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Abstract 
Object detection is a key component of many computer 
vision systems. This paper investigates human computation 
as a platform for object detection. We investigate and report 
on the quality of raw labels obtained from several sources of 
human labor. We find that the performance is not the same 
in all cases. We investigate and report on the quality of a 
simple aggregation algorithm. Finally, we compare our 
human computation based object detector against existing 
computer vision based approaches. 

 Introduction  
Object detection in images is an important component of 
many existing and possible computer systems. These 
include faces in photographs, pedestrians in traffic scenes, 
insects in agricultural monitoring, fish in ocean habitat 
studies, vehicles in satellite imagery, and subatomic 
particles in scientific imaging. 
 Although computer vision works well in some domains, 
it has lacked robustness in others. This remains an active 
area of research, typically requiring customization of 
solutions for each new scenario and object type. 
 Human computation has been shown to produce image 
labels with accuracy beyond what is possible by automated 
methods. However, labels produced by humans are not 
usable directly because they vary in quality, either because 
of differences in human opinion, or because the task is too 
difficult for some workers, or due to intentional provision 
of incorrect labels. 
 A variety of algorithms have been proposed for filtering 
and aggregating raw labels provided by workers in human 
computation systems. However, these algorithms depend 
on the characteristics and statistics of the raw data itself. 
For example, some algorithms assume that most human 
labels are “correct” and some fraction are “incorrect.” In 
this case filtering out the “incorrect” answers using a 
verification process is sufficient to produce high quality 

results. On the other hand some combinations of tasks and 
human computation platforms are not capable of delivering 
“correct” results, but rather deliver a set of answers over a 
continuous distribution of varying “correctness.” In these 
cases an algorithm that attempts to simply verify “correct” 
answers is not an appropriate solution. 
 Object detection is an example of a domain that 
produces a continuous distribution of answers, rather than 
correct answers. Workers draw bounding boxes that are 
unlikely to match some notion of ground truth exactly at a 
pixel level. Instead, the labeled boxes form a distribution in 
the general area of the object to be located. If the workers 
are very precise these boxes will be tightly clustered. If the 
workers are less precise, there might be a large variance in 
the boxes provided. In either case, an algorithm that 
aggregates multiple labels into a single answer could 
provide quality exceeding the best individual label. 
 In this paper, we investigate and report on the quality of 
raw labels obtained from several sources of human labor. 
We find that the quality is not the same in all cases, and 
thus is an important parameter of the expected performance 
of any algorithm. In addition, all of our raw labels are 
relatively inaccurate. The majority of labeled bounding 
boxes have less than 80% overlap with ground truth. 
 We investigate a simple algorithm to aggregate the raw 
labels. We follow other researchers by first eliminating 
outliers. Next, since our test images have multiple objects 
to label, we cluster the raw bounding boxes into sets, each 
of which is aggregated as the mean value of available 
labels. The result is quality above what is obtained from 
individual workers. 
 Our datasets were chosen from the computer vision 
literature, and we are thus able to compare directly, the 
quality obtained through human computation, to the quality 
obtained via computer vision methods. Since the published 
computer vision accuracy curves are the result of careful 
domain specific optimization, we also report the quality 



obtained by implementing a “standard” object detector. 
The human-produced labels processed by our algorithm 
greatly exceed the accuracy available from the published 
computer vision algorithms on these datasets. 
 The main contribution of this work is providing an 
analysis of the object detection task on human computation 
platforms. We investigate the characteristics of raw labels 
on more than one platform, the effects of aggregation, and 
the improvements available versus existing computer 
vision solutions. 

