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Abstract

We propose a new model for correlated outputs of mixed type, such as continu-
ous and binary outputs, with a particular focus on joint regression and classification,
motivated by an application in constrained optimization for computer simulation
modeling. Our framework is based upon multivariate stochastic processes, extending
Gaussian process methodology for modeling of continuous multivariate spatial out-
puts by adding a latent process structure that allows for joint modeling of a variety
of types of correlated outputs. In addition, we implement fully Bayesian inference
using particle learning, which allows us to conduct fast sequential inference. We
demonstrate the effectiveness of our proposed methods on both synthetic examples
and a real world hydrology computer experiment optimization problem where it is
helpful to model the black box objective function as correlated with satisfaction of
the constraint.

Keywords: Gaussian process, particle learning, Bayesian statistics, constrained optimiza-
tion, computer simulation experiment

1



1 Introduction

The problems of regression and classification are both well-studied individually, but there

has been limited work on the problem of combined regression and classification when these

outputs are correlated, particularly in the nonparametric setting. Only recently has the

literature moved beyond traditional parametric assumptions. We are motivated by the

problem of constrained optimization where both the objective function and the constraints

are unknown and potentially expensive to evaluate. Thus we seek an efficient statistical

model to serve as a fast approximation to the true objective function and constraints, which

in our applications are computer simulation experiments. In the case that the simulator

only returns whether a constraint is satisfied, and not any measure of distance to satis-

faction, we need to jointly model a continuous objective function and one or more binary

constraints. Constrained optimization is typically difficult because at least one of the con-

straints operates in opposition to the objective function, i.e., they are negatively correlated.

We propose here a nonparametric model to jointly model continuous and binary outputs,

and the framework is flexible enough to include a wide variety of other types of outputs.

Our approach builds upon the standard computer emulation approach in the literature of

using Gaussian process (GP) models (Santner et al., 2003).

Joint modeling of outputs of different types, also called multiway or mixed type re-

sponses, can be a difficult task. When the outputs are known or suspected to be corre-

lated, it is common practice to use latent processes to induce correlation between them

(Sammel et al., 1997; Moustaki and Knott, 2000). However, most of these latent methods

rely on either simple linear models or restrictive parametric assumptions. Recent papers

have started to utilize most robust nonparametric models, such as infinite mixtures of lin-

ear models (Zhe et al., 2015). Typically in computer simulation experiments, constrained

optimization is very challenging because the outputs of the simulators arise from highly

nonlinear functions. This lack of linearity is what makes nonparametric methods so desir-

able. An active area of research in machine learning, multi-task learning builds predictive

models based on the learning of multiple tasks, in our case learning mixed type outputs,

at the same time. The performance of multi-task learning methods is highly dependent

upon the sharing of information, or induced correlation, across each task. A nonparametric
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extension, Yu et al. (2005), used multi-task GPs for sharing information across multiple

tasks of the same type. However, the growing literature on multi-task GPs (Bonilla et al.,

2008; Hayashi et al., 2012) does not seem to suggest that the model can facilitate the mod-

eling of outputs of mixed types. Similar to the approach we will take in this paper, Liu

et al. (2013) makes an attempt to address this problem, however, a major limitation of

that work is that they only consider the case of two correlated outputs. We propose here

a flexible nonparametric model capable of handling p ≥ 2 correlated outputs to address

this gap. The Gaussian process framework has proved to be an effective tool for modeling

both regression and classification (Neal, 1999). Multivariate regression GPs (Wackernagel,

2003) provide a basis for modeling correlated outputs. We build upon these ideas to create

a new GP-based model for correlated outputs of mixed type, where each output uses a

transformation function to map back to the regression setting. Chan (2013) explored this

same idea, but was limited by only considering correlated outputs of the same type and by

assuming that the likelihood function takes the generic form of the multivariate exponential

family distribution. We bypass these limitations by allowing for a more general likelihood

function and create a fully generalized family of models that utilize standard link functions,

including but not limited to the identity for regression and the logistic for classification, but

more general links also fit into our framework. Another similar approach, Xu et al. (2012)

and Zhe et al. (2013) utilized latent tensor-valued Gaussian process models to model mixed

type outputs from a Bayesian point of view, however, both works employed only variational

techniques for inference. Another key innovation of our work is fully Bayesian inference,

through particle learning, whereas Liu et al. (2013), Xu et al. (2012), Chan (2013) and Zhe

et al. (2013) provide for only approximate Bayesian inference.

We take a fully Bayesian approach, which can require significant computational effort.

To address this concern, we build upon recent work on sequential Monte Carlo methods for

GPs (Gramacy and Polson, 2011; Montagna and Tokdar, 2013). Particle learning allows

for fast inference, and also allows for sequential inference when the data arrive over time,

as is the case in computer experiments. As a special case, we believe this is the first

implementation of particle learning for a multivariate regression GP.

The remainder of this paper is organized as follows. In the next section, we review
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the separable multivariate Gaussian process and setup the necessary modeling framework

for the rest of the paper. Section 3 introduces our novel joint regression and classification

model. We review the sequential Monte Carlo technique, particle learning, in Section 4,

and explain how fast sequential inference can be conducted on our joint regression and

classification model with an extension to a similar stochastic process model. Section 5

demonstrates the applicability of the models presented with a number of illustrative exam-

ples and comparisons with previous work. Section 6 concludes with some discussion.

2 Multivariate Gaussian Process

We consider a stochastic process returning a p-dimensional output y ∈ Rp for a given d-

dimensional input x ∈ X ⊂ Rd. We think of the stochastic process as a function f : X → Rp

for some (possibly high dimensional) input space X . Similar to Conti and O’Hagan (2010)

and Fricker et al. (2013), from a Bayesian perspective, we regard f(·) as an unknown

function and represent the uncertainty surrounding it through the use of the p-dimensional

multivariate Gaussian process

f(·) ∼ GPp (µ(·),C(·, ·)) , (1)

where µ is a mean function and C is a covariance function. The existence of the multi-

variate Gaussian process depends on the specification of a valid cross-covariance function

C(x,x′) = Cov(f(x), f(x′)) for x,x′ ∈ X (Wackernagel, 2003). Generating valid, as well as

tractable, cross-covariance functions is not a simple task. Many methods have been pro-

posed, such as: separable models (Mardia and Goodall, 1993; Banerjee and Gelfand, 2002),

convolution of covariance functions (Gaspari and Cohn, 1999; Majumdar and Gelfand,

