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ABSTRACT
Access time prediction is important for predicting hard disk
drive latencies. Existing approaches use white-box models
developed with expert knowledge and can take months to
parameterize. Automatically learning behavior is much pre-
ferred, requiring less expertise, fewer assumptions, and less
time. Black-box modeling has been attempted, but none
have demonstrated per-request accuracy. Barriers to ma-
chine learning of access times include periodicity with high,
unknown frequencies, and a discontinuous access time func-
tion. Previously, we showed that recognizing periodicity is
crucial for accuracy. Unfortunately, Fourier analysis is ex-
pensive and ill-suited for this problem. In this paper, we
demonstrate that the model can identify periods itself, by-
passing Fourier analysis. We show that neural nets, given
specific sinusoids as additional inputs, can predict access
times, even across differing track lengths and thus differ-
ing periods. This removes a significant barrier and expands
the range, although challenges remain. Removing discon-
tinuities via a trigonometric transformation further reduces
error.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance Anal-
ysis and Design Aids; I.6.5 [Simulation and Modeling]:
Model Development—Modeling methodologies; D.4.8 [Operating
Systems]: Performance—Modeling and predictions

General Terms
Performance
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neural net, periodicity, Fourier analysis, hard disk drive

1. INTRODUCTION
In an earlier paper, we showed that recognition of periodic-
ity is crucial for predicting hard disk drive access times [11].
A neural net could be used to predict hard disk drive access

times, but it only worked if the neural net was explicitly
fed periodicity information. This consisted of adding sines
and cosines of the block numbers of various periods as ad-
ditional inputs. Results were best when using periods de-
tected through Fourier analysis. Unfortunately, even with
the Fourier analysis constrained to one dimension, the com-
putational cost of scaling up to the billions of sectors on
modern hard disk drives is prohibitive. Furthermore, effec-
tive functioning of the neural net may require periods not
found by Fourier analysis (fig. 3).

The issues associated with Fourier analysis can be avoided
by synthesizing the sinusoids in the neural net itself. To do
this, a base set of sinusoids with frequencies which are pow-
ers of two are fed into the neural net. Just as any positive
integer can be constructed by adding a logarithmic number
of powers of two, sinusoids with positive integer frequencies
can be constructed by multiplying a logarithmic number of
complex sinusoids with frequencies which are powers of two.
The neural net is also effective at constructing sinusoids with
non-integer frequencies, presumably via nonlinear behavior
(see fig. 1). Since the neural net is able to construct sinusoids
with whatever periods are necessary, the issue of periodic
behavior not showing up in Fourier analysis is moot.

Hard disk drive latency models can be used when simulating
large compute systems [35], for parallel file system simula-
tion [36], for storage configuration [4], and for data place-
ment [25]. The most accurate models are white-box models,
which require detailed knowledge of the device’s internals.
One such example of a white-box model is DiskSim [8], which
is widely used [9, 55, 36]. These models have many config-
uration parameters which must be precisely determined in
order for the model to be accurate. This task of parameter-
ization can take a long time.

Other researchers have noted the difficulty of parameterizing
DiskSim [40, 32]. Many researchers use the outdated disk
models that come with DiskSim, presumably because this
is easier than obtaining or creating models for newer disk
drives. Hard disk drives commonly modeled with DiskSim
include the Quantum Atlas 10K [12, 49, 31, 53], which was
released in 1999 [31]; the Seagate Cheetah 9LP ST39102LW [49,
33, 50, 34], which appears to have been released in 1998 [38];
and the Seagate Barracuda 4LP ST32171 [55], which ap-
pears to have been released between 1996 and 1998 [5]. All
of these papers used models which come with DiskSim, and
these models were at least 11 years old when the papers
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Figure 1: Predicted versus actual value of sin(1000.47 · 2πx)
generated by a neural net. The neural net has 4 hidden
layers of 100 neurons each. The input consists of sines and
cosines of x with frequencies of the form 2k with 0 ≤ k < 30.
The mean absolute error∗ is 0.00215. This shows that the
neural net can generate non-integer frequencies well.
∗We use mean absolute error because our errors are very
non-Gaussian.

were published. The capacities of the modeled devices were
at most 9.2 GB, with sustained data transfer rates of at
most 41 MB/s [1, 5, 38]. For comparison, consider top of
the line models released in 2010, the year of the earliest
publication above. The WD Caviar Green 3TB [13] and the
Seagate 3TB FreeAgent GoFlex Desk [2], had capacities of
around 3000 GB and sustained data transfer rates of around
123 MB/s [3] (sizes measured using 1 GB = 109 bytes). This
means that the models used in the papers were at least a
factor of 326 times smaller and 3 times slower than top of
the line drives of the time. Using such out of date models
likely hampers research relevance, but it is nearly inevitable
when models are so hard to create.