Related Work 
A rapidly growing number of large-scale, human-powered 
data collection platforms have been built (Little, J. 2012; 
Deng, J. 2009), many of which leverage Amazon's 
Mechanical Turk for human labor. Collecting image 
annotations and labels is one of many applications of 
crowdsourcing and bounding boxes (Welinder, P. 2010; 
Whitehill, J. 2009) are a popular annotation method. Other 
techniques such as polygons and scissor tools have also 
been explored (Sorokin, A. 2008; Little, J. 2012). 
 All of these papers use raw annotations from workers 
and verification processes to exclude poor results. Our 
work analyzes a method for aggregating the raw results 
from multiple untrained crowd workers, showing that it 
improves the final annotation quality. 
 High-quality bounding boxes have been explicitly 
investigated using human computation tasks for quality 
and coverage verification. For example, a study by Su et al. 
obtained excellent results and reported that 62% of raw 
worker boxes are “visibly tight” (Su et al., 2012). 
However, our observed worker quality shows much lower 
accuracy, and it is not clear that a verification-based 
algorithm would be appropriate under our observed 
conditions.  
 Efforts have been made to combine machine learning or 
computer vision with crowdsourcing to optimize the flow 
of task requests (Quinn, A. 2010; Vittayakorn, S. 2011; 
Branson, S. 2011; Vijayanarasimhan, S. 2011). Similarly, 
explicit comparisons have been conducted comparing CPU 
with human cost, and a balance between the usages of two 
has been suggested (Vondrick, C. 2010). This work is 
orthogonal to the goal of our work, to aggregate labels 
once they are obtained.  
 Aggregation of weak classifiers has been studied 
extensively in machine learning and machine vision (Tao, 
L. 2007). Weak classifiers of higher-level data such as 
image segmentations have also been combined (Ghosh, S. 
2009). Approximate variational methods, including belief 
propagation and mean field have been applied to 
crowdsourced labels (Liu, Q., 2012). However, none of 
these studies explicitly address the aggregation of 
bounding box labels obtained from crowdsourced workers. 

 Object detection has been extensively studied in 
computer vision on images of all types, quality and content 
(Lempitsky, V. 2009; Dollar, P. 2009). The data in our 
work consists of images of pedestrian (Leibe, B. 2007) and 
bumblebees (Miranda, B. 2012) taken from existing 
computer vision research. We show that crowdsourced 
object detection performs substantially better than CPU- 
only methods. 

Experimental Setup 

Datasets  
In our study we use two datasets, each of which was drawn 
from the existing computer vision literature on object 
detection. 
 Bumblebee: Miranda et al. studied the behavior of 
bumblebees while pollinating flowers (Miranda, B. 2012). 
In our study we used 411 (of a total of 3,237 frames) 
640x480 pixel JPEG images. A camera was pointed 
towards a sweet pepper flower that was nearly stationary. 
The camera records the arrival and departure of a single 
bumblebee that spends most of its time on the flower. 
Furthermore, the background is static and there is no 
occlusion. One frame from this dataset is shown in Figure 
1(a).  

 
                      (a)                                           (b) 

Figure 1:  Example frames from the datasets used to 
investigate object detection. Note that the bee in (a) is 

blurry and thus hard to localize precisely for both 
human workers and automated algorithms. The 

pedestrians (b) are sometimes partially occluded, 
making the problem challenging. 

Pedestrian: Leibe et al. studied multi-object detection 
and tracking in the context of pedestrians (Leibe, B. 2007). 
We used 76 frames of their dataset, consisting of 320x240 
images with noticeable compression artifacts. The frames 
contain multiple pedestrians, often with heavy occlusion, 
and a dynamic background. One frame from this dataset is 
shown in Figure 1(b). 

 
Worker Interface  
The images were annotated using a custom web-based 
annotation tool shown in Figure 2. This interface contains 
English language instructions to draw tight bounding 



boxes, as well as simple visual examples. The main work 
panel allows drawing bounding boxes around multiple 
objects, and contains a submit button. Images are displayed 
in random order, and workers annotate multiple images as 
part of a single task. The interface is implemented in 
Processing, and the web backend is implemented with PHP 
and Javascript/Ajax code that records all entries in a 
MySQL database. 
 

 
Figure 2: User interface where human workers were 

asked to draw bounding boxes around objects of 
interest. The interface allows drawing multiple boxes 
when there are multiple objects to detect. Examples 

of correct boxes are shown next to the work area as a 
reference to workers. 

Aggregation Methods 
Multiple workers provide a set of bounding boxes, which 
vary greatly in quality. Figure 3(a) shows an example of all 
boxes received on one query. 

One of the primary challenges of aggregation is 
determining the correspondence between bounding boxes 
and the objects they inscribe, especially when multiple 
instances of an object are visible in an image. For each 
image we use a mean-shift clustering algorithm on the 
entire set of labels to assign boxes from different workers 
to clusters. Each cluster represents a single instance of the 
object and is aggregated separately.  
 A secondary challenge is to remove outlier boxes due to 
mistakes or intentional mislabeling so that they do not 
adversely affect the final answers. For example, in Figure 
3(a) worker(s) incorrectly labeled cars. We implemented 
outlier rejection based on worker consensus and bounding 
box size. 
 
