To achieve spatial coherence, the

model uses a transformation of a linear combination of positive stable random variable,
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Fig. 8. P (X(si) > 10 ◦C) (left) and 20-year return level (right) for the maximum winter temperature

in the State of California.
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Fig. 9. P (X(si) >100 mmu) (left) and 20-year return (right) for the winter precipitation over the

State of California.
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Fig. 10. Posterior mean of returns for six different locations. Left: Temperature (Locations marked

as dots in Figure 8). Right: Rainfall (Locations marked as dots in Figure 9).

whose coefficients are defined by means of a kernel function acting on the spatial domain.

The model is able to capture the whole possible range of spatial dependence, as well as

tail dependence. For some parameter values, it belongs to the domain of attraction of

a max-stable process. Moreover, simulations show that the proposed model is able to

capture clustered structures in space that are typical of fields of extreme values. The hier-

archical structure of the model, coupled with the kernel representation of the spatial field,

allows for computations to be performed on spatial domains with large numbers of loca-

tions. Our Bayesian inferential approach, uses the full likelihood and avoids splitting the

inference for model parameters in a sequence of steps. It is, thus, able to coherently prop-

agate the uncertainty in the estimation of all components of the model, using probability

distributions.

There are a number of natural extensions to he model presented here. It is important to

incorporate information from spatially-varying covariates, such as elevation. Unfortunately

it is not obvious how to include an additive or multiplicative effect of a covariate to the

structure of the proposed model. The most natural way to proceed is to follow the approach

in Cooley et al. (2007), and assume that σ and β are transformations of Gaussian proceses,

whose means depend linearly on the covariates of interest. Yet another extension is to

model the threshold as an unknown, possibly space-varying, parameters, in the spirit of

Nascimento et al. (2012).
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A. Adaptive Monte Carlo Algorithm

• Sampling Bl

Positive Stable random variables do not have a closed form density. Reich and Shaby

(2012) use the auxiliary variable technique of Stephenson (2009), that introduces

variables Bl ∈ (0, 1) so that

p(A,B | α) =
αA−1/(1−α)

1− α
c(B) exp

[
−c(B)A−α/(1−α)

]
where c(B) =

{[
sin(απB)
sin(πB)

]1/(1−α)
sin((1−α)πB)

sin(απB)

}
. Then, marginalizing Bl, Al ∼ PS(α).

Within the Monte Carlo algorithm, Bl is an auxiliary variable, that does not appear

in the likelihood described in (6), its full conditional distribution is proportional to

p(Al, Bl | α). As Bl ∈ (0, 1), a Beta distribution is used as proposal. We take the

mean as the sample of Bl from the previous step of the chain and the variance is

controlled using the technique of Roberts and Rosenthal (2009).

• Sampling A

For each location l = 1, ..., n we sample Al from a log-Normal distribution, whose

mean is the sample of Al in the previous step. The variance of the proposal distri-

bution is controlled using the technique of Roberts and Rosenthal (2009). The full

conditional distribution of the vector (A1, ..., An) is given by

p(A1, ..., An | α, ξ, σ, β,B, τ) ∝
∏

i=1,...,n

[(
θ(si)

βVj(si)(1− θ(si)β)(1−Vj(si))
)
× p(Ai, Bi | α)

]
.

where θ(si) = exp{−
∑L

l=1Alwl(si)
1/α}1/β. Sampling of (A1, ..., An) is performed

using the a block Metropolis step.

• Sampling σ

The parameter σ is sampled from a proposal distribution, that corresponds to a

gamma, whose mean is the value of σ from the previous step for the chain, and the

proposed variance is controlled using the technique of Roberts and Rosenthal (2009).

The proportional of posterior of these parameters is given by

p(σ | ξ, β,A,B, α, τ) ∝
∏

i=1,...,n

∏
j=1,...,m

(
fG(Yj(si) | u, σ/β, ξ/β)I(Yj(si)>u(si))

)
× p(σ).
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Where fG is the GPD distribution given by (1). Samples are obtained from a

Metropolis step.

