
Determining Convergence in Gaussian Process
Surrogate Model Optimization

Abstract

Identifying convergence in numerical optimization is an ever-present, difficult, and
often subjective task. The statistical framework of Gaussian process surrogate model
optimization provides useful measures for tracking optimization progress; however, the
identification of convergence via these criteria has often provided only limited success
and often requires a more subjective analysis. Here we develop a novel approach
using ideas originally introduced in the field of statistical process control to define a
robust convergence criterion based upon the improvement function. The Exponen-
tially Weighted Moving Average (EWMA) chart provides an ideal starting point for
adaptation to track convergence via the EWMA convergence chart introduced here.

Keywords: Derivative-free Optimization, Computer Simulation, Emulator, Expected Im-
provement. EWMA
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1 Introduction

Black-box derivative-free optimization has a wide variety of applications, especially in the

realm of computer simulations (Kolda et al., 2003; Gramacy et al., 2015). When dealing

with computationally expensive computer models, a key question is that of convergence of

the optimization. Because each function evaluation is expensive, one wants to terminate

the optimization as early as possible. However for complex simulators, the response surface

may be ill-behaved and optimization routines can easily become trapped in a local mode, so

one needs to run the optimization sufficiently long to achieve a robust solution. So far there

have been no reliable solutions for assessing convergence of surrogate model optimization.

In this paper, we provide an automated method for determining convergence of Gaussian

process surrogate model optimization by bringing in elements of Statistical Process Control.

Our motivating example is a hydrology application, the Lockwood pump-and-treat prob-

lem (Matott et al., 2011), discussed in more detail in Section 4.3, wherein contamination

in the groundwater near the Yellowstone River is remediated via a set of treatment wells.

The goal is to minimize the cost of running the wells while ensuring that no contami-

nation enters the river. The contamination constraint results in a complicated boundary

that is unknown in advance and requires evaluation of the simulator. Finding the global

constrained minimum is a difficult problem where it is easy for optimization routines to

temporarily get stuck in a local minimum. (Gaussian process surrogate model optimization

should eventually escape local minima if run long enough.) Without knowing the answer

in advance, how do we know when to terminate the optimization routine?

The context of this paper is Gaussian process (GP) surrogate model optimization, a

statistical modeling approach to derivative-free numerical optimization that constructs a

fast approximation to the expensive computer simulation output surface using a statistical

surrogate model (Santner et al., 2003). Analysis of the surrogate model allows for efficient

exploration the objective solution space. Typically a Gaussian process surrogate model

is chosen for its robustness, relative ease of computation, and its predictive framework.

Arising naturally from the GP predictive distribution (Schonlau et al., 1998), the maximum

Expectation of the Improvement distribution (EI) has shown to be a valuable criterion for

guiding the exploration of the objective function and shows promise for use as a convergence
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criterion (Jones et al., 1998; Taddy et al., 2009).

Taddy et al. (2009) considers the use of the improvement distribution for identifying

global convergence; stating its value for use in applied optimization. The basic idea behind

the use of improvement in identifying convergence is that convergence should occur when

the surrogate model produces low expectations for discovering a new optimum; that is to

say, globally small EI values should be associated with convergence of the algorithm. Thus

a simplistic stopping rule might first define some lower EI threshold, then claim convergence

upon the first instance of an EI value falling below this threshold, as seen in Diwale et al.

(2014). This use of EI as a convergence criterion is analogous to other standard convergence

identification methods in numerical optimization (e.g., the vanishing step sizes of a Newton-

Raphson algorithm). However, applying this same threshold strategy to the convergence of

surrogate model optimization has not yet been adequately justified. In fact, this use of EI

ignores the nature of the EI criterion as a random variable, and oversimplifies the stochastic

nature of convergence in this setting. Thus it is no surprise that this treatment of the EI

criterion can result in an inconsistent stopping rule as demonstrated in Figure (1).
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Figure 1: Three Expected Log-normal Approximation to the Improvement series (more
details in Section 4) plotted alongside an example convergence threshold value shown as a
dashed line at -10.