Mean-shift clustering algorithm  
The mean-shift algorithm (Cheng, Y. 1995; Comaniciu, D. 
2002) is a nonparametric clustering technique that does not 
require the number of clusters to be specified in advance. 
Mean-shift treats the points in an N-dimensional feature 
space as a probability density where dense regions 
correspond to local maxima – or modes – of the underlying 

distribution. These local maxima are obtained by randomly 
assigning circular search windows of a specified size, or 
bandwidth, within the feature space. A gradient ascent 
algorithm is used to find the approximate locations of the 
modes of each distribution. Finally, points that are closest 
to each mode are assigned as members of each cluster. 
 

 
(a)                                      (b) 

Figure 3: (a) Bounding boxes provided by several 
workers are shown. Although most workers correctly 
labeled pedestrians, some incorrectly labeled cars. 

(b) Blue boxes are the result of the mean shift 
clustering algorithm followed by outlier rejection and 

aggregation. Green boxes are ground truth labels. 
Note that the clusters of raw bounding boxes were 

replaced by a single aggregate bounding box for each 
pedestrian. 

Bounding boxes within a single cluster are aggregated 
by taking the mean of the dimensions of the boxes within 
the cluster. The results of this algorithm are shown in 
Figure 3(b). Blue boxes are the result of our clustering 
algorithm. Note that groups of individual labels from 
workers have been correctly clustered into a single 
bounding box around each pedestrian. Green boxes are 
ground truth labels provided with the dataset. 

Consensus voting outlier rejection  
The degree of consensus among workers is one metric that 
can be used to remove outliers. Wrong labels, such as the   
boxes around cars in Figure 3(a) can be detected because 
few workers provide these labels.  

We define consensus outlier rejection as follows. Given 
an image, we obtain the corresponding set of N bounding 
boxes from the set B = {b1,b2,...,bN} of all the raw estimates 
of object locations created by human workers. Each 
bounding box bk ∈B  is specified by the vector x,y,w,h , 
where x and y represent the pixel coordinates of the top left 
corner of the box and w and h represent the width and 



height of the box, respectively. For each bk ∈B  we create a 
corresponding binary mask mk , the same dimensions as the 
image, in which all pixels inside bk  are 1 (white) and those 
outside of it are 0 (black). By summing the individual 
masks we obtain the consensus map M  (Figure 4), which 
represents the distribution of total pixel-wise votes across 
the image. Given the consensus map of an image, the 
average consensus score sk  for some bounding box bk  is 
computed below.To reject consensus outliers we remove 
all bounding boxes with scores less than a threshold value 
C.  

sk =
1

wkhk
M(i, j)

i=x

x+w

∑
j=y

y+h

∑  

 

 
Figure 4: Consensus map of the agreement between 
workers is shown. Note that incorrect boxes drawn 

around cars have comparatively low consensus 
whereas locations with pedestrians have been labeled 
by more workers. We reject bounding boxes in areas 

of low consensus. 

Size-based outlier rejection  
We noticed that very small bounding boxes, probably 
created by accident, sometimes fell entirely within a high 
consensus area. We also observed larger bounding boxes 
that contain multiple pedestrians. Although in both cases 
they are in the right general region of an actual object, they 
do not represent the actual size dimensions of a correct 
object and adversely affect the clustering algorithm.  

To remove these boxes we used size based outlier 
rejection. Given the set of all bounding boxes {b1,b2,...,bN} , 
any box with width or height more than 3 standard 
deviations from the mean was removed prior to clustering. 

   
Experimental Findings 

In this section, we’ll discuss our experimental findings:  

Worker Demographics 
Since the applicability and robustness of our algorithm is 
related to the performance of workers, we investigated 

multiple crowdsourcing platforms, each employing 
different workers. We tried two structured for-pay 
crowdsourcing platforms, Amazon’s Mechanical Turk and 
an upcoming alternative that we will refer to simply as 
Microtask-X (since it is a much smaller and newer 
company whose performance is likely to change).  

We also investigated an unstructured method of simply 
asking all our Facebook friends to participate. In all cases 
the workers were directed to an identical work 
environment hosted on our own server. Workers on 
Mechanical Turk were paid $0.15 per set of 5 images. 
Microtask-X set a pay rate outside our control, charging us 
$0.05 per set of 20 images. On Facebook, the volunteers 
were unpaid.  

The majority of Mechanical Turk workers were from 
India (82% and 64% of workers for the pedestrian and 
bumblebee tasks, respectively) in all trials, with only a 
small fraction from each of several countries including 
USA, Canada, and UK. In contrast, Microtask-X had a 
more diverse workforce that varied across trials with the 
majority of workers from Philippines and USA (39% and 
28%, respectively) in the pedestrian trials. Most workers in 
the bumblebee trials were from Pakistan, Philippines, and 
India (32%, 24%, 20%, respectively). 