2007), and the linear model of coregionalization (Goulard and Voltz, 1992; Wackernagel,

2003; Gelfand et al., 2004). The approaches in this paper work for more general covari-

ance structures beyond the separable model, for example we have tried them with the

linear model of coregionalization, but we focus on the separable model as we find it works

well in practical applications, providing sufficient flexibility without too much additional

computational expense. In the section that follows, we briefly discuss separable models.
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2.1 Separable Model

One of the simplest ways of achieving a valid cross-covariance function is to take a valid

univariate correlation function ρ(x,x′) and a valid p× p positive semidefinite matrix T so

that

C(x,x′) = ρ(x,x′)T. (2)

The cross covariance function in (2) is said to be a separable model. Letting X = (x1, ...,xn)

be the collection of all inputs observed so far in X , the resulting np×np covariance matrix

for YT = (yT1 , ...,y
T
n ), where yTi = (fi(x1), ..., fi(xn)), is

C(X,X) = R⊗T =


ρ(x1,x1)T · · · ρ(x1,xn)T

...
...

...

ρ(xn,x1)T · · · ρ(xn,xn)T

 , (3)

where we denote Σ = C(X,X) and R is the n×n correlation matrix with Rij = ρ(xi,xj).

Clearly, Σ is positive semidefinite since R and T are. There are some clear advantages

to using a separable model, for instance, |Σ| = |R|p|T|n and Σ−1 = R−1 ⊗ T−1 which

means that working with Σ requires working with a p × p and n × n matrix instead of a

np×np matrix. Additionally, from a Bayesian perspective, using a separable model allows

for placing a conjugate prior on Σ (Banerjee et al., 2004). Conti and O’Hagan (2010)

placed an improper inverse-Wishart prior on Σ, which leads to a proper inverse-Wishart

posterior for Σ and allows for Σ to be analytically integrated out of the posterior predictive

process.

2.2 Model Building and Prediction

We treat the unknown function f(·) as a multivariate stochastic process and model f(·) as

f(·) = µ(·) + ω(·)

µ(·) = (Ip ⊗H) vec(B) (4)

ω(·)|T,φ, η ∼ GPp(0,C(·, ·)),

where vec(·) is the “vec” operator which stacks the columns of its matrix argument from

left to right into a single vector. Here, Ip denotes the p × p identity matrix, HT =
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[h(x1) · · ·h(xn)] ∈ Rq×n is a matrix of regression functions, B = [β1 · · ·βp] ∈ Rq×p is a

matrix of regression coefficients and the matrix valued covariance function, C(·, ·), depends

on covariance parameters T and ψ = {φ, η} where ψ represents parameters governing

the correlation function ρ, which we take in this paper to be the length-scale parameter

φ and nugget parameter η. The length-scale parameter, φ, plays the role of determining

how fast the spatial correlation decays throughout the input space, while the nugget, η,

is considered as random noise and typically represents measurement error or short scale

variability (Cressie, 1993; Diggle and Ribeiro Jr., 2007) in the Gaussian process. Thus, the

nugget provides a mechanism for introducing measurement error into the Gaussian process.

Assuming separability of the covariance function in (4) allows us to write the likelihood for

the data as the following matrix Normal distribution

D|B,T,φ, η ∼ Nn,p (HB,R,T) , (5)

(Rowe, 2003) where we arrange the data vector Y into the output matrix D such that

vec(D) = Y. From a Bayesian point of view, all that is left is to place prior distributions

on the unknown parameters of the model and to update the posterior distribution of the

unknown parameters via Bayes’ theorem. Lacking strong prior information for B and T,

we follow Conti and O’Hagan (2010) and place the following joint improper prior for B

and T

p(B,T|ψ) ∝ |T|−(p+1)/2. (6)

Specifying an arbitrary choice of prior p(ψ) for ψ we obtain the posterior distribution

p(B,T,ψ|D) ∝ |R|−p/2|T|−(n−q+p+1)/2p(ψ) (7)

× exp

{
−1

2

[
tr
(
DTGDT−1

)
+ tr

((
B− B̂

)T (
HTR−1H

) (
B− B̂

)
T−1

)]}
,

where G = R−1 − R−1H
(
HTR−1H

)−1
HTR−1 and B̂ =

(
HTR−1H

)−1
HTR−1D is the

generalized least squares estimator of B. Our choice of prior in (6) allows us to integrate

out B and T from the above posterior distribution (7) resulting in the marginal posterior

distribution

p(ψ|D) ∝ |R|−p/2|HTR−1H|−p/2|DTGD|−(n−q)/2p(ψ). (8)

6



Eliciting prior distributions for the correlation parameters ψ is, in general, a difficult task.

We enforce the caveat that proper priors must be placed on the correlation parameters φ

and nugget η in order to ensure a proper marginal posterior distribution. In either case,

Monte Carlo methods will need to be used in order to obtain posterior samples of ψ.

Of main concern is deriving the posterior distribution of f(·) given the output data D

since this distribution will allow us to make predictions, and quantify our uncertainties,

for outputs at new inputs X̃ = (x̃1, ..., x̃m). Conditional on B,T,ψ, and D the posterior

distribution of f(·) is

f(·)|B,T,ψ,D ∼ GPmp (vec(µ∗(·)),T⊗C∗(·, ·)) (9)

where for X̃ = (x̃1, ..., x̃m) ∈ X

µ∗(X̃) = H̃B + FR−1
(
D−HB̂

)
, (10)

C∗(X̃, X̃) = C(X̃, X̃)− FR−1FT , (11)

and H̃T = [h(x̃1), ...,h(x̃m)] ∈ Rq×m is a matrix of regression functions and F = ρ(X̃,X) ∈

Rm×n. Typically, integrating the correlation parameters ψ out of (9) cannot be done

analytically and so one instead works with the posterior distribution of f(·) conditional on

the output data D and correlation parameters ψ. Integrating B and T out of (9) yields

the multivariate T process (Gupta and Nagar, 2000)

f(·)|ψ,D ∼ Tmp
(

vec(µ∗(·)), T̂⊗C∗(·, ·), n− q
)

(12)

with n− q degrees of freedom, where for X̃ = (x̃1, ..., x̃m) ∈ X

µ∗(X̃) = H̃B̂ + FR−1
(
D−HB̂

)
, (13)