Parameterizing white-box models is a long and difficult pro-
cess, because manufacturers do not release details such as
sector layout required by white-box models. In fact, a fel-
low researcher (Ron Oldfield) was involved with configuring
DiskSim to model an existing device, a process that took
several months [41]. Tools such as DIG can extract some
of this information, such as the sector layout [22]. Unfor-
tunately, they require assumptions about the internal struc-
ture of the hard disk drive. This structure is likely to change
in the future due to the introduction of shingled hard disk
drives [45], dual-heads per surface [31], or other optimiza-
tions, as has happened in the past with Zoned Bit Recording
and serpentine layouts. Since manufacturers do not release
this information, researchers are forced to reverse-engineer
a device before modifying DIG and DiskSim to support the
new layout.

Machine learning is a much more desirable approach than
white box modeling for hard disk drive latency prediction.
Behavioral models requiring a minimal set of assumptions
can be constructed using machine learning. This stands in

stark contrast to white-box modeling, which requires inti-
mate knowledge of the device’s internals. Researchers have
had success with behavioral modeling of hard disk drive ag-
gregate performance [27, 12, 51, 55], but none of these can
accurately model individual requests.

In this paper, we use a workload consisting of random, single-
sector reads. The latencies of this workload are known to
be difficult to predict on a per-request level [11]. They also
correspond directly to access times, which are an important
part of request latencies in general, so this is a problem
worth addressing. At the same time, this workload reduces
the impact of complex firmware behavior such as caching
and readahead, making the problem tractable. We see this
as a stepping stone toward a performance simulator for more
general workloads.

The main contribution of this paper is to show the ability to
recognize periodicity based on a generic base set of sines and
cosines, rather than sines and cosines with periods extracted
from the data. We also show that discontinuities in the
access time function are the main source of remaining error
and how they can be removed.

2. RELATED WORK
2.1 Predicting request latencies
DiskSim [8] is a well-regarded disk model based on discrete
event simulation. It has been validated to produce request-
level accuracy. However, it is computationally expensive and
difficult to configure for modern disks.

Many analytic models exist, including work by Lebrecht,
Dingle, and Knottenbelt [30]. Analytic models are relatively
easy to understand and extremely fast due to their com-
pact formulae. Unfortunately, they require very detailed ex-
pert knowledge to create. Often, they are limited to certain
classes of workloads and are not useful alone in generalized
contexts. Our approach shares the last two limitations (for
now) but does not require domain expertise.

Kelly et al . describe a black-box probabilistic model [27]
similar to table-based models such as Garcia et al . [19]. In
this approach, requests are categorized based on features in-
cluding size, LRU stack distance, number of pending reads,
number of pending writes, and some RAID-specific informa-
tion. Table-based models are limited by the table size. The
work by Kelly et al . ameliorates this issue by essentially not
requiring the entire table to be filled in, but the problem of
table size is not fully solved.

Mesnier et al . create a model for relative performance of
storage devices [37]. Unfortunately, their approach still re-
quires an accurate base model.

Using regression trees to predict response time is a popular
approach. Dai et al . predict performance with a combina-
tion of regression trees and support vector regression [12].
However, their models are workload-specific, and their pre-
diction errors are based on one-second averages rather than
per-request latencies. Wang et al . also calculate errors based
on windows, using one-minute averages in their case [51].

None of the machine-learning-based approaches have shown



low per-request errors.

2.2 Learning periodic functions
Neural nets can be trained on periodic functions in many
ways. Some setups predict the value of the function directly
from the input. These invariably use a fixed interval with a
very small number of oscillations [24, 23, 43, 18, 54]. With
this approach, extrapolating beyond the training range leads
to poor performance [28]. This approach is infeasible for our
problem because the number of oscillations (roughly, the
number of tracks) is on the order of a million.