Because EI is strictly positive but decreasingly small, we find it more productive to

work on the log scale, using a log-normal approximation to the improvement distribution

to generate a more appropriate convergence criterion, as described in more detail in Sec-

tion 3.2. Figure (1) represents three series of the Expected Log-normal Approximation

to the Improvement (ELAI) values from three different optimization problems. We will
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demonstrate later in this paper that convergence is established near the end of each of

these series. These three series demonstrate the kind of diversity observed among vari-

ous ELAI convergence behaviors, and illustrate the difficulty in assessing convergence. In

the left-most panel, optimization of the Rosenbrock test function results in a well-behaved

series of ELAI values, demonstrating a case in which the simple threshold stopping rule

can accurately identify convergence. However the center panel (the Lockwood problem)

demonstrates a failure of the threshold stopping rule, as this ELAI series contains much

more variance, and thus small ELAI values are observed quite regularly. In the Lockwood

example a simple threshold stopping rule could falsely claim convergence within the first

50 iterations of the algorithm. The large variability in ELAI values with occasional large

values indicates that the optimization routine sometimes briefly settles into a local mini-

mum but is still exploring and is not yet convinced that it has found a global minimum.

This optimization run appears to have converged only after the larger ELAI values stop

appearing and the variability has decreased. Thus one might ask if a decrease in variability,

or small variability, is a necessary condition for convergence. The right-most panel (the

Rastrigin test function) shows a case where convergence occurs by meeting the threshold

level, but where variability has increased, demonstrating that a decrease in variability is

not a necessary condition.

Since the Improvement function is itself random, attempting to set a lower threshold

bound on the EI, without consideration of the underlying EI distribution through time,

over-simplifies the dynamics of convergence in this setting. Instead, we propose taking the

perspective of Statistical Process Control (SPC), where a stochastic series is monitored for

consistency of the distribution of the most recently observed values. In the next section,

we review the statistical surrogate model approach and the use of EI for optimization. In

Section 3, we discuss our inspiration from SPC and how we construct our convergence chart.

Section 4 provides synthetic and real examples, and then we provide some conclusions in

the final section. Throughout this paper we focus on minimization, as maximization can

be obtained by minimizing the negative of the function.
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2 Gaussian Process Surrogate Model Optimization

The primary motivation for the use of surrogate modeling in optimization is to manage a

computationally challenging objective function with the use of a fast and relatively simple

functional working model (i.e. the surrogate model) of the problem function. The surro-

gate model serves as an efficient tool for using function evaluations to infer the expected

behavior of the objective function and thus determine where further optima may exist with

minimal evaluation of the complex objective function itself. Surrogate modeling is therefore

useful for optimizing large computer simulation experiments, where each function evalua-

tion may consume considerable computational resources, while the surrogate model can be

evaluated quickly. The standard surrogate model in the literature for analysis of computer

experiments is a Gaussian process (GP) (Sacks et al., 1989; Santner et al., 2003). A GP is a

stochastic process such that when evaluated at any finite collection of points, the collection

follows a multivariate Gaussian distribution. A GP is defined by its mean function and its

covariance function, with various standard formulations (Abrahamsen, 1997; Stein, 1999).

Most formulations take advantage of a large degree of smoothness, reflecting a modeling

assumption of smoothness in the output of the simulator, in that if the simulator is eval-

uated at two nearby inputs, then one expects the resulting outputs to be relatively close.

A GP can interpolate, which can be useful for a deterministic simulator, or it can smooth,

which has a number of practical advantages even for deterministic simulators (Gramacy

and Lee, 2012).

In many cases the assumption of a globally smooth f with a homogeneous uncertainty

structure can provide an effective and parsimonious model. However for the sake of provid-

ing a flexible surrogate model, it is desirable to have the ability to loosen these restrictions

in cases when f may have inherently sharp boundaries, or when numerical simulators have

variable stability in portions of the domain. Gramacy and Lee (2008) use the idea of

allowing subpopulations of flexibility via a treed partitioning of the domain, fitting sta-

tionary GP surfaces to separate portions of f . The domain is recursively sub-partitioned

and separate hierarchically-linked GP models are fit within each sub-partition. The par-

titioning scheme is fit via a reversible jump MCMC algorithm, jumping between models

with differing partitioning schemes, and averaging over the full parameter space to provide
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smooth predictions except where the data call for a discontinuous prediction. Partitioning

the domain in this way allows parsimonious surrogate models in simple objective function

cases and quite flexible surrogate models when the objective function displays complex

behavior. For further explanation of partitioned Gaussian process models, as well as notes

on implementing such models in R, see the R package tgp (Gramacy, 2007; Gramacy and

Taddy, 2010). Because many of the objective functions of interest are not well modeled by

a stationary GP, we use treed GPs as our surrogate models in this paper, but our approach

is easily adaptable to a wide variety of surrogate models.