C∗(X̃, X̃) = C(X̃, X̃)− FR−1FT (14)

+
(
H̃− FR−1H

) (
HTR−1H

)−1 (
H̃− FR−1H

)T
,

and T̂ = (n − q)−1
(
D−HB̂

)T
R−1

(
D−HB̂

)
denotes the generalized least squares

estimator of T. A fully Bayesian approach can proceed by sampling from p(ψ|D) in order

to average the conditional posterior in (12) with respect to ψ.
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3 Joint Modeling of Correlated Responses

Building upon the modeling framework of Section 2, we introduce a novel methodology for

joint modeling of correlated outputs. We are particularly interested in the case of jointly

modeling continuous and binary outputs that are correlated, but our framework is more

general. Again denote the process of interest as f(·), but we now allow its outputs to be of

arbitrary form, which could include continuous, binary, categorical, ordinal or other types

of output. Let G(·) be a multivariate function that acts analogous to a link function for

general linear models. The function G(·) is a deterministic function that takes continuous

inputs on the real line and maps them to the range of f(·). We allow for G(·) to be

flexible in its specification and thus only impose the restriction that G(·) be a function that

preserves the range of f(·). Where the domain and range of f(·) are identical, then it makes

sense for G(·) to be a one-to-one function. Our framework allows for quite general G(·),

however it is often convenient to decompose G into r ≤ p independent transformations,

i.e. GT (·) = (GT1 (·), ...,GTr (·)). Although G(·) could be any arbitrarily complex multivariate

function, we typically use a G(·) that be decomposed into r independent transformations

such that r is equal to the number of unique output types. Thus, each Gi(·), for i =

1, .., r, is a transformation of the inputs to a unique output space. When the outputs do

not have the same form for all i we refer to the outputs as mixed type, for example G1
might be regression outputs and G2 would be classification outputs. This rule of thumb is

suggested in order to facilitate ease in specifying appropriate transformations that preserve

the range of f(·), as well as model tractability in specifying the posterior distributions and

the calculations that follow. Following the model formulation in (4), we define H as before

but now let B = [B1 · · ·Br] ∈ Rq×p, where Bi ∈ Rq×pi is a subset of B, and similarly

ω(·) = vec(ω1(·), ...,ωr(·)), where ωi(·) ∈ Rpi is a subset of ω(·), for i = 1, ..., r and

p = p1 + ...+ pr. Now, under our proposed modeling framework, at any collection of inputs

X = (x1, ...,xn) ∈ X ⊂ Rd, we model the output with the following general likelihood

L(B,T,ψ; Y) =
n∏
i=1

p(Y|G(µ(xi) + ω(xi))) (15)
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where we can write the full model as follows:

f(X) = G(µ(X) + ω(X))

µ(X) = (Ip ⊗H) vec(B) (16)

ω(X)|T,φ, η ∼ GPp(0,C(X,X)) .

When we can decompose G into independent transformations, we can rewrite the component-

wise model as follows:

f1(X) = G1((Ip1 ⊗H)vec(B1) + ω1(X))

... (17)

fr(X) = Gr((Ipr ⊗H)vec(Br) + ωr(X))

where fT (X) = (fT1 (X), ..., fTr (X)) and

ω(X) =


ω1(X)

...

ωr(X)

 ∼ GPp

(
0,C(X,X)

)
. (18)

Clearly, under the models in (16) and (17), we have induced a correlation struc-

ture between outputs by allowing ω(X) to be modeled as a joint multivariate Gaussian

process. Similar to Albert and Chib (1993), we introduce a latent process structure,

`i = (Ipi ⊗ H)vec(Bi) + ωi(X), by augmenting the model with the unobservable output

`i ∈ Rpi that allows for a mapping between fi(X) and `i. Here GT (`) = (GT1 (`1), ...,GTr (`r))

is a set of transformations that govern the mapping between the observed outputs and the

latent parameters. Formulating our model this way allows for a lot of theoretical carry-over

from Section 2 as well as model tractability. Clearly when we allow all of the Gi(`i) = `i

for i = 1, ..., p, akin to an identity link, we recover the multivariate Gaussian process

model of Section 2.2. Thus, when Gi(`i) is the identity link, we obtain regression models,

and likewise, when Gi(`i) involves the logistic or probit link, we obtain classification models.

For the applications in this paper, we are interested in jointly modeling a multivariate

continuous output and a binary output under our new modeling framework, and so, we
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let fT (X) = (GT1 (`1),GT2 (`2)) be a multivariate stochastic process where G1(`1) ∈ Rp−1

represents a real continuous output and G2(`2) ∈ {0, 1} be a binary output. Now at any

collection of inputs X = (x1, ...,xn) ∈ X ⊂ Rd, we model the mixed type output as follows:

f1(X) = G1(`1) (19)

f2(X) = G2(`2) (20)

where ω1(X)

ω2(X)

 ∼ GPp

(
0,C(X,X)

)
(21)

and G1(`1) = `1 and

G2(`2,i) =

1 if `2,i > 0

0 if `2,i ≤ 0
(22)

where `2,i is the ith element of `2. We define data and latent parameter matrices D and

L, respectively, such that vec(D) = Y and vec(L) = (`T1 , `
T
2 )T , and paralleling the model

in Section 2.2, we use the same joint prior in (6) for B and T, and arrive at the following

joint posterior density of our model

p(`1, `2,B,T,ψ|Y) ∝ |R|−p/2|T|−(n−q+p+1)/2p(ψ)

exp

{
−1

2

[
tr
(
LTGLT−1

)
+ tr

((
B− B̂

)T (
HTR−1H

) (
B− B̂

)
T−1

)]}
(23)

×
n(p−1)∏
i=1

1(Y1,i = `1,i)
n∏
i=1

[1(`2,i > 0)1(Y2,i = 1) + 1(`2,i ≤ 0)1(Y2,i = 0)]

where Y1 corresponds to the vector of n(p− 1) continuous outputs, Y2 corresponds to the

vector of n binary outputs, 1(·) is an indicator function and p(ψ) is an arbitrary proper

prior distribution for the correlation parameters in (21). Working with the joint posterior

density in (23) is no simple feat, however, inference methods can be devised in order to

obtain samples of all of the unknown parameters of the joint posterior density (Section

