
Game Semantics for Type Soundness
Tim Disney

University of California Santa Cruz
Cormac Flanagan

University of California Santa Cruz

Abstract—The key idea of game semantics is that a term
can interact with its enclosing context via various events, such
as function calls and returns. A trace is a sequence of such
interaction events. The meaning of the term is then naturally
represented by the set of all event traces that the term can
generate. Game semantics allows us to define the meaning of
both expressions and types in the same domain which enables
an interesting alternative to subject reduction for proving type
soundness.

This paper uses game semantics to define the meaning of and
verify type soundness for a sequence of programming languages,
starting with a functional sequential language (the call-by-value
simply-typed lambda calculus), and then extending that proof
with subtyping, side effects, control effects, and concurrency.
These proofs are reasonably short and fairly semantic in struc-
ture, focusing on the relationship between the meanings of
each term and its corresponding type. In particular, we show
that the typing and subtyping relations are both conservative
approximations of alternating trace containment.

I. INTRODUCTION

Over the past 20 years, the syntactic approach [1] has
become established as the dominant method for proving type
soundness. The flexibility of this approach stems from its
exclusive reliance on syntactic methods, in which programs,
types, and intermediate computation states are all represented
syntactically, and the typing and subtyping relations are defined
over syntactic items. The result is an elegant proof technique,
but one in which types remain just pieces of syntax, with no
associated semantic meaning or denotation.

The last two decades have also given birth to a new style
of denotational semantics called game semantics, in which the
interaction between two modules in a system can be considered
a game with alternating moves by the two modules.

This paper attempts to connect these two fields of type
systems and games semantics. The motivation for this work is
to open up an important application domain for game semantics,
while at the same time providing a formal foundation for
intuitions about the typing and subtyping relations that are left
informal under the syntactic approach. In comparison to the
polished syntactic proof machinery developed over the past two
decades, we do not propose that the game semantic approach
is better (in the sense of being simpler or more efficient).
Nevertheless, the game semantic approach does appear to
provide different benefits (outlined below), which suggest this
approach merits further study.

Our approach uses traces to formalize our game semantics,
and the starting point for our semantic development is the call-
by-value untyped λ-calculus. In particular, given a program
C[e] in this language, we can imagine a remote procedure

call mechanism that mediates the interactions between the
expression e and its enclosing context C[·] by appropriately
routing function calls and returns from e to its context and vice-
versa. We use the term event to denote a function call or return
message sent from e to its context, or vice-versa. Then the
semantics of e can be formalized as a (potentially infinite) set
of traces, denoted JeKk, where each trace is a finite sequence
of such events. The subscript k in JeKk denotes a continuation
channel on which to send the result of e’s computation to
the context C. Thus, this transformation from program syntax
to semantic traces in some ways follows the CPS transform.
For simplicity, we assume here that e is closed, although our
semantic framework supports open terms.

To incorporate types from the simply typed λ-calculus, we
formalize the meaning of each type A as an analogous set of
traces JAKk, again with respect to a continuation channel k.

Like other denotational semantics, game semantics is com-
positional, and so, for example, the meaning Je1 e2Kk of a
function application is defined in terms of the meanings of the
direct subexpressions e1 and e2. Like operational semantics,
game semantics is fairly syntactic in flavor, primarily dealing
with sets of (syntactic) traces. Thus, in some sense, game
semantics is a compositional syntactic semantics, where the
syntax captures behavior (i.e. traces of interactions) rather than
state (as in operational semantics).

By defining the meaning of both expressions and types in
the same domain of trace sets, this approach enables us to
capture the typing judgment ` e : A as an appropriate relation
on the corresponding trace sets JeKk and JAKk. In particular,
a trace in JeKk may contain both send events (which transfer
control from e to its context) and receive events (which transfer
control from the context to e). If e has type A, then JAKk must
permit any send event in JeKk (since any function return value
sent by e must be permitted by its type A); conversely by a
contravariant argument JeKk must contain any receive event in
JAKk. Thus, if

` e : A

then the appropriate relation between the corresponding trace
sets is alternating trace containment [2], denoted

JeKk @ JAKk

where JAKk contains (non-strictly) more sends and (non-
strictly) fewer receives than JeKk. Thus, typing conservatively
approximates alternating containment on traces.

Theorem 1. If ` e : A then JeKk @ JAKk

We next consider the subtyping relation A<:B. Again, we
can show that the type B must contain more sends and fewer
receives than A, so subtyping also conservatively approximates
alternating trace containment.

Theorem 2. If A<:B then JAKk @ JBKk

One interesting aspect of trace-based type soundness proofs
is that they are mostly compositional, in that each type rule
can be verified as admissible independent of the other rules
in the system. For example, we verify the admissibility of the
function application rule:

` e1 : A→ B ` e2 : A

` e1 e2 : B

(ignoring the type environment here for simplicity) by proving
a corresponding lemma:

if Je1Kk1 @ JA→ BKk1
and Je2Kk2 @ JAKk2
then Je1 e2Kk @ JBKk

Since Je1 e2Kk is defined compositionally in terms of Je1Kk1
and Je2Kk2 (with respect to the appropriate channels k1 and
k2), this lemma is independent of the subterms e1 and e2 and
depends only on the semantics of function application and of
function types. Consequently, any extension to the type or term
language is safe with respect to the above rule provided it does
not modify the meaning of function application or function
types.

Our experience to date suggests that this approach provides a
helpful semantic foundation for exploring typed programming
languages. In particular, some language extensions can be
developed and proven type sound independently, where the
formalism precludes unintentional cross-cutting interference
between language features.

To illustrate this benefit, this paper uses trace semantics to
verify type soundness of a sequence of programming languages.
Section II first formalizes a calculus for composing and
reasoning about trace sets. Section III illustrates our approach
by verifying type soundness for the simply typed λ-calculus.
We then enrich this language with subtyping (Section IV), first-
class continuations (Section V), imperative features (Section
VI), and concurrent threads (Section VII), with compositional
proofs for all extensions.

In summary, this paper provides the following contributions.
1) It provides a compositional semantic meaning for types

and terms as trace sets.
2) The typing relation (` e : A) naturally corresponds to

alternating trace containment on trace sets (JeKk @ JAKk).
3) The subtyping relation (A<:B) also corresponds to al-

ternating trace containment on trace sets (JAKk @ JBKk).
4) Our initial soundness proof for the simply typed λ-

calculus scales well to support concurrency, imperative
features, and control effects of the term level, as well
as subtyping at the type level, since the admissibility of
each typing rule depends only on the semantics of types

and terms, and is independent of the other rules in the
system.

We conjecture that trace semantics might provide helpful
insights in the development and verification of other program
analyses and type systems. As one example, the unification of
typing and subtyping as alternating trace containment relation
provides some semantic motivation for recent work on pure
subtype systems, which also merge the typing and subtyping
relations [3], [4].

Much prior work has explored various aspects of game
semantics, including developing fully abstract game semantics
for various programming languages [5], [6], [7], [8]. In
closely related prior work, Chroboczek used game semantics
to elegantly prove type soundness for the call-by-name λ-
calculus [9], [10], [11]. In contrast to that work, this paper
targets the call-by-value λ-calculus, which then enables us to
extend this approach to address imperative features such as
call/cc and mutable references.

II. THE TRACE CALCULUS

We start by formalizing the semantic domain of trace sets:
see Figure 1. A trace α is a finite sequence of events. Each
event is either a send event x!y, which sends the channel list
y to x, or a receive event x?y, which receives y from x. Note
that send events x!y and receive events x?y both bind the
argument list y; these channels are then in scope in the rest
of the trace and can be α-renamed in the usual fashion. Thus,
for example, we consider the traces k!y . y?r and k!x . x?r to
be α-equivalent.

The FS and FR functions identify the free sending and
receiving channels in a trace, respectively. As an example, if
α = x!y . y?z . z!h then we have FS(α) = {x} and FR(α) =
∅. We consider traces to be equivalent modulo α-renaming,
and thus we have for example x!y . y?z = x!w .w?z.

To provide an initial intuition of how traces capture program
semantics, consider the meaning of the higher-order function
Jλf. f (λx. x)Kk, where the channel k represents the initial
continuation for this code fragment. Since this code fragment
can interact with its context in arbitrary ways, it has infinitely
many possible traces, but one possible trace is:

α = k!r . r?fh . f !yh′ . h′?z . h!z′

In this trace:
1) The first event k!r sends a fresh channel r to the context

k providing a shared channel for the context to call this
function.