2.1 Expected Improvement

The EI criterion predicts how likely a new minimum is to be observed, at new locations

of the domain, based upon the predictive distribution of the surrogate model. EI is built

upon the improvement function (Jones et al., 1998):

I(x) = max
{(
fmin − f(x)

)
, 0
}
, (1)

where fmin is the smallest function value observed so far. EI is the expectation of the

improvement function with respect to the posterior predictive distribution of the surrogate

model, E [ I(x) ]. EI rewards candidates both for having a low predictive mean, as well as

high uncertainty (where the function has not been sufficiently explored). By definition the

improvement function is always non-negative and the GP posterior predictive E [ I(x) ] is

strictly positive. The EI criterion is available in closed form for a stationary GP. For other

models the EI criterion can be quickly estimated using Monte Carlo posterior predictive

samples at given candidate locations.
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2.2 Optimization Procedure

Figure 2: Optimization Procedure

1) Collect an initial set, X.

2) Compute f(X).

3) Fit surrogate based on evaluations of f .

4) Collect a candidate set, X̃.

5) Compute EI among X̃

6) Add argmaxx̃i E [ I(x̃i) ] to X.

7) Check convergence.

8) If converged exit. Otherwise go to 2).

Optimization can be viewed as a sequential

design process, where locations are selected

for evaluation on the basis of how likely they

are to decrease the objective function, i.e.,

based on the EI. Optimization begins by

initially collecting a set, X, of locations to

evaluate the true function, f , to gather a

basic impression of f . A statistical surro-

gate model is then fitted with f(X) as ob-

servations of the true function. Using the

surrogate model, a set of candidate points,

X̃, are selected from the domain and the EI

criterion is calculated among these points.

The candidate point that has the highest EI is then chosen as the best candidate for a

new minimum and thus, it is added to X. The objective function is evaluated at this new

location and the surrogate model is refit based on the updated f(X). The optimization

procedure carries on in this way until convergence. The key contribution of this paper is

an automated method for checking convergence, which we develop in the next section.

3 EWMA Convergence Chart

3.1 Statistical Process Control

In Shewhart’s seminal book (Shewhart, 1931) on the topic of control in manufacturing,

Shewhart explains that a phenomenon is said to be in control when, “through the use of

past experience, we can predict, at least within limits, how the phenomenon may be ex-

pected to vary in the future.” This notion provides an instructive framework for thinking

about convergence because it offers a natural way to consider the distributional character-

istics of the EI as a proper random variable. In its most simplified form, SPC considers

an approximation of a statistic’s sampling distribution as repeated sampling occurs in
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time. Thus Shewhart can express his idea of control as the expected behavior of random

observations from this sampling distribution. For example, an x̄-chart tracks the mean

of repeated samples (all of size n) through time so as to expect the arrival of each sub-

sequent mean in accordance with the known or estimated sampling distribution for the

mean, x̄j ∼ N
(
µ, σ

2

n

)
. By considering confidence intervals on this sampling distribution

we can easily draw explicit boundaries (i.e., control limits) to identify when the process is

in control and when it is not. Observations violating our expectations (falling outside of the

control limits) indicate an out-of-control state. Since neither µ nor σ2 are typically known,

it is of primary importance to use the data carefully to form accurate approximations of

these values, thus establishing a standard for control. Furthermore, this logic relies upon

the typical asymptotic results of the central limit theorem (CLT), and care should be taken

to verify the relevant assumptions required.

It is important to note that we are not performing traditional SPC in this context, the EI

criterion will be stochastically decreasing as an optimization routine proceeds. Only when

convergence is reached will the EI series look approximately like an in-control process. Thus

our perspective is completely reversed from the traditional SPC approach—we start with a

process that is out of control, and we determine convergence when the process stabilizes and

becomes locally in control. An alternative way to think about our approach is to consider

performing SPC backwards in time on our EI series. Starting from the most recent EI

observations and looking back, we declare convergence if the process starts in control and

then becomes out of control. This pattern generally appears only when the optimization

has progressed and reached a local mode. If the optimization were still proceeding, then

the EI would still be decreasing and the final section would not appear in control.

3.2 Expected Log-normal Approximation to the Improvement (ELAI)

For the sake of obtaining a robust convergence criterion to track via SPC, it is impor-

tant to carefully consider properties of the improvement distributions which generate the

EI values. The improvement criterion is strictly positive but decreasingly small, thus the

improvement distribution is often strongly right skewed, in which case, the EI is far from

normal. Additionally, this right skew becomes exaggerated as convergence approaches, due
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to the decreasing trend in the EI criterion. Together these characteristics of the improve-

ment distribution give the EI criterion inconsistent behavior for tracking convergence via

a typical x̄-chart.