4.2). Conveniently, integrating out B and T from our model is possible and thus we can
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derive the joint posterior predictive distribution of (˜̀1, ˜̀2), conditional on `1, `2,ψ, and Y

as the following multivariate T process˜̀
1

˜̀
2

∣∣∣∣`1, `2,ψ,Y ∼ Tmp (µ∗(·), T̂⊗C∗(·, ·), n− q
)

(24)

where for X̃ = (x̃1, ..., x̃m) ∈ X we have that µ∗(X) and C∗(X,X) are the same as (13)

and (14). Obtaining samples of ˜̀
1 and ˜̀

2 from (24) proceeds immediately and allows us to

quantify our uncertainty at unobserved inputs for new latent parameters. Likewise, pre-

dicting the binary value of G2(˜̀2) proceeds by evaluating the following integral (Rasmussen

and Williams, 2006)

p(f2(X̃) = 1|`1, `2,ψ,Y) =

∫ ∫
p(f2(X̃) = 1|˜̀1, ˜̀2)p(˜̀1, ˜̀2|`1, `2,ψ,Y)d˜̀

1d˜̀
2. (25)

The integral in (25) is analytically intractable and so we calculate the integral through

Monte Carlo integration by first taking many samples of ˜̀
1 and ˜̀

2 from the multivariate

T process in (24) and then passing those samples through the sigmoid function p(f2(X̃) =

1|˜̀1, ˜̀2), which in our case is a probit function, and then averaging over those values.

Classification of the binary outputs can then proceed by classifying outputs as a one if the

posterior predictive probability is greater than 0.5 and otherwise classify the output as a

zero.

4 Sequential Inference via Particle Learning

4.1 Particle Learning

Particle learning (PL), as established by Carvalho et al. (2010), is a type of sequential Monte

Carlo (SMC) algorithm designed for online inference in dynamic models. SMC algorithms

are an advantageous alternative to Markov chain Monte Carlo (MCMC) algorithms when

the data arrive sequentially in time. MCMC algorithms suffer from a computational burden

in online inference, due to the algorithm having to be restarted every time a new data point

arrives, whereas in SMC algorithms this is not the case. SMC relies on particles, {S(i)
t }Ni=1,

containing the sufficient information, St, about the uncertainties given data zt = (z1, ..., zt)
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up to time t, with N denoting the total number of particles. These particles, at time t, are

then used to approximate the posterior distribution, p(St|zt), where now online posterior

inference continues by updating the particle approximation from time t to time t + 1.

We want to emphasize that the only thing changing in time here is the accumulation of

additional data points; our model itself is not dynamic, in that the underlying parameter

distributions are the same at all time steps, it is only our posterior estimates that get

updated with the arrival of new data points. It can be shown (Gramacy and Polson, 2011)

that the PL update to the particles can be derived from the following decomposition

p(St+1|zt+1) =

∫
p(St+1|St, zt+1)dP(St|zt+1)

∝
∫
p(St+1|St, zt+1)p(zt+1|St)dP(St|zt). (26)

The above decomposition, (26), suggests that we update the particle approximation in two

steps:

1. Resample: Sample indices ζ(i) ∼ Multinomial(w
(i)
t , N) where each index is given

weight

w
(i)
t ∝ p(zt+1|S(i)

t ) =

∫
p(zt+1|St+1)p(St+1|St)dSt+1 (27)

for i = 1, ..., N .

2. Propagate: Propagate S
ζ(i)
t to S

(i+1)
t with a draw from S

(i)
t+1 ∼ p

(
St+1|Sζ(i)t , zt+1

)
to

obtain a new collection of particles {S(i)
t+1}Ni=1 ∼ p(St+1|zt+1).

While there exists a plethora of SMC algorithms with components similar to PL, we

choose to explore particle learning based methods due to the convenient form of the pos-

terior predictive distribution of Gaussian process models and past successes of particle

learning in the univariate Gaussian process setting (Gramacy and Polson, 2011; Liang and

Lee, 2014). A slight modification to the above PL steps, similar to the filter of Storvik

(2002), would be to reverse the order and first propagate and then resample in similar

fashion as above. In the sections that follow, we make use of both the propagate-resample

framework as well as the resample-propagate framework although both schemes could be

applied in either case. In Section 4.2 we choose to use the propagate-resample scheme of
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Storvik (2002) in order to avoid lengthy MCMC steps, which we discuss in Section 4.2, for

updating the latent parameters. In Section 4.3 we use the resample-propagate scheme that

mimics PL Gaussian process model of Gramacy and Polson (2011).

4.2 Particle Learning Joint Regression and Classification

As a first step, identifying the sufficient information, St, is pivotal for any particle learning

algorithm. Recalling the joint regression and classification (JRC) model, Section 3, we have

that the sufficient information needed for the JRC model is all of the parameters of the

correlation matrix in (3), namely, ψ = {φ, η}. A necessary quantity, we tend to think of

the latent parameters `i as also part of the sufficient information. We are able to analyti-

cally integrate out β and T from the posterior predictive process in (24) and so we do not

consider β̂ or T̂ as part of the sufficient information since they can be directly calculated

from ψ. However, for efficient bookkeeping and implementation we do include the corre-

lation matrix from (3) as part of the sufficient information even though it can be directly

calculated from ψ as well. Thus, we define the sufficient information as St = {ψt,Rt,Lt}

where Lt = [`1, `2] is the matrix of latent parameters up until time t. Similarly, we define

Dt as the data matrix of all observed outputs up until time t, and Lt+1 = [˜̀1, ˜̀2] and Dt+1

as the matrices for new latent parameters and observed outputs, respectively, at time t+1.

Taking a joint improper prior on (B,T) requires initializing the particles conditional

on t0 > q + p data points to ensure a proper posterior. Recalling that we can integrate

B and T out of (23), we obtain our initial particles using a Metropolis-Hasting scheme to

sample ψ
(i)
t0 , `

(i)
1,t0

, and `
(i)
2,t0

from p(`1, `2,ψ|Dt0). Once sampled, we then deterministically

calculate R
(i)
t0 from ψ

(i)
t0 and thereby obtain S

(i)
t0 . After initialization of the particles, we can

follow the propagate and resample steps for updating particles {S(i)
t }Ni=1 to {S(i)

t+1}Ni=1. We

outline the three steps as the following:

1. Propagate: The first propagate step draws new latent parameters {L(i)
t+1}Ni=1 from

p(Lt+1|S(i)
t ) via sampling from the posterior predictive distribution in (24).