2) Next the event r?fh receives from the context two
channels; f , which represents the function argument,
and h, which represents the continuation for this call.

3) The event f !yh′ sends to f a channel y′ denoting the
identity function λx. x and a continuation h′.

4) The call to f immediately returns to its continuation h′

via h′?z.
5) Finally, the function λf. f (λx. x) returns to its continu-

ation h, passing a fresh channel z′. Later message events

Figure 1: The Trace Calculus

Grammar:
x, y, g, h, k ∈ Chan
π ∈ Event ::= x!y | x?y
α ∈ Trace ::= π1 . · · · . πn
P,Q,R ∈ TraceSet = 2Trace

FC(α) = FS(α) ∪ FR(α)
BC(x!y) = BC(x?y) = {y}

FS(ε) = ∅
FS(x?y . α) = FS(α) \ {y}
FS(x!y . α) = {x} ∪ FS(α) \ {y}

FR(ε) = ∅
FR(x?y . α) = {x} ∪ FR(α) \ {y}
FR(x!y . α) = FR(α) \ {y}

Traceset Operations and Constants:

1 = {ε}
¬(x!y) = x?y
¬(x?y) = x!y
π . P = {ε, π . α | α ∈ P}
P \ π = {α | π . α ∈ P}
νx.P = {α ∈ P | ∀x ∈ x. x 6∈ FC(α)}
P ∪Q = {α | α ∈ P or α ∈ Q}
P ×Q =

⋃
π π . ((P \ π ×Q) ∪ (P ×Q \ π))

P ⊗ Q =
⋃
π π . ((P \ π ⊗ Q) ∪ (P ⊗ Q \ π))

∪
⋃
π νx.((P \ π) ⊗ (Q \ ¬π))

where x = BC(π)⋃n
i Pi = P1 ∪ P2 ∪ · · · ∪ Pn∏n
i Pi = P1 × P2 × · · · × Pn∐n
i Pi = P1 ⊗ P2 ⊗ · · · ⊗ Pn
Pn =

∏n
1 P

∗P =
⋃∞
i=1

∏i
j=1 P

j

Properties:

(TraceSet ,∪,×, ∅, 1) is a commutative semiring
1. P ×Q = Q× P
2. P × (Q×R) = (P ×Q)×R
3. P × 1 = P
4. P × (Q ∪R) = (P ×Q) ∪ (P ×R)
5. P × ∅ = ∅

(TraceSet ,∪, ⊗ , ∅, 1) is a commutative semiring
6. P ⊗ Q = Q ⊗ P
7. P ⊗ (Q ⊗ R) = (P ⊗ Q) ⊗ R
8. P ⊗ 1 = P
9. P ⊗ (Q ∪R) = (P ⊗ Q) ∪ (P ⊗ R)

10. P ⊗ ∅ = ∅
¬ distributes over ∪,×, ⊗ and is an involution

11. ¬(P ∪Q) = ¬P ∪ ¬Q
12. ¬(P ×Q) = ¬P × ¬Q
13. ¬(P ⊗ Q) = ¬P ⊗ ¬Q
14. ¬¬P = P
∗ distributes over × and is idempotent

15. ∗(P ×Q) = ∗P × ∗Q
16. ∗ ∗ P = ∗P

@ is reflexive and trasitive; ∪,× and ∗ are monotonic; ¬ is anti-monotonic
17. P @ P
18. (P @ Q) ∧ (Q @ R)⇒ P @ R
19. P @ P ′ ⇒ (P ∪Q) @ (P ′ ∪Q)
20. P @ P ′ ⇒ (P ×Q) @ (P ′ ×Q)
21. P @ Q⇒ ∗P @ ∗Q
22. P @ Q⇒ ¬Q @ ¬P

Other properties:
23. (P ∪Q) \ π = P \ π ∪Q \ π
24. (P ×Q) \ π = (P \ π ×Q) ∪ (P ×Q \ π)
25. (∗P) \ π = ∗P × (P \ π)

26. π . ∅ = ∅
27. P \ π = ∅ for π 6∈ P
28. P ∪ ∅ = P
29. νx.∅ = ∅

30. π . 1 = π
31. P ∪ 1 = P for P 6= ∅
32. νx.1 = 1
33. ¬1 = 1

34. ∗P = ∗P × P
35. ∗P = ∗P × ∗P

36. P @ Q⇔ π.P @ π.Q
37. (P @ Q) ∧ (P @ R)⇒ P @ (Q ∪R)
38. π . (S ×Q) @ S × π .Q
39. S @ ∗S
40. P @ Q⇒ P @ Q× S

if FC(P) ∩ FC(S) = ∅

In 38, 39, 40 assume no trace in S starts
with a receive event

sent to z′ (if any) will be forwarded to z via the copycat
proxy (as described in Section II-D below).

A. Operations on Tracesets

We use the term traceset to denote a prefix-closed set of
traces, and use the metavariables P,Q,R to range over tracesets.
We often write tracesets as sets modulo prefix closure for
brevity, and thus {x? . y!} abbreviates {ε, x?, x? . y!}. Here
x? is a receive event that receives zero arguments. We use the
notation π ∈ P to mean that P contains the single-event trace
π. For example, x! ∈ {ε, x!, x! . y?} but x! 6∈ {ε, y!, y! . x!}.

To define the meaning of expressions (and later types)
compositionally, we present a collection of operations for
defining and composing sets of traces in Figure 1. The constant
1 denotes the singleton set {ε} containing the empty trace. At
an intuitive level, 1 denotes a computation that does nothing
(a no-op), while the empty set ∅ denotes a computation that
should never be executed.

The negation operation ¬π swaps send and receives events,
and negation extends in a pointwise manner to traces and
tracesets.

The operation π . P prefixes each trace in P with the event
π. For example, x! . {y? . z!} = {x! . y? . z!}. Conversely, the
operation P \ π drops an initial event π from each trace in P ,
and drops traces in P that do not start with π; this operation
yields the empty set if no trace in P starts with π. Thus,

{z?, x? . y!} \ x? = {y!}
{z?, x? . y!} \ y! = ∅

Note that, by sharing trace prefixes, a traceset P can be viewed
as a "trace tree", in which every edge is labelled with an event,
and the set of paths from the root to nodes in the tree captures
the traces in P . From this perspective, P \ π corresponds to
navigating down the π-labelled edge from the root of the trace
tree for P .

The restriction operation νx.P denotes the traces in P where
none of the channels in x appear free. Intuitively, this operation
introduces fresh channels and avoids channel collisions. For
example,

νz.{z!, x!z . z?, y! . z?} = {x!z . z?, y!}

where traces with free occurrences of z are removed.
The operation P ∪Q performs set union on tracesets, and⋃n
i=1 Pi abbreviates the n-ary union P1 ∪ · · · ∪ Pn.
The operation P × Q denotes the non-deterministic inter-

leaving of traces from P and Q. Thus,

{z!} × {x? . y!} = {z! . x? . y!, x? . z! . y!, x? . y! . z!}

For each event π, P ×Q contains traces starting with π and
followed by traces in (P \ π)×Q or in P × (Q \ π); that is,
it pulls the initial event π from either P or Q. Note that if
π 6∈ P (i.e. the single-event trace π does not occur in P) then
P \ π and P \ π ×Q are both ∅, and similarly if π 6∈ Q.

The operation P ⊗ Q generalizes P ×Q by also permitting
communication between P and Q, where P may transmit an

event y!x, Q may receive the corresponding event y?x (or
vice-versa), and computation proceeds with νx.((P \ y!x) ⊗
(Q \ y?x)). Note we assume that implicit α-renaming is used
to match up the bound channels in the send event y!x of P
with those in the receive event y?x of Q. For example,

νy.({y!z} ⊗ {y?x . x!}) = νy.({y!z} ⊗ {y?z . z!}) = {z!}

The n-ary operations
∏n
i Pi and

∐n
i Pi generalize interleav-

ing × and parallel composition ⊗ , respectively. The operations
Pn and ∗P denote the interleaving of n or arbitrarily many
copies of P respectively.