If the function is known to have period p, another approach
is to map the input x into the range (0, p) using x mod p.
Common examples include time-of-day or day-of-year inputs
for functions that are daily or yearly periodic [29, 15]. An
alternative is to map it to sin(2πx/p) and cos(2πx/p) [20].
(This pair of functions has nice properties; they are both
continuous and bounded, and weighted sums are equal to
other sinusoids with varying phase.) Either way, this ap-
proach requires the period to be precisely known ahead of
time, and that the input be exactly periodic. Note that such
a period cannot be calculated from manufacturer’s specifi-
cations.

Neurons in a neural net calculate their output by taking
a weighted sum of the inputs and applying an activation
function or transfer function, typically tanh(x) or 1

1+e−x .
Rather than using one of these as the activation function,
one may use sin(x). Unfortunately, sin(x) does not approach
a limit for large x, while tanh(x) and 1

1+e−x do. Lack of a

such a limit can lead to instability [52]. Periodic activation
functions also introduce many local minima [46].

A powerful tool for time series data is recurrent or delay
networks [39, 26]. These feed the network back into itself,
so that the network predicts y values from other y values,
rather than from x values. This is usually applied to prob-
lems with one dimension of recursion, but ours has two, one
for the previously accessed sector and one for the current
sector to access. With dense data, only one level of re-
cursion is necessary, because the other y values are already
known. If the data is sparse, missing values must be recur-
sively computed. Our sampling is (by necessity) so sparse
that the recursion would be extremely deep, making com-
putation time impractical.

Park et al . used what they call spectral basis neural networks
for traffic prediction [42]. These are neural nets with the
input augmented with sines and cosines of the raw input.
Although similar to our work, they differ in two ways. First,
they use every integer frequency in a given range, rather
than frequencies that are powers of two. This limits the
frequency range they are sensitive to with a given number
of sines and cosines. Second, their motivation differs. They
do not appear to be interested in finding periodic behavior,
but instead use the additional inputs to make the problem
linearly separable.

2.3 Fourier analysis
When a signal is sampled at every point on a regular grid,
the Fast Fourier Transform (FFT) can be used to compute

the Fourier transform inO(n logn) time, where n is the num-
ber of grid points. If the sampling is sparse, however, FFT
cannot be used, and a brute force calculation would require
O(kn) time, where k is the number of samples. A much
more desirable running time would be at most a logarith-
mic factor away from O(k), which is where sparse Fourier
algorithms come in.

Sparse Fourier algorithms assume that the number of non-
negligible frequency components is small. Motivations vary,
but the most common are to reduce the number of required
samples or to reduce the computation time [21]. We do re-
quire a sparse sampling, but our bottleneck is primarily com-
putation time rather than number of samples. With that in
mind, we looked for an algorithm that is fast to compute.
Some can run as fast as O(k log k) [21], but they make as-
sumptions which do not hold for our problem. Specifically,
we want an algorithm which supports non-integer frequen-
cies and multidimensional signals.

A factor that turned out to be important is the existence of
non-integer frequencies in our signal (fig. 4). Many sparse
Fourier algorithms assume that the frequencies are integer
and will result in significant leakage if this assumption is vio-
lated [6]. Duarte and Baraniuk describe spectral compressive
sensing which allows for off-grid frequencies, but it is one-
dimensional, and they do not describe runtime bounds [14].
Tang et al . have similar results [48].

We would also prefer an algorithm which supports multidi-
mensional Fourier analysis, since our problem is inherently
two-dimensional. Unfortunately, the vast majority of sparse
Fourier research has been on the one-dimensional case. Chi
and Chen build on Tang et al .’s results and demonstrate an
algorithm for sparse Fourier analysis of a two-dimensional
signal with off-grid frequencies [10], but they are unable to
provide run time guarantees.

3. FINDING PERIODICITY
We showed previously that recognition of periodicity is cru-
cial for predicting access times [11]. However, the question of
how to determine the periodicity is still open. The obvious
solution is to use the Fourier transform, which we describe
in section 3.1. The Fourier transform turns out to be diffi-
cult to calculate for our data set, as well as having inherent
limitations. Because of this, we decided to bypass Fourier
analysis entirely and let the neural net find the periodicity
itself. This solution is described in section 3.2.

From here on out, we define zone to mean a contiguous range
of logical sectors that lie in tracks of the same length. Tracks
which have the same length and are physically adjacent but
not logically adjacent are not necessarily part of the same
zone.