2. Resample: The resample step requires sampling indices ζ(i) ∼ Multinomial(w
(i)
t , N)
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where each index is given weight

w
(i)
t ∝ p(Dt+1|L(i)

t+1,S
(i)
t ), (28)

for i = 1, ..., N , which can be factored into a product of a multivariate normal distri-

bution and a Bernoulli distribution.

3. Propagate: The second propagate step updates each resampled sufficient informa-

tion Sζ
(i)

t to S
(i)
t+1 by accounting for the new data output Dt+1. Since the correlation

parameters of the JRC model are not dynamic, we may propagate deterministically

each resampled ψ by copying ψζ(i)

t to ψ
(i)
t+1. A key step in deterministically propagat-

ing components of Sζ
(i)

t to S
(i)
t+1 requires the calculation of the propagated correlation

function Rt+1. Once we have deterministically propagated ψζ(i)

t to ψ
(i)
t+1 we calculate

the propagated correlation matrix as follows

R
(i)
t+1 =

R
(i)
t (F̃(i))T

F̃(i) R̃(i)

 (29)

where F̃ = ρ(xt+1,X) and R̃ = ρ(xt+1,xt+1).

As noted in Section 4.1, we could instead have implemented a resample-propagate scheme,

similar to Gramacy and Polson (2011) for GP classification models, but this would then

make our propagate step dependent upon sampling the new latent parameters from p(Lt+1|St,Dt+1)

which would need to be done in an MCMC scheme that would require a large number of

Metropolis-Hastings updates to ensure stationarity, and this would be done within each par-

ticle, and thus considerably slowing the PL algorithm. Conversely, following a propagate-

resample scheme requires no Metropolis-Hastings updates and hence no concerns over con-

vergence within each propagate step of the latent parameters.

Like many sequential Monte Carlo algorithms, particle learning is susceptible to particle

degeneracy in future resample steps. Particle degeneracy occurs when, after some iterations

of the algorithm, all but one particle will have weights that are very close to zero. In par-

ticular, deterministically propagating components of Sζ
(i)

t to S
(i)
t+1 almost surely guarantees

particle degeneracy in the future resampling steps. However, deterministic propagation

does lead to significant speed gains in computation. In order to take advantage of the
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computational speed up of deterministic propagation, and to avoid degeneracy, we include

a rejuvenate step inside of the propagate step that samples from the posterior distribution

in (8) via MCMC for the sake of rejuvenating the particles (MacEachern et al., 1999).

Following the lead of Gramacy and Polson (2011) we find a single Metropolis-Hastings step

for the parameters of ψt, for each particle, to be sufficient in avoiding particle degeneracy.

4.3 Particle Learning Multivariate Gaussian Process

Recall the fact that when we allow Gi(`i) = `i, akin to an identity link, we recover the

multivariate Gaussian process model of Section 2.2. As a special case, utilizing particle

learning for inference in this model parallels the particle learning joint regression and clas-

sification (PLJRC) model but in far more simplicity. Given the separable multivariate

Gaussian process, Section 2.2, the sufficient information needed for this model is the same

as the sufficient information of the JRC model, i.e., St = {ψt,Rt,L
t}. However, given the

form of G(`), we no longer need to worry about Lt as part of the sufficient information,

since we now effectively treat the latent parameters as the true observed data, and so we

set St = {ψt,Rt} and Lt = Dt.

Similarly, taking a joint improper prior on (B,T) requires us to initialize our particles

conditional on t0 > q + p data points to ensure a proper posterior. We follow the same

Metropolis-Hasting scheme described in Section 4.2. After initialization of the particles,

we can follow the two step resample and propagate steps for updating particles {S(i)
t }Ni=1 to

{S(i)
t+1}Ni=1. We argue, as Gramacy and Polson (2011) do, that the multivariate Gaussian

process is not a dynamic model, i.e. its parameters do not change in time, and so our

resample step only requires us to consider Lt+1 conditional on St+1 rather than the typical

integration over p(St+1|St). We outline the two steps as the following:

1. Resample: The resample step requires sampling indices ζ(i) ∼ Multinomial(w
(i)
t , N)

where each index is given weight

w
(i)
t ∝ p(Dt+1|S(i)

t ) =
p(Dt+1|S(i)

t )∑N
i=1 p(Dt+1|S(i)

t )
(30)
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for i = 1, ..., N . Conveniently, p(Dt+1|S(i)
t ) is just the probability of Dt+1 under the

multivariate T process (13–14) given S
(i)
t .

2. Propagate: The multivariate Gaussian process is not a dynamic model we may prop-

agate deterministically each resampled sufficient information by copying S
ζ(i)
t to S

(i)
t+1.

Like before, Section 4.2, once we have deterministically propagated ψ
ζ(i)
t to ψ

(i)
t+1 we

calculate the propagated correlation matrix following (29).

5 Illustrating Examples

As a proof of concept, we demonstrate the applicability of the models presented in Sections

4.2 and 4.3 with a number of illustrative examples and comparisons with previous work.

Because our motivating example is a computer modeling problem, we follow the standard

approach in the computer modeling literature (Santner et al., 2003) by using a Gaussian

correlation function with unknown length-scale parameter φ and nugget η for all of these

examples, i.e.,

ρ(xj,xk;φ, η) = exp

(
−

d∑
i=1

|xij − xik|2

φi

)
+ ηδj,k (31)

where δ·,· is the Kronecker delta function. Our methodology applies to any valid choice of

correlation function, but here we follow the substantial literature in computer modeling.

For the length-scale parameter φ, we use the prior suggested in Gramacy and Lee (2008)

and let φ ∼ 1
2
(Gamma(1, 20) + Gamma(10, 10)). The prior for φ encodes our belief that

about half of the particles should represent Gaussian process parameterizations with wavy

surfaces while the other half should represent Gaussian process parameterizations which

are quite smooth or approximately linear. We place a prior on the nugget parameter,

η ∼ Exp(10), that allows for a moderate amount of noise, or provides robustness in fitting

(Gramacy and Lee, 2012). Lastly, we specify our matrix regression H, with regression

functions h(x1), ...,h(xn), such that it is equivalent to a linear regression model with an

intercept term.
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5.1 PLMGP Synthetic Data Example

To illustrate the particle learning multivariate Gaussian process (PLMGP) method, exam-

ples based on simulated data are presented. We first consider the one-dimensional synthetic

sinusoidal data used originally by Higdon (2002) and later by Gramacy and Polson (2011).