By convention νx binds as far to the right as possible while
×, ∪, π . P , P \ π, ∗ and ¬ bind with decreasing proximity.
So for example,

νx. ∗ π . P ×Q ∪R = νx.(((∗(π . P))×Q) ∪R)

These operations on tracesets are closely related to the π-
calculus [12], but with the restriction that send events only
transmit fresh channels (i.e. in the trace y!x . α the channel
x is bound in α), which yields a simpler semantic structure.
Moreover, tracesets are (potentially infinite) sets of traces,
rather than finite pieces of syntax with an associated evaluation
semantics.

B. The Alternating Trace Containment Relation

As mentioned in the introduction, tracesets are naturally
ordered according to the alternating trace containment relation
P @ Q, which holds provided every send in P is also in Q, and
conversely every receive in Q is also in P . More specifically, if
P includes a trace α . π where π is a send, then if Q includes
α then Q must also include α . π (and vice versa). This relation
allows a program component with traceset P to be used safely
in a context that expects a traceset Q.

Furthermore, after sending or receiving matching events, P
and Q must continue to satisfy this relation.

To facilitate inductive proofs, we first define the indexed
alternating trace containment relation P @n Q, which holds
if n = 0 (the base case), or if n > 0 and:

1) For all send events π ∈ P , then π ∈ Q and P \ π @n−1
Q \ π

2) For all receive events π ∈ Q , then π ∈ P and P \π @n−1
Q \ π

We then define P @ Q to hold if and only if P @n Q holds
for all n. Thus, for example:

{x? . z?, y?} @ {x?, y?} @ {x?} @ 1 @ {x!} @ {x! . y!}

C. The Algebra of Traces

These operations on tracesets enjoy a rich algebraic structure,
as described in Figure 1. In particular, (TraceSet ,∪,×, ∅, 1)
and (TraceSet ,∪, ⊗ , ∅, 1) are both commutative semirings.
Moreover, the operations ∪ and × are monotonic with regard
to @, and so for example if P @ Q then P ×R @ Q×R.

Unfortunately, monotonicity does not extend to parallel
composition. As a counterexample, consider

P = 1
Q = {x!}
R = {x? . y?}

Then,

P ⊗R = R 6@ Q⊗R = {x! . x? . y?, x? . x! . y?, x? . y? . x!, y?}

as the right side includes the receive event y? that is not on
the left. Thus, the extra send x! in Q exposes an additional
receive y? in Q ⊗ R that is not in P ⊗ R.

Instead, we develop a Compositional Reasoning Lemma for
a parallel composition νx.(P ⊗ Q) that requires specifying
the protocol R and the channel x by which P communicates
to Q. If P satisfies the specification P ′×R and Q satisfies the
specification Q′×¬R, then the parallel composition νx.(P ⊗
Q) satisfies the interleaved specification P ′ ×Q′. We assume
that P and Q communicate only via the restricted channels x,
where R mentions only x but P ′ and Q′ do not mention x.

Lemma 1 (Compositional Reasoning). Suppose:

P @ P ′ ×R
Q @ Q′ × ¬R

FC(Q′) ∩ x = ∅
FC(P ′) ∩ x = ∅

FC(R) ⊆ x
FS(P) ∩ FR(Q) ⊆ x
FR(P) ∩ FS(Q) ⊆ x

Then:

νx.(P ⊗ Q) @ P ′ ×Q′

Proof. See the Appendix.

As we will see, this lemma plays a critical role in our proofs.

D. Copycat Sends

One central choice in our design is that a send event always
transmits fresh channels. For example, in the trace k?y . x!y,
the y in x!y is distinct from the y in k?y. This choice simplifies
some parts of our development, but does require that we set
up a mechanism to copy behavior from an existing channel
to a fresh channel. In particular the copycat send abbreviation
x!!y sends out a copy of y by:

1) First, sending a fresh channel y′ (the copy of y) along
x.

2) Receiving on y′ some (0, 1, or more) channels z.
3) A fresh copy z′ of the channels z is then passed along

to the original y, where |z′| = |z|.
4) Any further communication is appropriately copied in

the same manner.
To precisely define how the copycat send works we introduce

a bijection θ : Chan→ Chan that maps a channel to its copy.
We can then define the copycat send abbreviation x!!y that

transmits (a copy θy1...n = θy1 · · · θyn of) existing channels y
on channel x.

x!!y
def
= x!θy . ∗ (

⋃
y∈y

θy?z . y!!z)

The key property of a copycat is that is exhibits the same
behavior on both its sides, since it simply copies events (with
appropriate renaming) from one side to the other. Hence, if
P is an appropriate specification for the behavior of one side,
then ¬θP is a corresponding specification for the other side’s
behavior, where θ performs appropriate channel renamings and
the negation operation (¬) changes receives on one side to
sends on the other side, and vice-versa.

One caveat is that since the copycat may buffer events, we
require that the specification P is invariant under buffering,
which essentially means it does not matter in what order we
remove events of the same direction (i.e. sends vs receives).
More precisely, a traceset P is well-formed if for all events π1
and π2 of the same direction, it is the case that P \ π1 \ π2 =
P \ π2 \ π1 and P \ π1 is also well-formed.

The abbreviation x!!y satisfies the copycat lemma: for
any well-formed specification P over y and any mapping
θ from y to fresh channels, the abbreviation x!!y satisfies the
specification x!θy . (P × ¬θP).

Lemma 2 (Copycats Preserve Specifications). If P is well-
formed and FR(P) = ∅ and FS(P) ⊆ y then:

x!!y @ x!θy . (P × ¬θP)

Proof. See the Appendix.

III. TYPE SOUNDNESS FOR THE SIMPLY TYPED LAMBDA
CALCULUS

Based on the trace calculus properties and lemmas of the
previous section, we are now in a position to study trace-
based soundness proofs for a range of programming languages,
starting with the simply typed λ-calculus.

A. STLC Syntax and Semantics

We summarize the STLC syntax as follows:

e ∈ Expr ::= x | λx. e | e e | unit
A,B ∈ Type ::= Top | Unit | A→ B

E ∈ Env ::= ∅ | E, x : A

We define the meaning JeKk of each expression e with respect
to a channel k as the following tracesets:

J·K· : Expr× Chan→ Traceset

JxKk
def
= k!!x

Jλx. eKk
def
= k!a . ∗ (a?xh . JeKh) a, h 6∈ FV(e)

Je1 e2Kk
def
= νk1.(Je1Kk1 k1, k2, x1, x2 6∈ FV(e1, e2)

⊗ ∗k1?x1 . νk2.(Je2Kk2
⊗ ∗ k2?x2 . x1!!x2k))

JunitKk
def
= k!a . ∗ (a?x . wrong!)

The traceset JxKk simply sends a copy of x to k using a
copycat send. We unify variables in programs with channels in
traces, and so the terms variable and channel are synonyms.

The traceset Jλx. eKk sends to k a fresh channel a, and then
repeatedly receives on a an argument x and calling continuation
h, and then evaluates e sending the result to h.

The traceset Je1 e2Kk evaluates e1 and receives the result
along channel k1 in x1, evaluates e2 and receives the result
in x2, and then sends to x1 the argument-continuation pair
x2k. (The replicated receives ∗k1?x1 . . . and ∗k2?x2 . . . permit
subexpressions to return multiple times, to facilitate first-class
continuations in Section V.)

We use the expression unit to represent a program “going
wrong” if unit is ever applied to a term. The traceset JunitKk
sends a channel a to its continuation, but if it ever receives an
event on a it performs a send on the channel wrong, signalling
that an error occurred. Thus, for example the following program
trivially goes wrong.

J(unit unit)Kk = {wrong!}

We now address the meaning of types and type environments,
starting with the meaning JAKk of a type A with respect to
a continuation k, which simply sends a fresh channel a to k,
and then stands ready to receive operations on a according to
the type A.

J·K· : Type× Chan→ Traceset

JAKk
def
= ∗k!a . ¬Ja : AK

Next, we define the meaning of a single-entry environment
Jx : AK by case analysis on A:

J·K : Env→ Traceset

Jx : A→ BK def
= ∗x!yk . (¬Jy : AK × ¬JBKk)

Jx : TopK def
= 1

Ju : UnitK def
= 1

If the environment contains a function binding x, then code in
that environment can repeatedly send argument-continuation
pairs yk to x, after which the code should be ready to receive
(via ¬) B-values on k, and also receive (again via ¬) requests
on y according to its type A. Note that, since × denotes
arbitrary interleaving, requests on y may be received both
before and after returns on k.