3.1 Hierarchical Fourier analysis
Considering pairs of sectors (a start sector and an end sec-
tor), each of which can take roughly a billion unique values
for modern drives, the grid of all 2D periods to search con-
tains roughly 1018 points. Computing the Fourier transform
over such a large domain is prohibitively expensive. The
Fast Fourier Transform (FFT) requires a dense data set,
which at 4 bytes per point would take up about 3.5 exabytes,



and would take about 500 million years to capture. Even
subsampling 1 out of every 1000 sectors, which is roughly
the Nyquist rate given normal track lengths, would yield 3.6
terabytes, and would take about 500 years to capture.

To simplify the problem, we previously made the assumption
that interesting frequencies lie precisely on the diagonal of
the 2D Fourier transform [11]. With this assumption, the
grid size is reduced to 109 points. This improves the brute
force search from impossible to merely impractical, but this
still is not good enough, as it would take about six months
to capture the data. To reduce the sampling time, we are
forced to rely on a sparse sampling.

Designs requiring Fourier analysis also require boundaries
within which that analysis is valid, which for our problem
correspond to zone boundaries, or places where the track
length changes. Since the boundaries for our problem are
not known in advance, we must search for them. A straight-
forward way to search for these boundaries is to use a divide-
and-conquer approach. Fourier analysis is performed recur-
sively on smaller and smaller subregions until consecutive
spectra are identical. This is similar to a binary search,
except that both branches may be taken.

For example, say that the search range is (0, 1), and there
is one boundary at 1

4
. The left and right halves of (0, 1)

will have spectra computed. These spectra will not match,
because the spectrum for ( 1

2
, 1) will have frequencies that

do not show up in (0, 1
2
). Therefore, (0, 1

2
) and ( 1

2
, 1) will

each have their left and right halves analyzed. Since the two
halves of ( 1

2
, 1) have identical spectra, the recursion for it

stops. However, the spectra for (0, 1
4
) and ( 1

4
, 1

2
) do not

match, so they are recursively analyzed. At the end of this
process, the leaves of the tree are candidate zones. Adjacent
regions with identical spectra are merged, leaving (0, 1

4
) and

( 1
4
, 1).
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Figure 2: Recursive Fourier analysis can be used to find
boundaries where frequencies change.

The need to compare spectra for equality adds additional
computation. Because of the large number of frequencies,
even strong signals can be swamped by noise when two spec-
tra are compared. We reduce the noise by sparsifying the
Fourier transform: a penalty term is added to inhibit noise,
and a few rounds of stochastic gradient descent are run.

Unfortunately, this procedure is computationally expensive.
We ran a test using a data set of 320,000 reads from the first
1,901,048 sectors of the drive, which covers roughly 8 zones.
The analysis was run on a 12-node cluster with 2 dual-core

AMD Opteron 2212 processors per node, or 48 cores total.
The analysis took 5 hours and 9 minutes. The algorithm
has a (probably loose) lower bound linear in the number of
sectors, since that determines the number of frequencies to
search through in a single Fourier transform computation.
Using that lower bound and scaling up to the entire drive
(which has 976,773,168 sectors), it would take over 110 days
to analyze the entire drive, assuming the same amount of
data. Since more data would actually be necessary to main-
tain the same fidelity over a larger range, the result would
be even worse.

3.2 Constructing periods
As detailed in the previous subsection, the Fourier trans-
form is difficult to calculate for our problem. Furthermore,
because the data contains many large discontinuities, the
Fourier transform is not well-behaved. In particular, a dom-
inant pattern in the data is a sawtooth, whose Fourier trans-
form has harmonics whose coefficients decay as 1/n. In other
words, a very large number of harmonics have significant
power. This masks even the fundamental frequency of other
waves with lower power.
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Figure 3: Fourier transform of signal has “interesting” fre-
quencies at the marked locations, but correlation between
“interestingness” and Fourier coefficient magnitude is weak.

Signals which are not simple and precisely periodic may also
have “interesting” frequencies that do not show up in the
Fourier transform. For example, consider:

f(x) =

{
sin(456 · 2πx+ φk) sin(50 · 2πx) < 0

sin(567 · 2πx+ φk) otherwise
(1)

where

k = b2 · 50xc (2)

with φ defined to make f continuous. In other words, the fre-
quency of this signal switches between 456 and 567, with the
switching occurring with frequency 50. The Fourier trans-
form of this function is seen in fig. 3. None of the frequencies
mentioned correspond exactly to a peak in the Fourier trans-
form. Of course, the Fourier transforms of individual zones
of this function have sharp peaks at the appropriate frequen-
cies, but in the real data the locations of the boundaries and
even the number of zones are not known ahead of time.
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Figure 4: Section of the Fourier transform of access times
from the first few tracks, with darker colors indicating higher
magnitude. Note that the peak is not centered on a pair of
integer coordinates.