Latency 
The time workers take to complete tasks is an important 
dimension in human computation algorithms since it is 
related to both latency and the necessary pay rate to engage 
workers.  
 

 Bumblebee Pedestrian 
Platform Median Mean Median Mean 

AMT 11 19.8 68 87.4 
MTX 9 13.3 58 210.1 

FB 8 22.2 - - 

Figure 5: Time taken per image for workers to label 
bounding boxes. 

   Figure 5 reports the time workers took on individual 
images in seconds. Notice that the completion time is 
roughly similar across services. Because some workers 
take a very long time, the distribution is heavy tailed and 
the mean is much greater than the median. The pedestrian 
tasks take longer per image because there are multiple 
smaller bounding boxes to label as compared to the one 
large box in the bumblebee dataset. We next looked at the 
overall rate at which labels were obtained. This might not 
be correlated with the time taken on individual tasks since 
workers could simply not be engaged on the project. 

We compare the rate of annotation acquisition for our 
Bumblebee dataset on Amazon Mechanical Turk (AMT), 
Microtask-X (MTX), and by asking our Facebook (FB) 



friends in Figure 6. In this case MTX provided labels much 
more quickly than AMT. As might be expected, attempting 
to ask our friends for free labor in the name of research 
resulted in a much slower rate of acquisition. This rate was 
sufficiently slow that we ceased using Facebook on 
subsequent experiments. 

Our comparison of the AMT and MTX platforms for the 
pedestrian dataset (not shown) acquired labels much faster 
since the pedestrian dataset results in multiple annotations 
per image. 
 

 
Figure 6: Cumulative number of responses since the 

job submission for the bumblebee dataset. In this case 
the AMT microtask platform provided results much 
faster than MTX. Attempting to ask Facebook (FB) 

friends to help with our research project resulted in a 
slow rate of response. 

Quality of work  
The algorithms appropriate for aggregating and processing 
crowdsourced data are a function of the characteristics of 
the raw data. In addition, the accuracy of work might vary 
between platforms. We thus investigated the quality of raw 
bounding box labels.  

The existing literature defines “accurate” in a variety of 
ways. One study on crowdsourcing bounding boxes, 
labeled as “accurate” only bounding boxes that were a very 
tight fit to the object, overlapping nearly 100% (Su, H. 
2012). In contrast, another study using computer vision 
defined any bounding box that overlapped with ground 
truth by more than 50% as “accurate” (Leibe, B. 2007). We 
report the quality of bounding boxes generated by 
participants using the intersection-over-union metric 
presented in (Everingham, M., et al. 2005). A fitness score 
between two bounding boxes is computed as the quotient 
of the overlapping area to the area spanned by the union of 
both boxes. Rather than choose an arbitrary threshold as 
“accurate,” we report the distribution of observed qualities.  

 

 
Figure 7: Raw score distribution for the bumblebee 
dataset varies greatly across services. Nearly all of 

the labels accumulated from Facebook friends had at 
least 40% overlap with ground truth, while a large 

fraction of AMT labels fell below this quality 
threshold. 

 

 
Figure 8:  Quality distribution on the pedestrian 

dataset was noticeably higher, and in this case AMT 
performed comparatively well. 

The distribution of quality scores obtained from each 
crowdsourcing platform on the bumblebee dataset is shown 
in Figure 7. The horizontal axis reports scores in the range 
[0,1], where 0 indicates the bounding box did not overlap 
with any ground truth and 1 indicates a perfect overlap 
with ground truth. The vertical axis represents the total 
number of annotations collected in the dataset. Note that 
the distributions of raw labels are not identical. Nearly all 
Facebook labels had at least a 40% overlap with ground 
truth, while a substantial number of Mechanical Turk 
labels fell below this level. Differences can also be seen in 
the percentage of labels that are completely wrong (0% 
overlap to ground truth). On paid microtask services this 
likely corresponds to intentional spammers, and rejecting 
these answers is a component of many human computation 



algorithms. In this case, Mechanical Turk had a larger 
number of responses in this category than did Microtask-X.  

The results from our experiments with the pedestrian 
dataset are shown in Figure 8. In this case AMT had a 
higher distribution of quality than MTX. 

Effect of algorithm parameters  
Our aggregation method has parameters in both the mean-
shift clustering and consensus voting stages. These can be 
used to adjust the relationship between the number of true 
and false positives. Following the convention of 
Everingham et al. we define true positives as detected 
bounding boxes that overlap with a ground truth box by at 
least 50% (Everingham, M., et al. 2005). Boxes which do 
not sufficiently overlap with ground truth boxes are labeled 
false positives. If two boxes from our algorithm overlap 
with the same ground truth box, the second is labeled as a 
false positive. 
 