Our type language includes Top, since there are no opera-
tions on values of this type, an environment binding of type
Top has the no-op trace 1.

In addition, to prevent well-typed programs from going
wrong, the type Unit has no operations and thus is the no-op
trace 1.

Note that we use the channel wrong only in the meaning of
terms, not in types. Thus, if JeKk @ JAKk, then since wrong
does not appear in JAKk, the term e is guaranteed not to go
wrong (i.e. send to the channel wrong) provided it is used in
accordance with its type specification A. Our type soundness
theorem in the next section will prove that well-typed terms
behave according to their types and thus do not go wrong.

Figure 2: Typing Rules for STLC

x : A ∈ E
E ` x : A

[T-VAR]

E, x : A ` e : B

E ` λx. e : A→ B
[T-ABS]

E ` unit : Unit
[T-UNIT]

E ` e1 : A→ B E ` e2 : A

E ` e1 e2 : B
[T-APP]

Note that our traceset meanings for Top and Unit coincide,
(JTopKk = JUnitKk = ∗k!a), since no operations can be
performed on a value of either static type. Despite this traceset
equivalence, these two types are still distinct and we will treat
them differently when we extend the language with subtyping
in section IV. For example, Unit <: Top but not vice-versa.
Thus, these two types play different useful roles in the type
system.

Finally, the meaning of a type environment with multiple
bindings is the interleaving of the meanings of each individual
binding:

Jx1 : A1, · · · , xn : AnK
def
= Jx1 : A1K × · · · × Jxn : AnK

B. STLC Typing and Type Soundness

If an expression e has type A, then the traceset JeKk should
generate at most those output events permitted by JAKk, and
should receive at least those input events in JAKk. Thus, ` e :
A must imply a corresponding alternating trace containment
relation JeKk @ JAKk on tracesets.

If e contains free variables with types defined by an
environment E, then e can also interact with its environment
according to the traceset specification JEK. In this case we
have that E ` e : A must imply JeKk @ JAKk × JEK

We prove this traceset correspondence property by induction
on the typing derivation E ` e : A. For each typing rule,
we show that if this traceset correspondence holds for the
antecedents in the rule then it also holds for the conclusion of
the rule; in this case we say the rule is admissible.

Theorem 3 (Type Soundness). If E ` e : A where each rule
in this derivation is admissible, then JeKk @ JAKk × JEK.

Proof. By induction on the derivation E ` e : A.

Figure 2 summarizes the standard STLC typing rules, and
the following lemma verifies that all these rules are admissible.

Lemma 3. The STLC typing rules are admissible.

Proof.

• Case [T-VAR] where x : A ∈ E and E ` x : A. We show
JxKk @ JAKk × JEK.

JxKk
= k!!x
@ k!θx . (Jx : AK × ¬Jθx : AK) (Lem 6)
@ Jx : AK × k!θx . ¬Jθx : AK (Prop 38)
@ Jx : AK × ∗k!θx . ¬Jθx : AK (Prop 39)
= Jx : AK × JAKk (def)
@ Jx : AK × JAKk × JE \ (x : A)K (Prop 40)
= JAKk × JEK (since x : A ∈ E)

• Case [T-UNIT]

JunitKk = k!a . ∗ (a?x . wrong!)
@ ∗k!a . 1 (Prop 39)
= JUnitKk (def)
@ JUnitKk × JEK (Prop 40)

• Case [T-ABS] where E ` λx. e : A → B via antecedent
E, x : A ` e : B. We show Jλx. eKk @ JA→ BKk × JEK.

Jλx. eKk
= k!a . ∗ (a?xk′ . JeKk′)
@ k!a . ∗ (a?xk′ . (JBKk′ × JE, x : AK)) (*)
= k!a . ∗ (a?xk′ . (JBKk′ × Jx : AK × JEK))
@ k!a . ∗ (a?xk′ . (JBKk′ × Jx : AK)× JEK)

(Prop 38)
@ k!a . (∗a?xk′ . (JBKk′ × Jx : AK)× ∗JEK)

(Prop 15)
= k!a . (∗a?xk′ . (JBKk′ × Jx : AK)× JEK)

(Prop 16)
@ k!a . ∗ (a?xk′ . (JBKk′ × Jx : AK))× JEK

(Prop 38)
@ ∗k!a . ∗ (a?xk′ . (JBKk′ × Jx : AK))× JEK

(Prop 39)
= JA→ BKk × JEK (def)

The (*) step is justified because by induction JeKk′ @
JBKk′ × JE, x : AK and both prefix and replication are
monotonic (Properties 36 and 21).

• Case [T-APP] where E ` e1 e2 : B via antecedents E `
e1 : A→ B and E ` e2 : A. We begin by letting:

Je1 e2Kk = νk1.L1 ⊗ R1

L1 = Je1Kk1
R1 = ∗k1?x1 . νk2.(L2 ⊗ R2)

L2 = Je2Kk2
R2 = ∗k2?x2 . x1!!x2k

By induction L2 @ JAKk2 × JEK and by Lemma 6 with
P = Jx2 : AK × JBKk we have:

R2

@ ∗k2?x2 . (P × ¬θP)
@ ∗k2?x2 . (P × x1!θx2θk . (¬θP))

(Prop 38)
@ ∗k2?x2 . (P × ∗x1!θx2θk . (¬θP))

(Prop 39)
= ∗k2?x2 . (Jx2 : AK × JBKk × Jx1 : A→ BK)
@ (∗k2?x2 . Jx2 : AK)× ∗JBKk × ∗Jx1 : A→ BK

(Prop 38)
= (∗k2?x2 . Jx2 : AK)× JBKk × Jx1 : A→ BK

(Prop 16)
= ¬(∗k2!x2 . ¬Jx2 : AK)× JBKk × Jx1 : A→ BK

(Prop 14)
= ¬JAKk2 × Jx1 : A→ BK × JBKk

By Lemma 1 νk2.(L2 ⊗ R2) @ Jx1 : A→ BK× JBKk×
JEK. So:

R1

@ ∗k1?x1 . (Jx1 : A→ BK × JBKk × JEK)
@ (∗k1?x1 . Jx1 : A→ BK)× ∗JBKk × ∗JEK (Prop 38)
= (∗k1?x1 . Jx1 : A→ BK)× JBKk × JEK (Prop 16)
= ¬(∗k1!x1 . ¬Jx1 : A→ BK)× JBKk × JEK (Prop 14)
= ¬JA→ BKk1 × JBKk × JEK

By induction L1 @ JA → BKk1 × JEK so by Lemma 1
we have Je1 e2Kk @ JBKk × JEK.

This trace-based proof has a fairly “semantic” proof structure
that mostly focuses on the syntactic representation of behavior,
in contrast to traditional subject reduction proofs, which focus
on the syntactic representation of program state. This trace-
based proof does depend on the various lemmas and properties
of the trace calculus, but those results are not language-specific
and so can be reused in a variety of soundness proofs.

Having developed a type soundness proof for STLC, we
next explore how well this proof supports extensions to the
language or type system.

IV. TYPE SOUNDNESS FOR SUBTYPING

As our first extension, we enrich the type system with
subtyping by adding the subsumption rule:

E ` e : B B <:A

E ` e : A
[T-SUB]

along with the standard subtyping rules defined in Figure 3.
As mentioned in the introduction, subtyping conservatively
approximates the alternating trace containment relation.

Lemma 4 (Subtyping Implies Alternating Trace Containment).
If A<:B then JAKk @ JBKk.

Proof. By induction on the subtyping derivation.
• [S-REFL] and [S-TRANS] follow from Properties 17 and

18.

Figure 3: Subtyping rules

A<:A
[S-REFL]

A<:B B <: C

A<: C
[S-TRANS]

A<: Top
[S-TOP]

B1 <:A1 A2 <:B2

A1 → A2 <:B1 → B2
[S-ARROW]

• Case A<: Top via [S-TOP]. Directly from the definition
of Top.

• Case A1 → A2 <:B1 → B2 via [S-ARROW].
From the induction hypothesis we have JB1Kk @ JA1Kk
and JA2Kk @ JB2Kk.