Another problem is that our data contains off-grid frequen-
cies (fig. 4), or frequencies which are not exact integers.
Many sparse Fourier algorithms do not work well with off-
grid frequencies [6], and will instead report many frequen-
cies near the frequency of interest, but with lower magni-
tudes. Finding a sparse Fourier algorithm which is two-
dimensional, supports off-grid frequencies, is computation-
ally efficient, is efficient in the number of samples required,
has reasonable constant factors, and which generally scales
to the size of our problem is nearly impossible.

Because of the difficulties of computation and limitations in
the result of the Fourier transform, we decided that the best
approach was to let the neural net compute the frequencies
for itself. Computing periodic waveforms directly is a diffi-
cult problem (see checkerboard problem [47] and two-spirals
problem [17, 44]), so we feed the neural net a base set of
sinusoids from which it can compute arbitrary sinusoids.

From basic trigonometry, the angle sum formulas for sine
and cosine are:

cos(α+ β) = cos(α) cos(β)− sin(α) sin(β) (3)

sin(α+ β) = sin(α) cos(β) + cos(α) sin(β) (4)

Adding a time parameter gives:

cos((α+ β)t) = cos(αt) cos(βt)− sin(αt) sin(βt) (5)

sin((α+ β)t) = sin(αt) cos(βt) + cos(αt) sin(βt) (6)

which means that a neural net can construct sines and cosines
with frequency α+β very simply given sines and cosines with
frequencies α and β. By extension, sinusoids of any integer
frequency n can be constructed by a neural net with depth
O(log log n) given O(logn) input sinusoids with frequencies
of the form 2k. Of course, this is not necessarily the mech-
anism by which the neural net computes its output, but it
serves as an explanation to show that the idea has theoreti-
cal merit.

Since the number of sectors, and therefore the number of

periods, is on the order of a billion, and since we use fre-
quencies of the form 2k, the number of input frequencies is
roughly log2 109 ≈ 30. Combining an arbitrary subset of
these may be too difficult an operation for a neural net with
a reasonable number of neurons to perform in a single layer,
so we allow the neural net to have multiple hidden layers.
This corresponds to the O(log log n) depth mentioned in the
previous paragraph.

4. INCREMENTAL LEARNING
The problem of learning to compose periods, find the dif-
ference between the phases of the composed periods, and
generate an appropriate output waveform is too difficult for
a neural net to learn all at once. In fact, our attempts to
do so failed. One problem is that there is a large number
of inputs, about 30 sines and cosines per input request, and
learning to combine the appropriate subset of these is a diffi-
cult problem in and of itself. Another problem is that differ-
ent zones of the disk have different track lengths, meaning
that different composite periods are required, so the neural
net must learn to switch between them.

a

sin(2πa/p1)

cos(2πa/p1)

...
...

b

sin(2πb/p1)

cos(2πb/p1)

...
...

Input subnet 1

Input subnet 2 ...

Output subnet

Hidden layer(s) Intermediate layer

Hidden layer(s)

Figure 5: Network architecture. Note that the weights in
the two input subnets are identical.

Our intent is that these subproblems are handled by differ-
ent parts of the neural net, whose architecture is shown in
fig. 5. Specifically, period choice and composition should be
performed by the input subnets, and the phase comparison
and output generation should be performed by the output
subnet. By breaking the training into stages that focus on
parts of the neural net, the difficulty of each stage of training
should be reduced. This idea of multi-stage training shares
a conceptual thread with the pretraining used with deep
learning for classifying images [16]. In these approaches, the
researchers pretrain layers close to the input before moving
to the main training phase. Although their motivation is
different (making use of unlabeled data), it has much the
same effect.