These issues naturally suggest releasing the bound at 0 by modeling transformations

of the improvement, rather than directly considering the improvement distribution on its

own. One of the simplest of the many possible helpful transformations in this case would

consider the log of the improvement distribution. However due to the MCMC sample-based

implementation of the Gaussian process, and the desire for a large number of samples from

the improvement distribution, it is not uncommon to obtain at least one sample that is

computationally indistinguishable from 0 in double precision. Thus simply taking the log

of the improvement samples can result in numerical failure, particularly as convergence

approaches, even though the quantities are theoretically strictly positive. Despite this

numerical inconvenience, the distribution of the improvement samples is often very well

approximated by the log-normal distribution.

We avoid the numerical issues by using a model-based approximation. With the desire

to model E [ log I ] ·∼· N
(
µ, σ

2

n

)
, we switch to a log-normal perspective. Recall that if a

random variableX ∼ Log-N(ψ, ν), then another random variable Y = log(X) is distributed

Y ∼ N(ψ, ν). Furthermore, if m and v are, respectively, the mean and variance of a log-

normal sample, then the mean, ψ, and variance, ν, of the associated normal distribution

are given by the following relation.

ψ = log

(
m2

√
v +m2

)
ν = log

(
1 +

v

m2

)
. (2)

Using this relation we do not need to transform any of the improvement samples. We

compute the empirical mean and variance of the unaltered, approximately log-normal,

improvement samples, then use relation (2) to directly compute ψ as the Expectation

under the Log-normal Approximation to the Improvement (ELAI). The ELAI value is

useful for assessing convergence because of the reduced right skew of the log of the posterior

predictive improvement distribution. Additionally, the ELAI serves as a computationally

robust approximation of the E [ log I ] under reasonable log-normality of the improvements.

Furthermore, both the E [ log I ] and ELAI are distributed approximately normally in
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repeated sampling. This construction allows for more consistent and accurate use of the

fundamental theory on which our SPC perspective depends.

3.3 Exponentially Weighted Moving Average

The Exponentially Weighted Moving Average (EWMA) control chart (Lucas and Saccucci,

1990; Scrucca, 2004) elaborates on Shewhart’s original notion of control by viewing the

repeated sampling process in the context of a moving average smoothing of series data.

Pre-convergence ELAI evaluations tend to be variable and overall decreasing, and so do

not necessarily share distributional consistency among all observed values. Thus a weighted

series perspective was chosen to follow the moving average of the most recent ELAI obser-

vations while still smoothing with some memory of older evaluations. EWMA achieves this

robust smoothing behavior, relative to shifting means, by assigning exponentially decreas-

ing weights to successive points in a rolling average among all of the points of the series.

Thus the EWMA can emphasize recent observations and shift the focus of the moving

average to the most recent information while still providing shrinkage towards the global

mean of the series.

If Yi is the current ELAI value, and Zi is the EWMA statistic associated with this

current value, then the initial value Z0 is set to Y0 and for i ∈ {1, 2, 3, ...} the EWMA

statistic is expressed as,

Zi = λYi + (1− λ)Zi−1. (3)

Above, λ is a smoothing parameter that defines the weight (i.e. 0 < λ ≤ 1) assigned to

the most recent observation, Yi. The recursive expression of the statistic ensures that all

subsequent weights geometrically decrease as they move back through the series.
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Figure 3: Sλ as calculated for ELAI
values derived from optimization of
the Rastrigin test function. λ̂ is
shown by the vertical dashed line.

Typical values of λ can range from 0.1 ≤ λ ≤ 0.3,

with a default value of λ around 0.2, as described

by Box et al. (1997). Large values of λ assign more

weight to recent observations in the series, allowing

for a more flexible fit for unstable series. However,

the choice of a large λ may over-fit the Zi to noise in

the Yi. It is thus desirable to choose to the smallest

λ which still provides good forecasts of future obser-

vations in the series. Box et al. (1997) explains how

to choose an optimal value for λ by choosing the

λ̂ which minimizes the sum of squared forecasting

deviations (Sλ) for each new observation. Through

this analysis of Sλ, as seen in Figure (3), it is evi-

dent that EWMA charts can be very robust to reasonable choices of λ, due to the small

first and second derivatives of Sλ for a large range of sub-optimal choices of λ around λ̂.

In fact, Figure (3) shows that for λ ∈ [0.2, 0.6], Sλ stays within 10% of its the minimum

possible value.