JA1 → A2Kk
= ∗k!x . ¬Jx : A1 → A2K
= ∗k!x . ∗ x?ah . (Ja : A1K × JA2Kh)
@ ∗k!x . ∗ x?ah . (Ja : A1K × JB2Kh)

(IH, 36, 20, 21)
= ∗k!x . ∗ ¬x!ah . (¬Ja : A1K × ¬JB2Kh)

(Prop 14)
@ ∗k!x . ∗ ¬x!ah . (¬Ja : B1K × ¬JB2Kh)

(IH, Prop 22)
= ∗k!x . ¬Jx : B1 → B2K
= JB1 → B2Kk

Since subtyping implies alternating trace containment, it is
straightforward to show that the [T-SUB] rule is admissible and
thus that STLC with subtyping is still sound.

Theorem 4. The rule [T-SUB] is admissible.

Proof. Suppose E ` e : A via [T-SUB] from E ` e : B and
B<:A. By Lemma 4 JBKk @ JAKk and by assumption JeKk @
JBKk × JEK. Thus by Property 20 we get JeKk @ JAKk × JEK.

V. TYPE SOUNDNESS FOR CALL/CC

We add control-effects to the language in the form of first-
class continuations.

e ::= . . . | call/cc

The operation (call/cc f) calls the function f passing the
current continuation k as an argument. The function f may
either return a value of some type A or may call k passing an
argument of type A; in either case call/cc returns a value of

type A to its continuation. Thus, the type rule for call/cc is
as follows, where the unconstrained type B indicates that the
continuation function k never returns.

E ` call/cc : ((A→ B)→ A)→ A
[T-CALL/CC]

The semantics for call/cc receives any call/cc invocation
a?fh and immediately calls f via f !gh′ passing a function g
and a continuation h′. Values x sent to g or h′ are then copycat
sent to the original continuation h:

Jcall/ccKk
def
= k!a . ∗ (a?fh . f !gh′ . (∗ (g?xk′ . h!!x)

× ∗ (h′?x . h!!x)))

Theorem 5. The rule [T-CALL/CC] is admissible.

Proof. By Lemma 6 with P = Jx : AK:

h!!x
@ h!θx . (Jx : AK × ¬Jθx : AK)
@ Jx : AK × h!θx . ¬Jθx : AK (Prop 38)
@ Jx : AK × ∗h!θx . ¬Jθx : AK (Prop 39)
= Jx : AK × JAKh (*)
@ Jx : AK × JAKh × JBKk′ (Prop 40, **)

From (**) and Prop 36:

∗g?xk′ . h!!x
@ ∗g?xk′ . (Jx : AK × JAKh × JBKk′)
@ ∗g?xk′ . (Jx : AK × JBKk′)× ∗JAKh (Prop 38)
= ¬Jg : A→ BK × ∗JAKh
= ¬Jg : A→ BK × JAKh (Prop 16)

From (*) and Prop 36:

∗h′?x . h!!x
@ ∗h′?x . (Jx : AK × JAKh)
@ ∗h′?x . Jx : AK × ∗JAKh (Prop 38)
= ¬JAKh′ × ∗JAKh
= ¬JAKh′ × JAKh (Prop 16)

So we have:

f !gh′ . (∗(g?xk′ . h!!x)× ∗(h′?x . h!!x))
@ f !gh′ . (¬Jg : A→ BK × JAKh × JAKh × ¬JAKh′)
= f !gh′ . (¬Jg : A→ BK × ¬JAKh′ × JAKh)) (Prop 35)
@ f !gh′ . (¬Jg : A→ BK × ¬JAKh′)× JAKh (Prop 38)
@ ∗f !gh′ . (¬Jg : A→ BK × ¬JAKh′)× JAKh (Prop 39)
= Jf : (A→ B)→ AK × JAKh

Thus:

Jcall/ccKk
@ k!a . ∗ a?fh . (Jf : (A→ B)→ AK × JAKh)
@ ∗k!a . ∗ a?fh . (Jf : (A→ B)→ AK × JAKh) (Prop 39)
= J((A→ B)→ A)→ AKk
@ J((A→ B)→ A)→ AKk × JEK (Prop 40)

VI. TYPE SOUNDNESS FOR REFERENCE CELLS

We next introduce side-effects, in the form of mutable,
dynamically allocated reference cells.

e ::= . . . | ref

We take an “interface-oriented” view to reference cells, as
proposed by Reynolds [13], whereby a reference cell of type
Ref C is encoded as a pair of a getter function (of type Unit→
C) and a setter function (of type C → Unit) for reading and
updating the reference cell, respectively. For simplicity, we use
a Church-like encoding of pairs so the full type of a reference
cell is:

Ref C = Pair (Unit→ C) (C → Unit)

= ((Unit→ C)→ (C → Unit)→ C)→ C

The new primitive operation ref is a function that takes a value
of type C and returns a new reference cell of type Ref C:

E ` ref : C → Ref C
[T-REF]

To help use these interface-oriented reference cells, we intro-
duce the abbreviations:

let x = e1 in e2
def
= (λx. e2) e1

e1; e2
def
= (λx. e2) e1 x 6∈ FV(e2)

!e
def
= e (λgs. g unit)

e1 := e2
def
= e1 (λgs. let t = e2 in s t; t)

Thus, for example, the following code fragment yields the
expected behavior:

let r = ref x in
r := y;
!r;

As a starting point for defining the semantics of ref, we first
define a reference cell traceset Rx that can receive and process
events on the channels get and set .

Rx = get?uk . (k!!x×Rx)

∪ set?yk . (k!u×Ry)

The event get?uk causes Rx to copycat send x to the
continuation k, and then continue behaving as Rx. The event
set?yk causes Rx to send a dummy unit value to k, and
continue as Ry so that subsequent get events receive y rather
than x.

The traceset of ref then essentially wraps Rx in the
appropriate interface.

JrefKk
def
= k!a . ∗ (a?xh . h!p . νset , get .

(Rx| ∗ p?f1k1 . νk2 . (f1!!get , k2
| ∗ k2?g . g!!set , k1)))

This traceset sends a to the ref continuation and then repeatedly
receives requests a?xh to create a new reference cell with an

initial value of x. It returns a channel p (of type Ref C) to
h, and initializes a traceset Rx, with channels get and set , to
record the current value of the reference cell. When p receives
a function f1 of type (Unit → C) → (C → Unit) → C, it
simply sends get and set to f1.

The following lemma shows that the traceset Rx is approxi-
mated by the types of the exported get and set functions, and
of the imported variable x.

Lemma 5 (Reference Cell Specification).

Rx @ ¬Jget : Unit→ C, set : C → UnitK × Jx : CK

Proof. Let RHS = ¬Jget : Unit→ C, set : C → UnitK× Jx :
CK. We prove by induction on n that

Rx @n RHS

Note that there are no sends in Rx. We have two receive events
in RHS to consider:
• get?uk ∈ RHS. We have:

Rx \ get?uk
= (k!!x×Rx)
@ k!x′ . (Jx : CK × ¬Jx′ : CK)×Rx (Lem 6)
@ ∗k!x′ . ¬Jx′ : CK ×Rx

RHS \ get?uk
= RHS× Ju : UnitK × JCKk
= RHS× ∗k!x′ . ¬Jx′ : CK

Since, by induction Rx @n−1 RHS we have Rx \
get?uk @n−1 RHS \ get?uk.

• set?yk ∈ RHS. We have:

Rx \ set?yk = k!u×Ry
@ ∗k!u×Ry

RHS \ set?yk = RHS× Jy : CK × JUnitKk
= RHS× Jy : CK × ∗k!u . ¬Ju : UnitK
= RHS× Jy : CK × ∗k!u

Since, by induction Ry @n−1 ¬Jget : Unit → C, set :
C → UnitK × Jy : CK we have Rx \ π @n−1 RHS \ π

With this lemma we show that the type rule for reference
cells is admissible.

Theorem 6. The [T-REF] rule is admissible.