Now, in the case of the one-dimensional sinusoidal functions we have that

f(x) = sin
(πx

5

)
+

1

5
cos

(
4πx

5

)
and g(x) = sin

(
f(x)

3

)
(32)

where x ∈ [0, 10]. We simulate data, y(x) = (z(x), g(x)), from (32) with noise such that

z(x) ∼ N(f(x), σ = 0.1). We start with an initial sample of five data points from the model

(32) that are uniformly spaced throughout the domain of x, see Figure 1, and sequentially

sample thirty more data points from a Uniform(0,10) distribution. Using our PLMGP

algorithm, with N = 2000 particles, we obtain posterior predictive surfaces for f(x) and

g(x) that capture the true data generating models, without noise, very well (Figure 1).

Alternatively, we could ignore the correlation between the outputs of f(x) and g(x)

and use the particle learning Gaussian processes (PLGP) (Gramacy and Polson, 2011) to

model f(x) and g(x) independently. As an additional experiment, we randomly generated

450 data sets from the data generating model in (32). Each of the 450 data sets started

with an initial sample of five data points and sequentially added thirty more data points

as seen previously. For all 450 data sets we ran both the PLMGP and PLGP algorithms,

with N = 2000 particles, and compared the performance of the algorithms based on two

separate metrics: mean squared error and coverage. When running the PLGP algorithm

we defaulted to using the R plgp package library (Gramacy, 2012).

We calculate the distribution of the mean square errors of the fits under both the

PLMGP and PLGP models (Figure 2). On average, the fits under the PLMGP framework

do a better job and lead to smaller mean squared error values. Likewise, for the 450 data

sets we calculated the coverage as the percentage of time that the true output, f(x) and

g(x), was covered (pointwise) by the 95% credible intervals. A summary of the numerical

results are found in Figure 2. When modeling the data from f(x), the PLMGP method

does slightly better at being centered around the nominal 95% coverage rate while, on aver-

age, the PLGP method seemed seemed to undercover. On the other hand, when modeling
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Figure 1: The true data generating models f(x) and g(x) with five observed data points

(left). Also, posterior predictive surfaces of f(x) (middle) and g(x) (right) with 95% credible

intervals.

g(x) both methods did a good job at being centered around the nominal 95% coverage rate.

We attribute these facts to higher amount of nonstationarity needed to model f(x) and to

the lower amount of nonstationarity for g(x). Sharing information by modeling data from

f(x) and g(x) jointly is an advantage of the PLMGP that appears to help when modeling

correlated functions that require differing amounts of nonstationary modeling. However, in

both instances, the minimum observed coverage rate was lower for the PLMGP than the

PLGP.

Given our two metrics, the PLMGP method appears to outperform the PLGP method

when modeling functions that are clearly correlated. This fact should come as no surprise

since the PLMGP is able to take advantage of the shared information that comes from

correlated processes whereas the independent PLGP cannot. It is worth noting though

that although the PLMGP outperformed the PLGP, the PLGP method still did very well

at modeling the true functions.

As a further comparison, we contrasted fitting the model using MCMC versus the

proposed PL scheme. Working under the same scenario as before, we generated 35 data

points from (32), but treated the design as static and fixed, and so we started both the

MCMC and PLMGP method with 5 data points and sequentially added 30 more data

points to each. This was repeated 50 times in an R implementation on an Intel Core-i7
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Figure 2: Summary of the mean square errors (left) and of the observed coverage (right)

under both models for 450 repeated designs. The nominal coverage was taken to be 95%

(horizontal dashed line).

2.9GHz CPU computer. The efficiency of the two approaches were judged based on the

average computing time and average mean square error over the 50 repetitions. The average

mean square error (and the standard deviation of the mean square error in parentheses)

for predicting f(x) was 0.0056 (0.0015) for PLMGP, and 0.0062 (0.0026) for MCMC. The

average (sd) mean square error for predicting g(x) was 0.0006 (0.0001) for PLMGP, and

0.0007 (0.0001) for MCMC. Only slightly better, there did not seem to be a large difference

in the prediction error between fitting the model with MCMC versus PLMGP. There was

however a stark contrast in average computing time where it took, on average, 25 minutes

for one repetition based on 100,000 MCMC iterations and only 6 minutes, on average,

for the PLMGP method to finish one repetition with N = 4000 particles. Clearly, the

computational gain in speed is what sets the PLMGP method apart from the traditional

MCMC methods when data arrives sequentially.

Although many sequential Monte Carlo methods have to account for the problem of

particle depletion, in our application of PLMGP, we had effective sample sizes which were

always above the common threshold of N/2 (Prado and West, 2010).
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5.2 PLJRC Synthetic Data Example

Now, consider data generated from the following one-dimensional dampened cosine func-

tions, f(x), used by Santner et al. (2003), g(x), and the step function h(x)

f(x) = exp(−1.4x) cos

(
7πx

2

)
, g(x) = exp(−3x) cos

(
7πx

2

)

and h(x) =

1 if f(x) + g(x) > 0

0 if f(x) + g(x) ≤ 0
(33)

where x ∈ [0, 1]. Clearly, f(x) and g(x) are continuous functions for all x while h(x) is a

binary function that is highly correlated with f(x) and g(x). We start with an initial sample

of ten data points from the functions in (33), where we sample our inputs x ∈ [0, 1] from a

Latin hypercube design (McKay et al. (1979); Urban and Fricker (2010)) and sequentially

sample ten more inputs in [0,1] from the same Latin hypercube design. Using the particle

learning joint regression and classification (PLJRC) algorithm, with N = 4000 particles,

we initialize our particles and sequentially update our model using the remaining ten data

points. When finished, we obtain posterior predictive surfaces for f(x) and g(x) that do

an excellent job of capturing the true underlying data generating functions (Figure 3).

Moreover, we are able to calculate the posterior predicted probability of h(x) = 1 by

evaluating the expression in (25) via Monte Carlo integration. We classify h(x) as 1 if the

posterior predicted probability is greater than 0.5 and classify h(x) as 0 otherwise. In this

example (Figure 3), this method leads to a very low misclassification rate of 4%.