It is interesting to note that for the example series used in Figure (3), the optimal

λ̂ ≈ 0.4 exceeds the recommended upper limit of 0.3 for λ. Discrepancies between the

optimal values of λ chosen here, and those typically chosen can be naturally attributed to

the differing context in which we apply EWMA, as compared to the typical SPC appli-

cation. The typical use of EWMA in SPC begins with the premise of a relatively stable

(in-control) series and attempts to identify out-of-control observations which would indi-

cate some change in the data generating process. However our use of EWMA to identify

convergence begins with an out-of-control series and we wish to identify when the series

falls into control (i.e., convergence). As a result, ELAI values for tracking convergence

are inherently less stable than typical SPC applications of EWMA. Due to the decreased

stability of the series, in this context, the optimal forecasting λ̂ may often fall above the

traditionally recommended upper limit for λ, in-order to better follow the more active mov-

ing averages inherent to the unstable pre-convergence series. In this context we want to
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reiterate that while it is useful to borrow the EWMA machinery often used in SPC, we are

approaching the whole process backwards, in that we are starting with an “out of control”

process and waiting to see when it settles down into control, and thus our approach should

be viewed as SPC-inspired rather than a formal application of SPC.

Identifying convergence relies upon carefully defining the control limits on the EWMA

statistic. As in the simplified x̄-chart, defining the control limits for the EWMA setting

amounts to considering an interval on the sampling distribution of interest. In the EWMA

case we are interested in the sampling distribution of the Zi. Assuming that the Yi are

i.i.d. then Lucas and Saccucci (1990) show that we can write σ2
Zi

in terms of σ2
Y .

σ2
Zi

= σ2
Y

(
λ

2− λ

)[
1− (1− λ)2i

]
(4)

Thus if Yi
i.i.d.∼ N

(
µ, σ

2

n

)
, then the sampling distribution for Zi is Zi ∼ N

(
µ, σ2

Zi

)
. Fur-

thermore by choosing a confidence level through choice of a constant c, the control limits

based on this sampling distribution are seen in Eq. (5).

CLi = µ± cσZi = µ± c σ√
n

√(
λ

2− λ

)
[1− (1− λ)2i] (5)

Notice that since σ2
Zi

has a dependence on i, the control limits do as well. Looking back

through the series brings us away from the focus of the moving average, at i, and thus the

control limits widen until the limiting case as, i→∞, where the control limits are defined

by µ± c
√

λσ2

(2−λ)n .

At first glance it is not clear that the Yi are in fact i.i.d. Indeed the early iterations

of the convergence processes seen in Figure (1) certainly do not display i.i.d. Yi. However

as the series approaches convergence, the Yi eventually do enter a state of control, see for

example Figure (4). For these Yi at convergence, an i.i.d. approximation is reasonable. The

realization of such a controlled region of the series defines the notion of consistency that

allows for the identification of convergence.
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3.4 The Control Window

The final structural feature of the EWMA convergence chart for identifying convergence

is the so called control window. The control window contains a fixed number, w, of the

most recently observed Yi. Only information from the w points currently residing inside

the control window is used to calculate the control limits, but the EWMA statistic is still

computed for all Yi values. Initially, the convergence algorithm is allowed to fill the control

window by collecting an initial set of w observations of the Yi. As new observations arrive,

the oldest Yi value is removed from the control window, thus allowing for the inclusion of

a new Yi.

The purpose of the control window is two-fold. First, it serves to dichotomize the series

for evaluating subsets of the Yi for distributional consistency. Second, it offers a structural

way for basing the standard for consistency (i.e., the control limits) only on the most recent

and relevant information in the series.

The size of the control window, w, may vary from problem to problem based on the

difficulty of optimization in each case. A reasonable way of choosing w is to consider the

number of observations necessary to establish a standard of control. The choice of w will

naturally increase as the difficulty of the optimization problem increases. Just as in other

sample size calculations, the choice of an optimal w must consider the cost of poor inference

(premature identification of convergence) associated with underestimating w, against the

cost of over sampling (continuing to sample after convergence has occurred) associated with

overestimating w. Providing a default choice of w is somewhat arbitrary without careful

analysis of the particulars of the objective function behavior and the costs of each succes-

sive objective function evaluation, however as a recommendation for starting this analysis,

our experience suggests considering w ≥ 15p as a lower bound. This recommendation

considers the dimensionality, p, of the objective function and represents the prior assertion

that premature identification of convergence is a worse error than computing extraneous

objective function evaluations.