Proof. Let P = Jget : Unit → CK × J(C → Unit) → CKk2 .
Then:

f1!!get , k2
@ f1!θget , θk2 . (P × ¬θP)
@ ∗f1!θget , θk2 . (P × ¬θP)
@ Jf1 : ((Unit→ C)→ (C → Unit)→ C)K
×Jget : Unit→ CK × J(C → Unit)→ CKk2

Let Q = Jset : C → UnitK × JCKk1 . Then:

g!!set , k1
@ g!θset , θk1 . (Q× ¬θQ)
@ ∗g!θset , θk1 . (Q× ¬θQ)
@ Jg : (C → Unit)→ CK × Jset : C → UnitK × JCKk1

∗k2?g . g!!set , k1
@ ∗k2?g . (Jset : C → UnitK × JCKk1

×Jg : (C → Unit)→ CK)
@ ¬J(C → Unit)→ CKk2 × Jset : C → UnitK × JCKk1

From this we have:

∗p?f1k1 . νk2.(f1!!get , k2) ⊗ (∗k2?g . g!!set , k1)
@ ∗p?f1k1 . (Jget : Unit→ CK × Jset : C → UnitK × JCKk1

× Jf1 : ((Unit→ C)→ (C → Unit)→ C)K)
@ ¬Jp : Ref CK × Jget : Unit→ C, set : C → UnitK

By Lemma 5, Rx @ Jget : Unit→ C, set : C → UnitK × Jx :
CK. Thus:

JrefKk
@ k!a . ∗ (a?xh . h!p . (Jx : CK × ¬Jp : Ref CK)) (Lem 1)
@ k!a . ∗ (a?xh.(Jx : CK × h!p . ¬Jp : Ref CK))
@ k!a . ∗ (a?xh . (Jx : CK × JRef CKh))
= k!a . Ja : C → Ref CK
@ ∗k!a . Ja : C → Ref CK
= JC → Ref CKk
@ JC → Ref CKk × JEK

VII. TYPE SOUNDNESS FOR FORK

Our final language extension adds multiple concurrent
threads, via an operation (fork f) that evaluates the thunk
f in a new thread of control. As we will see, even though con-
currency (like side-effects) is a significant language extension,
it requires only local extensions to the language semantics. The
syntactic extension and corresponding type rule for fork are
straightforward:

e ::= . . . | fork

E ` fork : (Unit→ Unit)→ Unit
[T-FORK]

Rather surprisingly, extending the language semantics with
concurrency is also straightforward:

JforkKk
def
= k!a . ∗ a?fh . h!u . f !uh . h?y . 1

Here, the channel a (representing the fork value) is immedi-
ately returned to fork’s continuation. When a later receives a
fork request a?fh, it immediately returns a unit channel u to
the continuation h, but also calls the given thunk f . Thus, the
two consecutive send events performed by fork are sufficient
to initiate concurrent evaluation. Finally, if f later returns via
h?y its result is discarded and its thread is terminated.

We can use reference cells to implement inter-thread synchro-
nization primitives such as semaphores, since read and write

operations on reference cells execute atomically. The following
proof shows that this language extension with concurrency
preserves type soundness.

Theorem 7. The rule [T-FORK] is admissible.

Proof.

JforkKk
= k!a . ∗ a?xh . h!u . x!uh . h?y . 1
@ k!a . ∗ a?xh . h!u . x!uh . (¬Ju : UnitK × ¬JUnitKh)
@ k!a . ∗ a?xh . h!u . Jx : Unit→ UnitK
@ k!a . ∗ a?xh . h!u . (Jx : Unit→ UnitK × ¬Ju : UnitK)
@ k!a . ∗ a?xh . (Jx : Unit→ UnitK × h!u . ¬Ju : UnitK)
@ k!a . ∗ a?xh . (Jx : Unit→ UnitK × ∗h!u . ¬Ju : UnitK)
= k!a . ∗ a?xh . (Jx : Unit→ UnitK × JUnitKh)
@ J(Unit→ Unit)→ UnitKk × JEK

VIII. RELATED AND FUTURE WORK

Wright and Felleisen [1] introduced subject reduction as a
technique for proving soundness of type systems by showing
that evaluation preserves typing: if a program state S is well-
typed ` S and S evaluates to S′ (written S → S′) then
S′ is also well-typed ` S′. This proof technique has proven
highly flexible, in large part due to the global nature of the
evaluation relation →, which can observe or mutate any part
of the program state. For example, side-effects and control-
effects manipulate the global store and evaluation context,
respectively [14], [15], [16].

Before subject reduction, many type soundness proofs
were based on denotational semantics [17], [18], [19], [20],
[21], typically with different domain equations or different
proof techniques. Even when two soundness proofs addressed
extensions of a common language, it was not clear whether
or how different proofs could be merged to yield a proof
for the combined system. By using the semantic framework
of rewriting-based operational semantics, subject reduction
provided a common proof structure that could accommodate a
wide range of languages and type systems. This paper takes
this work one step further—by formalizing types (A), terms (e),
and typing judgments (` e : A) all in the common framework
of tracesets, the admissibility of each typing rule can now be
verified independently. Thus, we adapt the ideas of subject
reduction to focus on syntactic representations of behavior
(formalized as tracesets) rather than on syntactic representations
of program states.

Much prior work has studied the denotational semantics of
higher-order languages, often with the goal of developing fully
abstract denotational semantics [5], [6], in which observable
equivalence implies denotational equivalence. Game semantics
has emerged as an appealing foundation for developing fully
abstract denotational models. For example, fully abstract
game semantics have been developed for PCF [7], [8] or for
languages with features such as call-by-value [22], general
references [23], and exceptions [24], [25] to name just a
few. Game semantics has also been used as a foundation for

language design [26], [27]. Compositional game semantics
also facilitate compositional verification [28].

As mentioned earlier, our trace calculus notably resembles
the π-calculus [29], [30], [31], but with some differences. The
trace calculus consists of a collection of operators and relations
over tracesets, with associated axioms, rather than syntactic
constructors. Moreover, traces support negation since send and
receive events both bind their argument channels, which allow
us to express contravariance in types as negation on tracesets.
Nonetheless, this connection deserves further exploration, and
perhaps existing results from the π-calculus could facilitate or
simplify our type soundness proofs.

A number of type systems have been developed for the
π-calculus [32], [33], [34], [35]. For our purposes, tracesets
themselves are sufficient both for describing implementations
(e.g. JeKk) and also specifications (e.g. JAKk), and thus we
have not needed an extra type specification language for traces.

In this work we give a semantics for untyped terms (λx. e)
but a clear topic for future work is to give a traceset semantics
for typed terms (λx:A. e) and dependent types (Πx:A.B), and
to extend this proof technique to additional language constructs
(e.g. constants, primitive operations, and data constructors) and
to richer type systems (e.g. with polymorphism, bounded quan-
tification, dependent types, etc.). Several interesting questions
immediately arise, for example, what is the trace semantic
meaning J∀X.AKk of a polymorphic type?

Another important direction is the relationship between
higher-order dynamic contracts [36], [37] (which filter be-
haviors) and static types (which specify behavior), and perhaps
expressing both in the common framework of tracesets could
help elucidate this relationship.

Acknowledgments We thank Philippa Gardner, Scott Smith,
DeLesley Hutchins, Philip Wadler, Jeremy Siek, and Martin
Abadi for helpful conversations on this work

REFERENCES

[1] A. Wright and M. Felleisen, “A syntactic approach to type soundness,”
Info. Comput., vol. 115, no. 1, pp. 38–94, 1994.

[2] R. Alur, T. Henzinger, O. Kupferman, and M. Vardi, “Alternating
refinement relations,” CONCUR’98 Concurrency Theory, pp. 163–178,
1998. [Online]. Available: http://dx.doi.org/10.1007/BFb0055622

[3] D. Hutchins, “Pure subtype systems: A type theory for extensible
software,” 2009.

[4] ——, “Pure subtype systems,” in Symposium on Principles of Program-
ming Languages, vol. 45, no. 1. ACM, 2010, pp. 287–298.

[5] R. Cartwright and M. Felleisen, “Observable sequentiality and full
abstraction,” in Proceedings of the 19th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. ACM, 1992,
pp. 328–342.

[6] D. Hopkins and C. Ong, “Homer: A higher-order observational equiva-
lence model checker,” in Computer Aided Verification. Springer, 2009,
pp. 654–660.

[7] S. Abramsky, R. Jagadeesan, and P. Malacaria, “Full abstraction for PCF,”
Information and Computation, vol. 163, pp. 409–470, 1996.