4.1 Approach 1: expanding coverage



To break the training into stages, we start by training with
data from a tiny portion of the drive. We then increase the
covered portion of the drive, training along the way, until the
entire drive is covered. When the covered portion is much
less than one composite period, the phase is approximately
linear in the sector number. This means that approximating
the composite period is very easy, and most of the training
is focused on the output subnet, which computes the phase
difference and output waveform. As more of the drive is cov-
ered, the difficulty of approximating the composite periods
is gradually increased.

This approach appears to partially work. The coverage can
be expanded from a few sectors to more than one zone, and
the error shows that the model is making better than chance
predictions. Unfortunately, when we stop expanding the
coverage and focus on reducing the error, we are unable to
reduce the error to a reasonable amount. We believe this
is because the neural net gets stuck in a configuration that
is good for the early parts of training, essentially in a local
minimum and unable to change to a configuration that is
good for the larger area.

4.2 Approach 2: half-zero sampling
An alternative approach is to train the period composition
first, and then train the phase differencing. This is accom-
plished by capturing a training set where the start sector is
always sector 0, and the end sector varies. Since one of the
sectors is constant, computing the difference is trivial, and
training is focused on learning to generate the composite
periods. The start sector can then be allowed to vary more
and more until it can be any sector on the drive.

We use a workload that consists of random reads, except
with half of the reads randomly changed to sector 0. This
means that (previous, current) sector pairs in the workload
consist of a mix of (0, 0), (0, x), (x, 0), and (x, y). The (0, 0)
pairs are discarded, since they are useless, leaving an even
mix of (0, x), (x, 0), and (x, y). Training on these all at once
avoids the local minimum problem in the previous approach,
which seems to be caused by changing characteristics of the
training set over time. Doing so also avoids the question of
when to switch data sets. Although the data is provided
all at once, the neural net presumably learns the (0, x) and
(x, 0) pairs first, since they are easier, and then learns the
(x, y) pairs.

5. DISCONTINUITY REMOVAL
A basic characteristic of neural nets is that they assume
that the function being approximated is continuous, and so
they do not handle discontinuities well. This is very unfor-
tunate, because the function we are approximating is full of
large discontinuities. Thankfully, these discontinuities have
a structure that makes them removable.

The discontinuities are caused by the rotational nature of a
hard disk drive. In this paragraph, seek time is defined to
include settle time and head switch time. If the seek time
is less than the rotation time, then the head simply waits
on the destination track until the destination sector rotates
underneath it. If the seek time is greater than the rotation
time, the head will miss the sector and must wait for an
additional rotation. The discontinuities in the access time

function are (mostly) places where the seek time is almost
exactly equal to the rotation time, and a slight change in
the sector number, which implies a slight change in rotation
time, causes a rotation miss. This explanation predicts that
the discontinuities will have a height which is equal to the
rotational period of the drive, which is borne out by data.

Consider a continuous section of the latency function be-
tween two discontinuities. This section runs from a mini-
mum to a maximum (or from a maximum to a minimum).
The section can be translated and scaled so that it runs from
−π to π. If it is now treated as an angle, instead of as a
real number, then −π and π are equal, so the discontinuity
is gone. This is shown geometrically in fig. 6.

In more concrete terms, consider the sawtooth f(x) which
has a minimum of −h and a maximum of h. Instead of
predicting f(x) directly, we predict c = cos

(
π
h
f(x)

)
and

s = sin
(
π
h
f(x)

)
. These are continuous functions of x, so the

neural net sees no discontinuities. The value of f(x) can be

reconstructed using f̂(x) = h
π

atan2(c, s).

The problem is slightly complicated by the fact that while
the latency function looks locally like the sawtooth described,
globally it has a greater range between its minimum and
maximum. To account for this, we use a sliding window
approach. The neural net predicts a lower bound for the la-
tency function, l, in addition to c and s. The final predicted
latency is then f̂(x) = h

π
atan2(c, s) + 2kh, where k is the

smallest integer such that h
π

atan2(c, s) + 2kh > l.

6. RESULTS
We tested our approach against two hard disk drives. The
first, which we call HD1, is the same as used in our pre-
vious paper. It is a Western Digital Black WD5002AALX
500 GB 7200 RPM, with a total of 976,773,168 sectors. The
second hard drive, HD2, is a Seagate ST31000340SV 1 TB
7200 RPM, with a total of 1,953,525,168 sectors. Native
command queueing is disabled to prevent the drive from re-
ordering requests and biasing toward lower latencies.