For example, if the objective function must be searched over a large domain, particu-

larly in many dimensions, optimization will naturally take many function evaluations to

gather adequate information to reflect confident identification of convergence. Thus the

13



EI criterion, and by extension the ELAI criterion, may display high variance, associated

with high uncertainty, as well as be slow to decrease in mean value from the initial state of

pre-convergence into convergence. Jointly the high ELAI variance and the slow decreasing

mean ELAI value may make it hard to identify convergence; in these cases large values

of w are required to discern this relatively slight signal in the context of increased noise.

Similar effects may be observed for highly multimodal objective functions, as the regular

discovery of new modes will increase the variance of the ELAI criterion, and disguise any

decreasing mean value among the noise inherent to the search of such functions.

By contrast, strongly unimodal functions will enjoy a relatively fast decrease in ELAI

in the presence of relatively small variability. This higher signal-to-noise ratio makes for

easier identification of convergence, and thus allows for a smaller choice of w. However if

w is chosen to be too small, the algorithm may be over eager to claim convergence and the

recommendation of w ≥ 15p is particularly apt here to guard against false identification of

convergence.

3.5 Identifying Convergence

In identifying convergence, we not only desire that the ELAI series reaches a state of control,

but we desire that the ELAI series demonstrates a move from a state of pre-convergence

to a consistent state of convergence. To recognize the move into convergence we combine

the notion of the control window with the EWMA framework to construct the so called,

EWMA Convergence Chart. Since we expect EI values to decrease upon convergence, the

primary recognition of convergence is that new ELAI values demonstrate values that are

consistently lower than initial pre-converged values.

First, we require that all exponentially weighted Zi values inside the control window

fall within the control limits. This ensures that the most recent ELAI values demonstrate

distributional consistency within the bounds of the control window. Second, since we wish

to indicate a move from the initial pre-converged state of the system, we require at least one

point beyond the initial control window to fall outside the defined EWMA control limits.

This second rule suggests that the new ELAI observations have established a state of control

which is significantly different from the previous pre-converged ELAI observations. Jointly
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enforcing these two rules implies convergence based on the notion that convergence enjoys

a state of consistently decreased expectation of finding new minima in future function

evaluations.

Considering the optimization procedure outlined in Figure (2), the check for convergence

indicated in step 7) amounts to computing new EWMA Zi values, and control limits, from

the inclusion of the most recent observation of the improvement distribution, and checking

if the subsequent set of Zi satisfy both of the above rules of the EWMA convergence

chart. Satisfying one, or none, of the convergence rules indicates insufficient exploration

and further iterations of optimization are required to gather more information about the

objective function.

4 Examples

We first look at two synthetic examples from the optimization literature, where the true

optimum is known, so we can be sure we have converged to the true global minimum. We

then provide a real world example from hydrology.

4.1 Rosenbrock

f(x1, x2) = 100 (x2 − x21)
2
+(1−x1)2

Minimum : f(1, 1) = 0

The Rosenbrock function (Rosenbrock, 1960) was

an early test problem in the optimization literature.

It combines a narrow, flat parabolic valley with

steep walls, and thus it can be difficult for gradient-

based methods. It is generalizable to higher di-

mensions, but we use the two-dimensional version

here. Convergence is non-trivial to assess, because

optimization routines can take a while to explore

the relatively flat, but non-convex, valley floor for

the global minimum. Here we focus on the region

−2 ≤ x1 ≤ 2, −3 ≤ x2 ≤ 5. While the region

around the mode presents some minor challenges,

this problem is unimodal, and thus represents a relatively easier optimization problem, in
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the context of GP surrogate model optimization. This example illustrates a well-behaved

convergence process.
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Figure 4: Rosenbrock function: Convergence chart on the left, optimization progress on
the right.

We estimate λ via the minimum Sλ estimator, λ̂ ≈ 0.5, and use the minimum default

value w = 30. Figure 4 shows the result of surrogate model optimization at convergence,

as assessed by our method. The right panel shows the best function value (y-axis) found so

far at each iteration (x-axis), and verifies that we have found the global minimum. The left

panel shows the convergence chart, with the control window to the right of the vertical line,

and the control limits indicated by the dashed lines. At iteration 74 is the first time that

all EWMA points in the control window are observed within the control limits, and thus

we declare convergence. This declaration of convergence comes after the global minimum

has been found, but not too many iterations later, just enough to establish convergence.

Note that the EWMA points generally trend downward until the global minimum has been

found.