[8] J. M. E. Hyland and C.-H. L. Ong, “On full abstraction for PCF: I, II,
and III,” Inf. Comput., vol. 163, no. 2, pp. 285–408, 2000.

[9] J. Chroboczek, “Game semantics and subtyping,” in Logic in Computer
Science, 2000. Proceedings. 15th Annual IEEE Symposium on. IEEE,
2000, pp. 192–203.

[10] ——, “Subtyping recursive games,” in Typed Lambda Calculi and
Applications. Springer, 2001, pp. 61–75.

[11] ——, “Game semantics and subtyping,” Ph.D. dissertation, 2003.

[12] R. Milner, Communicating and Mobile Systems: The π-Calculus. Cam-
bridge University Press, 1999.

[13] J. C. Reynolds, The essence of ALGOL. Cambridge, MA, USA:
Birkhauser Boston Inc., 1997, pp. 67–88. [Online]. Available:
http://portal.acm.org/citation.cfm?id=251167.251168

[14] M. Felleisen and D. P. Friedman, “Control operators, the SECD-machine,
and the lambda-calculus,” in 3rd Working Conference on the Formal
Description of Programming Concepts, 1986, pp. 193–219.

[15] ——, “A syntactic theory of sequential state,” Indiana University,
Bloomington, Indiana, Computer Science Dept. Technical Report 230,
1987.

[16] M. Felleisen and R. Hieb, “The revised report on the syntactic theories
of sequential control and state,” Theoretical computer science, vol. 103,
no. 2, pp. 235–271, 1992.

[17] Milner, R, “A theory of type polymorphism in programming,” J. Comput.
Syst. Sci., vol. 17, pp. 348–375, 1978.

[18] L. Damas and R. Milner, “Principal type-schemes for functional
programs,” in Proceedings of the 9th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. ACM, 1982, pp. 207–212.

[19] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin, “Dynamic typing in a
statically-typed language,” in Symposium on Principles of Programming
Languages, 1989, pp. 213–227.

[20] L. M. M. Damas, “Type assignment in programming languages,” Ph.D.
dissertation, University of Edinburgh, 1985.

[21] B. Duba, R. Harper, and D. MacQueen, “Typing first-class continuations
in ml,” in Proceedings of the 18th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. ACM, 1991, pp. 163–173.

[22] S. Abramsky and G. McCusker, “Call-by-value games,” in CSL, 1997,
pp. 1–17.

[23] S. Abramsky, K. Honda, and G. McCusker, “A fully abstract game
semantics for general references,” in LICS, 1998, pp. 334–344.

[24] R. Cartwright, P.-L. Curien, and M. Felleisen, “Fully abstract semantics
for observably sequential languages,” Inf. Comput., vol. 111, no. 2, pp.
297–401, 1994.

[25] J. Laird, “A fully abstract game semantics of local exceptions,” in Logic
in Computer Science, Washington, DC, USA, 2001. [Online]. Available:
http://portal.acm.org/citation.cfm?id=871816.871866

[26] J. Longley and N. Wolverson, “Eriskay: a programming language based
on game semantics,” in Games for Logic and Programming Languages
III Workshop. Citeseer, 2008.

[27] N. Wolverson, “Game semantics for an object-oriented language,” 2009.
[28] S. Abramsky, D. R. Ghica, A. S. Murawski, and C.-H. L. Ong, “Applying

game semantics to compositional software modeling and verification,”
in TACAS, 2004, pp. 421–435.

[29] R. Milner, “The polyadic π-calculus: A tutorial,” Logic and Algebra of
Specification, vol. 94, 1991.

[30] B. Pierce, “Foundational calculi for programming languages,” Handbook
of Computer Science and Engineering, pp. 2190–2207, 1995.

[31] R. Milner, J. Parrow, and D. Walker, “A calculus of mobile processes, I,”
Information and computation, vol. 100, no. 1, pp. 1–40, 1992.

[32] B. Pierce and D. Sangiorgi, “Typing and subtyping for mobile processes,”
in Logic in Computer Science, 1993. LICS’93., Proceedings of Eighth
Annual IEEE Symposium on. IEEE, 1993, pp. 376–385.

[33] Y. Deng and D. Sangiorgi, “Towards an algebraic theory of typed mobile
processes,” Automata, Languages and Programming, pp. 445–456, 2004.

[34] N. Kobayashi, B. Pierce, and D. Turner, “Linearity and the π-calculus,”
ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 21, no. 5, pp. 914–947, 1999.

[35] J. Laird, “A game semantics of the asynchronous π-calculus,” CONCUR
2005–Concurrency Theory, pp. 51–65, 2005.

[36] R. B. Findler and M. Felleisen, “Contracts for higher-order functions,” in
Proceedings of the International Conference on Functional Programming,
2002, pp. 48–59.

[37] R. Back and J. Von Wright, “Contracts, games, and refinement,”
Information and Computation, vol. 156, no. 1, pp. 25–45, 2000.

IX. APPENDIX

Lemma 6 (Copycats Preserve Specifications).
If P is well-formed and FR(P) = ∅ and FS(P) ⊆ y then:

x!!y @ x!θy . (P × ¬θP)

http://dx.doi.org/10.1007/BFb0055622
http://portal.acm.org/citation.cfm?id=251167.251168
http://portal.acm.org/citation.cfm?id=871816.871866

Proof.

x!!y @ x!θy . (P × ¬θP)
⇔ x!θy . ∗ (

⋃n
i θyi?z . yi!!z) @ x!θy . (P × ¬θP)

(by definition)
⇐ ∗

⋃n
i θyi?z . yi!!z @ P × ¬θP

(by prop 36)

This holds by lemma 7.

Lemma 7. If P is well-formed and FR(P) = ∅ and FS(P) ⊆
y then:

∗
n⋃
i=1

θyi?zi . yi!!zi ×
m∏
k

yjk !!zjk @ P × P ′

where P ′ = (¬θP) \ θyj1?zj1 \ · · · \ θyjm?zjm

Proof. To show this holds, we note that any free receive events
in P ×P ′ is also in ∗(

⋃n
i θyi?zi . yi!!zi) and if we remove an

event θyjm+1
?zjm+1

from both sides we will have:

∗(
⋃n
i θyi?zi . yi!!zi)× (

∏m+1
k yjk !!zjk)

@n−1 P × P ′ \ θyjm+1
?zjm+1

And this holds by induction on a smaller n.
To see that send events on the left-hand side are matched on

the right-hand side, note that because receive events on θyji
through θyjm are removed from ¬θP the corresponding send
events on yj1 through yjm must be in P . Removing a send
event yl!zl from both sides gives us:

(∗(
⋃n
i θyi?zi . yi!!zi)× (

∏m
k yjk !!zjk)) \ yl!zl

@n−1 (P × P ′) \ yl!zl
Since P is well-formed it does not matter in what order send
events are removed so without loss of generality we pick
yl = yjm and get:

∗(
⋃n
i θyi?zi . yi!!zi)× yl!zl1...o

. ∗ (
⋃o
i θzli?wi . zli !!wi)

×(
∏m−1
k yjk !!zjk)

@n−1 P \ yl!zl × P ′

⇐ ∗(
⋃n
i θyi?zi . yi!!zi)× ∗(

⋃o
i θzli?wi . zli !!wi)

×(
∏m−1
k yjk !!zjk)

@n−1 P \ yl!zl × P ′

Note that FR(P \ yl!zl × P ′) ⊆ {θy1, . . . , θyn} ∪
{θzl1 , . . . , θzlo}. Renaming θzlo , . . . , θzlo to
θyn+1, . . . , θyn+o gives us:

∗(
⋃n
i θyi?zi . yi!!zi)× ∗(

⋃o
i θyi?wi . yi!!wi)

×(
∏m−1
k yjk !!zjk)

@n−1 P \ yl!zl × P ′

⇔ ∗(
⋃n+o
i θyi?zi . yi!!zi)× (

∏m−1
k yjk !!zjk)

@n−1 P \ yl!zl × P ′

And this holds by induction on a smaller n.