In order to compare the performance of including correlation between outputs, we can

ignore the correlation structure between f(x), g(x) and h(x) and use the PLGP method

of Gramacy and Polson (2011) and model the posterior predictive probability associated

with h(x) = 1 independently of f(x) and g(x). As a test, we randomly generated 450

data sets from the data generating functions in (33) and ran both the PLGP and PLJRC

algorithms in order to compare the mean squared error and classifications rates under

each model. When running the PLGP algorithm we again defaulted to using the R plgp

package library. Each of the 450 data sets started with an initial sample of ten data points

and sequentially added ten more. The mean square error was always better for the PLJRC

method than the PLGP (Figure 4), and the classification rate was overall better, suggesting
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Figure 3: The posterior predictive surface and 95% credible intervals for f(x) (left), poste-

rior predictive surface and 95% credible intervals for g(x) (middle), and posterior predictive

probability associated with h(x) (right). When the posterior predicted probability exceeds

0.5 we predict h(x) = 1 and h(x) = 0 otherwise.

the strength of modeling f(x), g(x), and h(x) jointly when correlated.

Distribution of the MSE

M
ea

n 
S

qu
ar

e 
E

rr
or

PLGP PLJRC PLGP PLJRC

0.
00

0.
05

0.
10

0.
15

f(x) g(x)

Distribution of the Percent Correctly Classified

P
er

ce
nt

 C
or

re
ct

ly
 C

la
ss

ifi
ed

PLGP PLJRC

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

h(x)

Figure 4: Summary of the mean squared error (left) and classification rates (right) under

both models for 450 repeated designs for data simulated using (33).

As a last comparison, we investigated the difference in fitting the model using MCMC

versus the proposed PLJRC scheme. Working under the same scenario as before, we gener-

ated 20 data points from (33), but treated the design as static and fixed, and so we started

both the MCMC and PLJRC method with 10 data points and sequentially added 10 more

data points to each. This was repeated 50 times in an R implementation on an Intel Core-i7
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2.9GHz CPU computer. The efficiency of the two approaches were judged based on the

average computing time, average mean square error, and average correct classification rate

over the 50 repetitions. The average (sd) mean square error for predicting f(x) was 0.0038

(0.0023) for PLJRC, and 0.0044 (0.0019) for MCMC. The average (sd) mean square er-

ror for predicting g(x) was 0.0034 (0.0021) for PLMGP, and 0.0036 (0.0026) for MCMC.

As before, we only found slightly better differences in prediction error between fitting the

model with MCMC versus PLJRC. On the other hand, classification was slightly better

using MCMC rather than PLJRC with a correct classification rate of 2.8% versus 4.1%,

respectively. However, the difference in average computing time between the two methods

is large enough to preclude the use of MCMC over PLJRC. On average, it took 22 minutes

for one repetition based on 100,000 MCMC iterations and only 4 minutes, on average, for

the PLMGP method to finish one repetition with N = 4000 particles. The computational

burden of MCMC is a clear disadvantage in sequential inference as compared to the much

quicker sequential Monte Carlo.

Comparable to Section 5.1, in our application of PLJRC, we had effective sample sizes

which were always above the common threshold of N/2 (Prado and West, 2010).

5.3 Hydraulic Capture Problem

A real world application, the hydraulic capture problem from the community problems

(Mayer et al., 2002) involves a groundwater contamination scenario based on the U.S.

Geological Survey computer simulator MODFLOW (McDonald and Harbaugh, 1996). The

objective of the problem is to contain a plume of contaminated groundwater by installing

up to four wells to control the direction of groundwater movement, and to do so at minimal

cost. The MODFLOW simulator was built to model this physical process where the inputs

to the computer simulator are the coordinates, (x1, x2), of the well and its pumping rate,

x3. We focus, as Lindberg and Lee (2015) do, on the single well version of the problem and

further constrain ourselves to the same initial conditions as Lindberg and Lee (2015). Thus

we focus our search of the input space on the region with 235 ≤ x1 ≤ 270, 580 ≤ x2 ≤ 680,

and −0.0064 ≤ x3 ≤ −0.0051, where negative rates indicate extraction. Lindberg and Lee

(2015) focused their efforts on searching this restricted area of the input space due to the
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fact that only about 2% of initial inputs, based on a Latin hypercube design (LHD), will

yield a valid output in the original input space. Narrowing the search to a smaller region

of the input space increases the number of valid outputs to about 5%.

We reformulate this problem in the framework of a constrained optimization problem

as

min
x
{f(x) : g(x) = 1; 235 ≤ x1 ≤ 270; 580 ≤ x2 ≤ 680;−0.0064 ≤ x3 ≤ −0.0051} (34)

where the objective f we wish to minimize describes the cost required to install and operate

the wells. The contaminant plume is contained when the binary constraint, g, is met. The

objective f and constraint g are both highly complex and nonlinear functions in which

outputs from each function can only be obtained from running the computer simulator.

However, worst of all, when the constraint g is not met, the computer simulator only tells

us that the constraint was not met but gives us no information about the output of the

objective function f . The time it takes to run the computer simulator is nontrivial and

so it not feasible to run the computer simulator at every possible combination of inputs

and find the one that optimizes the problem (34). Instead, we proceed by constructing a

surrogate model (Sacks et al., 1989; Santner et al., 2003) sequentially while searching for the

minimum of the response surface (Jones et al., 1998; Taddy et al., 2009). We construct our

surrogate model by modeling both the continuous objective f and the binary constraint

g jointly using our PLJRC model. Modeling f and g as correlated makes sense in this

context, because extracting more fluid is more likely to meet the constraint (contain the

plume of contamination) but will cost more; extracting less fluid will be cheaper but less

likely to meet the constraint. The model is sequentially updated by selecting new candidate

inputs, x∗, that maximize the probability of finding a smaller objective function value f .