4.2 Rastrigin

The Rastrigin function is a commonly used test function for evaluating the performance of

global optimization schemes such as genetic algorithms (Whitley et al., 1996). The global
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behavior of Rastrigin is dominated by the spherical function,
∑

i x
2
i , however Rastrigin has

been oscillated by the cosine function and vertically shifted so that it achieves a global

minimum value of 0 at the lowest point of its lowest trough at (0, 0).

f(x1, x2) =
2∑
i=1

[
x2i − 10 cos(2πxi)

]
+ 2(10) (6)

Minimum : f(0, 0) = 0

Rastrigin is generalizable to arbitrarily many dimensions, but to develop intuition, this

example considers Rastrigin over the 2 dimensional square −2.5 ≤ xi ≤ 2.5. Rastrigin is

a highly multimodal function, and as such, the many similar modes present a challenge

for identifying convergence. The multimodality of this problem increases the variability of

the EI criterion, and thus represents a moderately difficult optimization problem in this

context. It should be noted that by increasing the size of the search domain, either by

increasing the bounds of the search square and/or increasing the dimension of the domain

would make this example considerably more difficult.

λ̂ in this example is calculated to be about 0.4 . The decreased value of λ̂, relative to

Rosenbrock, increases the smoothing capabilities of the EWMA procedure, as a response

to the increased noise in the ELAI series. The added noise of the ELAI series here comes

from the regular discovery of dramatic new modes as optimization proceeds. Due to the
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Figure 5: Rastrigin function: Convergence chart on the left, optimization progress on the
right.

increased complexity of Rastrigin relative to Rosenbrock, a larger w is needed to recognize

convergence in the presence of increased noise in the ELAI criterion. In this application

w = 40 was found to work well. Although larger choices of w produce equally consistent

identification of convergence, they do so with more function evaluations.

Figure (5) shows the convergence chart (left) and the optimization progress of the al-

gorithm (right) after 95 iterations of optimization. Although the variability of the ELAI

criterion increases as optimization proceeds, large ELAI values stop arriving after iteration

55, coincidently with the surrogate model’s discovery of the Rastrigin’s main mode, as seen

in the right panel of Figure (5). Furthermore notice that optimization progress in Figure (5,

right) demonstrates that convergence in this case does indeed represent approximate iden-

tification of the theoretical minimum of the function, as indicated by the dashed horizontal

line at the theoretical minimum.

4.3 Lockwood Case Study

The previous examples have focused on analytical functions with known minima. This

is done for the sake of developing an intuition for tuning the EWMA convergence chart

parameters and to ensure that our methods correspond to the identification of real optima.
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Here we apply the EWMA convergence chart in the practical optimization setting of pump

and treat optimization problems as formulated by Mayer et al. (2002). Specifically we

consider the Lockwood pump and treat problem, originally presented by Matott et al.

(2011).

The Lockwood pump and treat case study considers an industrial site, along the Yel-

lowstone River in Montana, with groundwater contaminated by chlorinated solvents. If

left untreated, this contaminated groundwater may contaminate the Yellowstone river, as

dictated by the hydrology of the system. In order to control this contaminated ground-

water, a total of six pumps, situated over two plumes of the contaminated groundwater

are used to redirect groundwater away from the river to a treatment facility. Due to the

cost of running these pumps, it is desirable to determine how to best allocate the pumping

effort among these pumps so as to determine the lowest cost pumping strategy to protect

the river. Pumping each of these six wells at different rates can drastically change the

groundwater behavior, and thus a numerical simulation of the system is required to predict

the behavior of the system at a given set of pumping rates.

The objective function, f(x), to be minimized in this case, can be expressed as the sum

of the pumping rates for each pump (a quantity proportional to the expense of running the

pumps in USD), with additional large penalties associated with any contamination of the

river.

f(x) =
6∑
i=1

xi + 2
[
ca(x) + cb(x)

]
+ 20000

[
1ca(x)>0 + 1cb(x)>0

]
(7)

Here ca(x) and cb(x) are outputs of a simulation, indicating the amount of contamination,

if any, of the river as a function of the pumping rates, x, for each of the six wells. Any

amount of contamination of the river results in a large stepwise penalty which introduces

a discontinuity into the objective function, at the contamination boundary. Each xi is

bounded on the interval 0 ≤ xi ≤ 20, 000, representing a large range of possible management

schemes. The full problem defines a six-dimensional optimization problem to determine the

optimal rate at which to pump each well, so as to minimize the loss function defined in

Eq (7). Since the loss function is defined over a large and continuous domain, and running

the numerical simulation of the system is computationally expensive, this example presents

an ideal situation for use with surrogate model based optimization.
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Figure 6: Lockwood Case-study: Convergence chart on the left, optimization progress on
the right.