We used a genetic algorithm (GA) to find good neural net-
work topologies. The GA chose how many layers to use,
how many neurons should be in each layer, which periods to
keep, and how the initial weights should be randomized. We
run the GA separately for each range and hard disk drive.
This may not be necessary in every case. For example, dif-
ferent devices from the same model line will almost certainly
be modeled well with the same configuration.

The neural nets were trained on data sets captured with
special sampling methods, but testing is always performed
with a data set of random reads chosen uniformly over the
region of interest.

Predicted versus actual latencies for a neural net predict-
ing latency directly for the first 237,631 sectors of HD1 are
shown in fig. 7a. The neural net has 5 hidden layers in the in-
put subnets with sizes 39, 56, 164, 9, and 5, an intermediate
layer with size 18, and 2 hidden layers in the output subnet
with sizes 51 and 15. The weights were initialized with nor-
mally distributed random values with standard deviations



Figure 6: A 2D sawtooth can be rolled up into a 3D helix to remove its discontinuities.

of 0.066, 0.775, 0.872, 0.051, 0.320, 0.355, 0.637, 0.200, and
1.280. The input included sines and cosines with periods of
24, 28, 210, 211, 212, 214, 215, 217, 218, and 225. The mean
absolute error is 0.333. If we correct for predictions which
are off by exactly one rotation, the mean absolute error falls
to 0.176.

Note that at low and high access times, the errors are large.
This is caused by the discontinuities in the access time func-
tion. When the value to predict lies very close to a discon-
tinuity, the neural net has difficulty predicting which side of
the discontinuity the value lies on, and therefore whether it
should be large or small. Since the largest and smallest val-
ues are on either side of discontinuities, this means that our
largest errors are for the largest and smallest access times.

Predicted versus actual latencies for a neural net with the
discontinuities removed predicting latency for the first 237,631
sectors HD1 are shown in fig. 7b. The neural net has 5 hid-
den layers in the input subnets with sizes 55, 109, 63, 29,
and 5, an intermediate layer with size 9, and 1 hidden layer
in the output subnet with size 49. The weights were initial-
ized with normally distributed random values with standard
deviations of 0.649, 0.600, 0.285, 0.271, 0.251, 0.457, 0.268,
and 0.102. The input included sines and cosines with periods
of 23, 27, 29, 210, 211, 213, 214, 215, 216, 217, and 218. The
mean absolute error is 0.187. If we correct for predictions
which are off by exactly one rotation, the mean absolute
error falls to 0.029.

In fig. 8, predicted versus actual latencies are plotted for
the first 220 = 1,048,576 sectors of HD1. This covers roughly
four zones, meaning that the periodicity changes three times.
The plot shows that the neural net is able to handle changes
in periodicity without the locations of the changes being de-
termined beforehand. If a method based on Fourier analysis
were used, the boundaries would have to be located and
the input to the neural net preprocessed. The neural net
has 3 hidden layers in the input subnets with sizes 57, 105,
and 55, an intermediate layer with size 36, and 3 hidden
layer in the output subnet with sizes 11, 21, and 41. The
weights were initialized with normally distributed random
values with standard deviations of 0.551, 0.929, 0.372, 0.471,
0.049, 0.460, 0.317, and 0.197. The input included sines and
cosines with periods of 22, 212, 214, 215, 216, 217, 218, and
219. The mean absolute error is 0.639. If we correct for
predictions which are off by exactly one rotation, the mean
absolute error falls to 0.061.

In fig. 9, predicted versus actual latencies are plotted for the
first 220 = 1,048,576 sectors of HD2. The neural net has 5
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Figure 8: Predicted versus actual latency over the first 220 =
1,048,576 sectors of HD1 with discontinuities removed. The
mean absolute error is 0.639. If we correct for predictions
which are off by exactly one rotation, the mean absolute er-
ror falls to 0.061. For details of the neural net configuration,
see section 6.

hidden layers in the input subnets with sizes 49, 92, 55, 50,
and 10, an intermediate layer with size 8, and 1 hidden layer
in the output subnet with size 28. The weights were initial-
ized with normally distributed random values with standard
deviations of 0.159, 0.940, 0.219, 0.490, 0.602, 0.612, 0.194,
0.185. The input included sines and cosines with periods of
24, 211, 215, 216, 217, 218, 219, 220, 221, 224, 225, 226, and
228. The mean absolute error is 0.202. If we correct for
predictions which are off by exactly one rotation, the mean
absolute error falls to 0.066.