As a technical device to simplify the proof of compositional
reasoning, we extend the syntax of events with the opaque
event τ and define a τ generating parallel composition operator
‖ as:

P ‖Q =
⋃
π 6=τ

π . (((P \ π) ‖Q) ∪ (P ‖ (Q \ π)))

∪
⋃
π 6=τ

τ . νx.(P \ π ‖Q \ ¬π) where x = BC(π)

Note that this definition is similar to the standard definition of
parallel composition but with a τ at points of communication.
This allows us to “hide” traces behind a sequence of τs.

We also extend the definition of alternating trace containment
to handle opaque events. The indexed τ alternating trace
containment relation P @τn Q holds at P @τ0 Q as a base
case and P @τn+1 Q if and only if the following conditions
hold:

1) P − τ @τn Q where P − τ = {α | τ . α ∈ P} ∪ {π . α ∈
P | π 6= τ}

2) If τ 6∈ P then for all send events π: π ∈ P ⇒ (π ∈
Q) ∧ (P \ π @τn Q \ π).

3) If τ 6∈ P then for all receive events π: π ∈ Q ⇒ (π ∈
P) ∧ (P \ π @τn Q \ π).

If P @τn Q holds for all n then we write P @τ Q.
We also define a deep τ -removal operator to facilitate proofs:

P ∼ τ =
⋃
π 6=τ

π . ((P \ π) ∼ τ)

Lemma 8 (Double Remove).

(P − τm) ∼ τ = P ∼ τ

Proof. Follows from the definition of ∼.

Lemma 9 (Deep Removal Associates).

(P \ π) ∼ τ ⇒ (P ∼ τ) \ π

Proof. Follows from the definition of ∼.

Lemma 10 (Deep Tau Removal Equality).

(P ‖Q) ∼ τ = P ⊗ Q

Proof. Follows from the definitions of ‖ and ⊗ since their
respective definitions are identical except for the introduction
of τs at points of communication between P and Q.

Lemma 11 (Tau-Containment Implies Deep Removal).

P @τ R⇒ P ∼ τ @n R

Proof. By induction on n. For the base case n = 0 this holds
directly. For n > 0:
• Case for all send π ∈ P ∼ τ we need to show π ∈ R

and (P ∼ τ) \ π @n−1 R \ π. First, from the definition
of ∼ we note:

π ∈ P ∼ τ
⇒ τm.π ∈ P
⇔ π ∈ P − τm

From the first condition of the definition of @τ we know:

P − τm @τ R

This implies π ∈ R and:

(P − τm) \ π @τ R \ π

By induction this implies:

((P − τm) \ π) ∼ τ @n−1 R \ π
⇒ ((P − τm) ∼ τ) \ π @n−1 R \ π (*)
⇒ (P ∼ τ) \ π @n−1 R \ π (**)

The implication (*) holds by lemma 9 and the implication
(**) holds by lemma 8 and this is what we needed to
show.

• Case for all receive π ∈ R the argument is similar.

Lemma 12 (Opaque Composition).

P ‖Q @τ R⇒ P ⊗ Q @ R

Proof. From the assumption we have:

P ‖Q @τ R
⇒ (P ‖Q) ∼ τ @ R by lemma 11
⇔ (P ⊗ Q) @ R by lemma 10

Lemma 13 (Compositional Reasoning). If all the following
are true:

P @ P ′ ×R
Q @ Q′ × ¬R

FC(Q′) ∩ x = ∅
FC(P ′) ∩ x = ∅

FC(R) ⊆ x
FS(P) ∩ FR(Q) ⊆ x
FR(P) ∩ FS(Q) ⊆ x

then

νx.(P ⊗ Q) @ P ′ ×Q′

Proof. We show by induction on n that:

νx.(P ‖Q) @τn P
′ ×Q′

assuming P @n P ′ ×R and Q @n Q′ × ¬R. By Lemma 12
this will give us νx.(P ⊗ Q) @ P ′ ×Q′. Note that P,Q are
τ -free but P ‖Q and νx.(P ‖Q) might generate τs.

For n = 0 this holds directly. For n > 0 and must show
have three cases to consider:
• Case when τ 6∈ (νx.(P ‖Q)) and send π ∈ νx.(P ‖Q).

If π ∈ P we know π ∈ P ′×R and since π 6∈ R we have
π ∈ P ′ so π ∈ P ′ ×Q′. Similar argument when we have
π ∈ Q.

To show (νx.(P ‖Q)) \ π @τn−1 (P ′ ×Q′) \ π note that:

(νx.(P ‖Q)) \ π = νx.((P ‖Q) \ π)

= νx.((P \ π ‖Q) ∪ (P ‖Q \ π))

From assumptions we have:

P \ π @n−1 (P ′ ×R) \ π
= P ′ \ π ×R (since π 6∈ R)

Q \ π @n−1 (Q′ × ¬R) \ π
= Q′ \ π × ¬R (since π 6∈ ¬R)

In addition, from P @n P ′×R we have P @n−1 P ′×R
and from Q @n Q′ ×¬R we have Q @n−1 Q′×¬R. So
from:

Q @n−1 Q
′ × ¬R

P \ π @n−1 P
′ \ π ×R

and the induction hypothesis we have νx.(P\π ‖Q) @τn−1
P ′ \ π ×Q′. And from:

P @n−1 P
′ ×R

Q \ π @n−1 Q
′ \ π × ¬R

and the induction hypothesis we have νx.(P ‖Q\π) @τn−1
P ′ ×Q′ \ π. So from:

νx.(P \ π ‖Q) @τn−1 P
′ \ π ×Q′

νx.(P ‖Q \ π) @τn−1 P
′ ×Q′ \ π

we have as required:

νx.((P \ π ‖Q) ∪ (P ‖Q \ π)) @τn−1 (P ′ ×Q′) \ π

• Case when τ 6∈ (νx.(P ‖Q)) and receive π ∈ P ′ ×Q′.
If π ∈ P ′ from the assumption P @n P ′×R with n > 0 it
must be that π ∈ P so π ∈ νx.(P ‖Q). Similar argument
when we have π ∈ Q′.
Showing (νx.(P ‖Q))\π @τn−1 (P ′×Q′)\π is the same
as the previous case.

• Case when τ ∈ (νx.(P ‖Q)). We need to show that
(νx.(P ‖Q))− τ @τn−1 P

′ ×Q′ holds.
We have νx.(P ‖Q))− τ = νx.((P ‖Q)− τ) and from
the definitions:

(P ‖Q)− τ =
⋃
π 6=τ

π . (P \ π ‖Q) (L1)

∪
⋃
π 6=τ

π . (P ‖Q \ π) (L2)

∪
⋃
π 6=τ

νy.(P \ π ‖Q \ ¬π)

(L3, with y = BC(π))

Expanding the definition of P ′ ×Q′:

P ′ ×Q′ =
⋃
π 6=τ

π . (P ′ \ π ×Q′) (R1)

∪
⋃
π 6=τ

π . (P ′ ×Q′ \ π) (R2)

So we need to show νx.L1∪νx.L2∪νx.L3 @τn−1 R1∪R2.
To show νx.L1 @τn−1 R1 we note from the assumptions
that P @n P ′×R so P \π @n−1 (P ′×R)\π for all send
π ∈ νx.L1 or equivalently P \ π @n−1 P ′ \ π ×R since
FC(π) 6∈ x and FC(R) ⊆ x. Therefore, by induction we
have νx.

⋃
π 6=τ π.(P \π ‖Q) @τn−1

⋃
π 6=τ π.(P

′\π×Q′).
The argument for νx.L2 @τn−1 R2 is similar.
For

⋃
π 6=τ νy.(P \π ‖Q\¬π) note that since FC(π) ⊆ x

we have from the assumptions:

P \ π @n−1 P
′ ×R \ π

Q \ π @n−1 Q
′ × ¬R \ π

Therefore it follows by induction that νx.νy.(P \ π ‖Q \
¬π) @τn−1 P

′ ×Q′.
Thus νx.(P ‖Q)− τ @τn−1 P

′ ×Q′.

	Introduction
	The Trace Calculus
	Operations on Tracesets
	The Alternating Trace Containment Relation
	The Algebra of Traces
	Copycat Sends

	Type Soundness for the Simply Typed Lambda Calculus
	STLC Syntax and Semantics
	STLC Typing and Type Soundness

	Type Soundness for Subtyping
	Type Soundness for call/cc
	Type Soundness for Reference Cells
	Type Soundness for Fork
	Related and Future Work
	References
	Appendix