• Sampling ξ

Proposed samples of ξ are sampled from a discrete uniform distribution on {−1, 0, 1},

with probabilities {1/3, 1/3, 1/3}. The posterior is given as

p(ξ | σ, β,A,B, α, τ) ∝
∏

i=1,...,n

∏
j=1,...,m

(
fG(Yj(si) | u, σ/β, ξ/β)I(Yj(si)>u(si))

)
× p(ξ).

which is sampled directly.

• Sampling β

The parameter β is sampled from a Gamma distribution whose mean is obtained

from the previous step of the chain, and the proposed variance is controlled using the

technique of Roberts and Rosenthal (2009). The full conditional is given as

p(β | σ, ξ,A,B, α, τ) ∝
∏

i=1,...,n

∏
j=1,...,m

(
fG(Yj(si) | u, σ/β, ξ/β)I(Yj(si)>u(si))

)
×

∏
i=1,...,n

∏
j=1,...,m

(
θ(si)

βVj(si)(1− θ(si)β)(1−Vj(si))
)
× p(β).

Given that θ(si) = exp{−
∑L

l=1Alwl(si)
1/α}1/β, the full conditional can be simplified

to

p(β | σ, ξ,A,B, α, τ) ∝
∏

i=1,...,n

∏
j=1,...,m

(
fG(Yj(si) | u, σ/β, ξ/β)I(Yj(si)>u(si))

)
p(β).

This expression is used to sample β using a Metropolis step.

• Sampling α

The parameter α, that controls the spatial dependence, are sampled from a Beta

distribution, whose mean is obtained from the previous step of the chain, and the

proposed variance is controlled using the technique of Roberts and Rosenthal (2009).

The full conditional is given as

p(α | ξ, σ, β,A,B, τ) ∝
∏

i=1,...,n

∏
j=1,...,m

(
θ(si)

βVj(si)(1− θ(si)β)(1−Vj(si))
)
× p(A,B | α)p(α).

This distribution is sampled using a Metropolis step.
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• Sampling τ

The parameter τ , the Kernel Bandwidth, is sampled from a Gamma distribution,

whose mean is obtained from the previous step of the chain, and the proposed vari-

ance is controlled using the technique of Roberts and Rosenthal (2009). The full

conditional is given as

p(τ | ξ, σ, β,A,B, α) ∝
∏

i=1,...,n

∏
j=1,...,m

(
θ(si)

βVj(si)(1− θ(si)β)(1−Vj(si))
)
× p(τ).

This is sampled using a Metropolis step.
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Pickands, J. (1975) Statistical inference using extreme order statistics. Annals of Statistics,

3, 119–131.

— (1981) Multivariate extreme value distributions. Bulletin of the International Statistical

Institute: Proceeding of the 43rd Session (Buenos Aires), Book 2, 857–878.

Reich, B. J. and Shaby, B. A. (2012) A hierarchical max-stable spatial model for extreme

precipitation. Annals of Applied Statistics, 6, 1430–1451.

Roberts, G. O. and Rosenthal, J. S. (2009) Examples of adaptive mcmc. Journal of

Computation and Graphical Statistics, 18, 349–367.

Rootzen, H. and Tajvidi, N. (2006) Multivariate generalized pareto distributions.

Bernoulli, 12, 917–930.

Sang, H. and Gelfand, A. (2009) Hierarchical modeling for extreme values observed over

space and time. Environmental and Ecological Statistics, 16, 407–426.

Smith, R. L. (1990) Max-stable processes and spatial extreme. Unpublished Manuscript.

Stephenson, A. G. (2009) High-dimensional parametric modelling of multivariate extreme

events. Aust. N. Z. J. Stat., 51, 77–88.


	Introduction
	Max-stable processes

	The Model
	The generalized Pareto process
	A hierarchical generalized Pareto process
	Shape parameters and asymptotic dependence
	Estimation of return levels
	Posterior distribution and estimation algorithm

	Simulations
	California temperature and rainfall
	Conclusion and discussion
	Adaptive Monte Carlo Algorithm