When tasked with predicting the first 222 = 4,194,304 sectors
of HD1, the neural net has 5 hidden layers in the input
subnets with sizes 46, 127, 65, 30, and 14, an intermediate
layer with size 14, and 1 hidden layer in the output subnet
with size 37. The weights were initialized with normally
distributed random values with standard deviations of 0.156,
0.594, 0.198, 0.200, 0.232, 0.341, 0.217, and 0.209. The input
included sines and cosines with periods of 211, 214, 215, 216,
217, 218, 219, 220, 221, 222, and 223. The mean absolute
error is 1.048. If we correct for predictions which are off by
exactly one rotation, the mean absolute error falls to 0.135.

When tasked with predicting the first 222 = 4,194,304 sectors
of HD2, the neural net has 4 hidden layers in the input sub-
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(a) Direct latency prediction. The mean absolute error is 0.333.
If we correct for predictions which are off by exactly one rotation,
the mean absolute error falls to 0.176.
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(b) Predictions with the discontinuities removed. The mean ab-
solute error is 0.187. If we correct for predictions which are off by
exactly one rotation, the mean absolute error falls to 0.029.

Figure 7: Predicted versus actual latency over the first 237,631 sectors of HD1, without and with discontinuities removed.
For details of the neural net configuration, see section 6.
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Figure 9: Predicted versus actual latency over the first 220 =
1,048,576 sectors of HD2 with discontinuities removed. The
mean absolute error is 0.202. If we correct for predictions
which are off by exactly one rotation, the mean absolute er-
ror falls to 0.066. For details of the neural net configuration,
see section 6.

Device Range size Requests MAE MAE corrected
HD1 237,631 40,000 0.187 0.029
HD1 1,048,576 80,000 0.639 0.061
HD1 4,194,304 160,000 1.048 0.135
HD2 1,048,576 80,000 0.202 0.066
HD2 4,194,304 160,000 0.829 0.170

Table 1: Mean Absolute Error (MAE) in milliseconds for
various configurations. “MAE corrected” refers to the error
when an integer number of rotational latencies is added to
the prediction to move it to the correct period.

nets with sizes 44, 170, 52, and 4, an intermediate layer with
size 10, and 1 hidden layer in the output subnet with size 45.
The weights were initialized with normally distributed ran-
dom values with standard deviations of 0.148, 1.763, 0.126,
0.550, 0.883, 0.293, and 0.125. The input included sines and
cosines with periods of 211, 215, 216, 217, 218, 219, 220, 221,
222, 223, and 227. The mean absolute error is 0.829. If we
correct for predictions which are off by exactly one rotation,
the mean absolute error falls to 0.170.

Errors for various configurations are shown in table 1. Train-
ing was attempted with a data set size of 40,000. If the GA
failed to converge, the data set size was doubled until the
GA did converge. It is not yet clear how the required data
set size scales with the range of sectors covered, but larger
ranges cover more varied topology, so it is unsurprising that
they require more data.

7. FUTURE WORK
The immediate next step is to expand coverage to the entire
hard disk drive. This would include determining how the
required data set size scales with the range size.

A relatively simple improvement would be to allow the re-
quest size to vary. Accounting for scheduling and queueing
effects could be accomplished by providing the past several



requests instead of just one, although this is complicated
by the fact that a request’s latency can be affected by the
requests issued after it if requests can be responded to out
of order. Even more difficult still would be allowing writes
and non-random reads, as the performance of both of these
both relies on cache behavior. Not only is cache behavior
potentially complex, it introduces long-lived state.

8. CONCLUSION
Although neural nets are poorly suited for directly approxi-
mating a high-frequency periodic function, they can provide
good results when given high-frequency sines and cosines as
additional inputs. When providing these sines and cosines,
neural nets can be trained to predict hard disk drive access
times for random reads, even across zones of the drive with
varying periodicity.

Results can further be improved by removing the disconti-
nuities in the latency function. This requires knowing the
rotational latency of the hard disk drive, but it may be a
small price to pay for increased precision.

Because the error for individual requests is low, unless the la-
tency is off by an integer number of rotations, rotation misses
(or mispredictions thereof) are by far the largest source of
error. If these are random, caused by fluctuations inside
the device, then the prediction error is nearly as low as it
can be. If the misses are not random, then predicting them
accurately should be the next focus of research.
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