Our approach toward this goal is that of expected improvement (Jones et al., 1998). We

define the improvement statistic at a proposed input x to be

I(x) = max{fmin − f(x), 0} (35)

where, after N runs of the simulator, fmin = min{f(x1), ..., f(xN)} is the current minimum

value observed. Since the proposed input x has not yet been observed, f(x) is unknown and,

conditional on the observed inputs x1, ...,xN , the distribution of f(x) can be represented
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by using the posterior predictive distribution of the PLJRC. Now that I(x) can be regarded

as a random variable, we choose new candidate inputs, x∗, by selecting those inputs that

maximize the expected improvement

x∗ = arg max
x∈X

E{I(x)}. (36)

Fortunately, conditional on a particular parameterization of the PLJRC, the expected im-

provement is available in closed form as

E{I(x)} = (fmin − µ(x))Φ

(
fmin − µ(x)

σ(x)

)
+ σ(x)φ

(
fmin − µ(x)

σ(x)

)
(37)

where µ(x) and σ(x) are the mean and standard deviation of the posterior predictive

distribution of f(x) and Φ(·) and φ(·) are the standard normal cdf and pdf respectively. The

equation in (37) provides a combined measure of how promising a candidate point is, that

trades off between local search (µ(x) under fmin) and global search (σ(x)). However, in the

presence of constraints, it makes no sense to search for candidate inputs that maximize the

expected improvement yet violate the constraints. Thus, we go one step further and choose

candidate inputs, x∗, by selecting those inputs that maximize the following (Lindberg and

Lee, 2015)

x∗ = arg max
x∈X

E{I(x)}α1S(x)α2 (38)

where S(x) is the asymmetric entropy defined as

S(x) =
2p(x)(1− p(x))

p(x)− 2wp(x) + w2
(39)

and p(x) is the predicted probability that the constraint is satisfied at the input x. Here,

α1, α2 and w are constants that we set equal to the default values suggested in Lindberg

and Lee (2015), and so, α1 = 1, α2 = 5 and w = 2/3. Thus, maximizing the quantity

in (38) is a trade off between maximizing the expected improvement and the probabil-

ity of meeting the constraints. Calculating the probability that an input x∗ satisfies the

constraint, i.e. p(x) = Pr(g(x) = 1), is not a trivial problem, however, we make use of

the posterior predictive probability calculations for g(x) under our PLJRC model in order

to make calculations of the probability of meeting the constraint. In many constrained

minimization problems, the probability of the constraint is correlated with the response
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function, so that the expected improvement is in opposition to the probability of meeting

the constraint, which is what makes the problem difficult. Our JRC model can handle this

correlation, in contrast to the existing models in the computer experiment literature.

To show the advantage of modeling the objective and constraint as correlated, we fol-

lowed the same setup as Lindberg and Lee (2015) and began with an initial sample size

of 65 inputs, based on a LHD, to run the MODFLOW simulator at. The output from

the MODFLOW simulator was then used to fit our PLJRC model where we chose to use

N = 2000 particles. The search for the optimal solution then proceeded by sequentially

selecting 300 more inputs to run the MODFLOW simulator at based on choosing points

that maximized the expected constrained improvement in (38). We follow the strategy of

Taddy et al. (2009) and select the candidate set of inputs from a LHD of size 500 times

the input dimension augmented by an additional 10% of the candidate locations taken

from a smaller LHD bounded to within 5% of the domain range of the current best point.

This hybrid space filling design further ensures that our algorithm searches both locally as

well as globally. The best solution our algorithm found is a cost of $22,952.8 by setting

the coordinates of the pump to (x1, x2) = (258.8451, 638.3419) and the extraction rate to

x3 = −0.005320973. Our solution reached the same cost values found in Lindberg and

Lee (2015) and Lee et al. (2011). Although under slightly different initial conditions, our

optimal cost found was much better than all eight of the solutions found in Fowler et al.

(2008), with the best solution reported there being $23,421 found using Implicit Filtering

for Constrained Optimization (IFFCO). Likewise, we reran the same analysis 30 times,

and the average value found after 300 runs reached by our algorithm ($22,953.3), Figure 5,

was much lower than the best values found by eight competing optimization algorithms as

reported in Fowler et al. (2008).

We ran the independent PLGP methodology 30 times under the same setup and con-

ditions as the joint PLJRC methodology and found that both methods lead to comparable

optimal solutions. Over those 30 Monte Carlo repetitions, the independent PLGP models

also found an optimal cost of $22,952.8. However, it was clear that independent PLGP
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model did not always find an optimal solution within the 300 sequential updates, see Fig-

ure 5, whereas the PLJRC model consistently found the optimal solution in fewer than 150

sequential updates. Thus, it would seem that the PLJRC model was able to take advan-

tage of the correlation structure between the objective and constraint functions that the

independent PLGP model was not.
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Figure 5: After 300 updates: The progress in minimization for 30 Monte Carlo repetitions

with random initial conditions using the joint (left) and independent (right) models. The

plot shows the average best minimum over the 30 runs, as well as 5th and 95th percentiles

for the best minumums found.

The framework of expected constrained improvement is heavily reliant on the model

behind both the objectives and constraints. Here we demonstrate that our PLJRC model

does a very good job at modeling the objective and constraint surfaces and allows the con-

strained expected improvement mechanism to outperform other established solutions. In

constrained optimization, the problems are typically difficult because the objective func-

tion and the constraint are in opposition, i.e., strongly negatively correlated. Our model

performs better by fully modeling this correlation.
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6 Discussion

We have established a novel methodological framework for modeling mixed type outputs

with fully Bayesian inference. By introducing latent outputs we are able to jointly model

correlated outputs. In particular, we showed how our framework could be applied in the

case of jointly modeling continuous and binary outputs that were correlated, particularly for

constrained optimization of computer simulation experiments. We combined the strengths

of our joint regression and classification (JRC) model with the speed of sequential Monte

Carlo methods to conduct fast inference. Sequential inference for the JRC model based on

MCMC is inefficient because it requires rerunning the MCMC every time a new data point

arrives. A considerable reduction in computation time is achieved by applying particle

learning methodology to the JRC model. Thus, the marriage of the JRC model with parti-

cle learning (PLJRC) is indeed a powerful new technique. We highlighted the strengths of

the PLJRC over other competing methodologies (such as the PLGP) with simulated exam-

ples and were able to show its practical usefulness in a real-world constrained optimization

problem of a computer simulator.

The introduction of latent parameters for joint modeling underlies the innovation of

our model. By directly allowing the latent parameters to be the observed outputs, in an

identity link fashion, we can recover the multivariate Gaussian process model of Section 2.

Furthermore, this also allows us to extend the particle learning algorithm to the model of

Section 2, thereby creating a new stochastic modeling technique (PLMGP) comparable to

that of Gramacy and Polson (2011). This framework also provides a novel implementation

of particle learning for multivariate Gaussian processes.

An obvious extension within our framework would be to extend the model to a richer

class of outputs. Using suitable transformations G(·), we can envision an infinite continuum

of correlated data types that could be modeled jointly.
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