Again λ was chosen via the minimum Sλ estimator to be λ̂ ≈ 0.4 in this case. This level

of smoothing is required here to reduce the noise in the ELAI criterion due to the large

search domain, as well as the complicated contamination boundary among the six wells.

Furthermore these features of the objective function complicate fit of the surrogate model

and thus more function evaluations are required to produce an accurate model of f . As

a result, the control window size, w, must increase to provide the initial surrogate model

enough information to yield reasonable accuracy. Here w was chosen to be 90 iterations,

as determined by the adequate initial surrogate model behavior.

The convergence chart for monitoring the optimization of the Lockwood case study is

shown in the left panel of Figure (6), as computed with λ̂ ≈ 0.4 and w = 90. Convergence

in this case does not occur with a dramatic shift in the mean level of the ELAI criterion,

but rather convergence occurs as the series stabilizes after large ELAI values move beyond

the control limit. Interestingly the last major spike in the ELAI series is observed alongside

the discovery of the final major jump in the current best minimum value as seen at about

iteration 180 in the right panel of Figure (6). The EWMA convergence chart identifies

convergence as the EWMA statistic associated with this final ELAI spike eventually exits

the control window at iteration 270. The solution shown here corresponds to f(x) ≈ 26696

at x ≈ [0, 6195, 12988, 3160, 1190, 3163]. This solution is well corroborated as a point of
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diminishing returns for this problem, by the analysis of Gramacy et al. (2015) on the same

problem, as seen in their average EI surrogate modeling behavior.

5 Conclusion

Adapting the notion of control from the SPC literature, the EWMA convergence chart

outlined here aims to provide an objective standard for identifying convergence in the

presence of the inherent stochasticity of the improvement criterion in this setting. The

examples provided here demonstrate how the EWMA convergence chart may accurately

and efficiently identify convergence in the context of GP surrogate model optimization.

We note that our approach could be applied with any optimization algorithm that allows

computation of an expected improvement at each iteration.

As for any optimization algorithm, a converged solution may only be considered as

good as the algorithm’s exploration of f . Thus poorly tuned surrogate modeling strategies

may never optimize f to their fullest extent, but the EWMA convergence chart presented

here may still claim convergence in these cases. The EWMA convergence chart may only

consider convergence in the context of the algorithm in which it is embedded, and thus

should be interpreted as a means of identifying when an algorithm has converged rather

than when the lowest minimum has been found. For poorly tuned surrogate modeling

strategies the EWMA convergence chart may only identify that the algorithm has reached

a point of diminishing returns, or that it has converged to a local mode; for well-tuned sur-

rogate modeling strategies, this point should correspond with the realization of an optimal

solution. In either case, the EWMA convergence chart identifies the moment at which it

is beneficial to stop iterating the routine and reflect upon the results.

The EWMA convergence chart presented here is intended as a starting point for estab-

lishing an appropriate analysis of convergence for sequential surrogate modeling optimiza-

tion algorithms. Details of the particular implementation of these methods may improve

through further analysis of model usage and parameter estimation. The strategy presented

here for transforming the improvement distribution via the Log-normal approximation to

the improvement distribution has shown to be an empirically effective and computationally

simple solution to better meet the assumptions of the EWMA control charting methodology.
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However, some applications may find it worthwhile to explore other transformations which

could result in higher overall transformed signal to noise ratios, across a more broad set of

improvement distributions. For example, rather than adopting the ELAI transformed esti-

mate from the improvement distribution, it may be computationally feasible to apply the

two-parameter Box-Cox transformation (Box and Cox, 1964) to the improvement samples,

y
(λ)
i =


(yi+λ2)

λ1−1
λ1

λ1 6= 0

log(yi + λ2) λ2 = 0
(8)

thus alleviating any difficulties due to numerical truncation of the improvement samples

at 0, while finding a flexible transformation to reduce skew. It should be noted that this

approach adds additional computational expense, while our ELAI transformation requires

minimal computation. Additionally the EWMA convergence chart could benefit from a

more precise method for choosing the control window size parameter, w, although devel-

oping such a method would be a major research project itself; our empirical solution has

worked well in practice. Although improvements to the details of these methods may exist,

the fundamental consideration of the stochastic nature of convergence in this setting would

remain, and SPC offers a nice framework for its inclusion.
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