 
Figure 9: Our aggregation algorithm was evaluated 
across a range of parameters. Lines are plotted for 
fixed values of clustering bandwidth (BW) with the 

consensus voting threshold (C) varied. 

The results of running our algorithm with different 
parameter settings on the pedestrian dataset are shown in 
Figure 9. Lines are plotted at different values of the mean 
shift clustering bandwidth (BW). Along each line the 
consensus voting threshold (C) is varied. When C is 1 a 
large number of false positives occur since no boxes are 
rejected. As C increases, both the true and false positives 
are reduced since more boxes are rejected. From the data, 
we noticed that the bandwidth (BW) parameter is best set 
at roughly twice size as the bounding boxes. This makes 
sense because the clustering bandwidth corresponds to the 
dimensions of the spatial search radius in the image. 

The results on the bumblebee dataset are shown in 
Figure 10. In this case we have plotted lines with different 

values of the consensus threshold, C. As the clustering 
bandwidth decreases more clusters are created and both 
true and false positives increase. From the data we see that 
the consensus voting threshold is best set well above 1, but 
several votes less than the total number of voters available.  

 

 
Figure 10:  The bumblebee dataset is shown, this time 
evaluated by holding the consensus voting threshold 
(C) constant and varying the clustering bandwidth 
(BW). Note that the algorithm behaves well over a 

large range of parameters. The y-axis scale is set to a 
very high range to allow visibility. 

Comparison with computer vision  
Object detection is traditionally framed as a computer 
vision problem, so we compare our results against those 
from published computer vision research. We find that 
even our simple human computation based detector 
performs substantially better than existing computer vision 
solutions.  

Pedestrians: The pedestrian dataset has been the target 
of several prior studies. A fixed viewpoint object detector 
operating only on single frames is the closest comparison 
to the data available to our algorithm (Leibe, B. 2005). 
There has also been work on building a coupled detector 
and tracker which makes use of temporal information 
across frames to improve object localization (Leibe, B. 
2007). This later work uses more data than our workers 
have available, since we present them only individual 
frames. We follow the error metric of 50% overlap, and 
reporting methodology of true positive rate versus the 
number of false positives per image used in both of these 
prior studies. Since both the computer vision and human 
computation methods have thresholds to adjust, these are 
reported as curves. Figure 11 shows our results together 
with the computer vision results. Human computation 
provides a much higher detection rate. 
 



 
Figure 11: Our human computation algorithm was 

compared against the results from two prior 
published computer vision papers on the pedestrian 
dataset, and found to have a much higher detection 

rate. 

 
Bumblebee: The bumblebee dataset has been 

investigated using both a Viola-Jones detector, as well as a 
detection plus tracking framework that makes use of 
temporal coherence (Miranda, B. 2012). Prior work on this 
dataset reports true and false positive rates. Given the 
number of sub-windows scanned per image, these values 
can be converted into the equivalent metric, false positives 
per image. The Viola-Jones detector uses between 
145,000-575,000 sub-windows to scan each image, 
depending on parameter settings (Viola, P. 2004). We use 
the lower number to convert false positive rates into false 
positives per image.   

 
  True Positive85% True Positive 96% 

[Miranda12]  
Detection Only 

580  
false positive/image 

 

[Miranda12]  
Detect + Track 

 145 
false positive/image 

Human 
Computation 

0.007 
false positive/image     

0.015 
false positive/image 

Figure 12: The algorithm in this paper is compared 
against the published accuracy using a computer 

vision method on the bumblebee dataset. The false 
positive rate is orders of magnitude lower. 

The values from prior work are compared to our method 
in Figure 12. Miranda et al. give false positive rates in the 
range of 0.1%, which are equivalent to a high number of 
false positives per image. Note that our method results in 
significantly fewer false positives per image at the same 
true positive rate. Using 411 test images, and at true 
positive rates chosen to match those given in Miranda et 

al., our method produced a total of 3 false positives at 85% 
true positive rate, and 6 false positives at 96% false 
positive rate. We divide our total false positives by the 
number of images to get the comparable metric of false 
positives/image. 

 

	  

Figure 13: A standard Haar Classifier from OpenCV 
was used to find bounding boxes in the bumblebee 
dataset. The quality distribution evaluated on the 

same (intersection/union) metric is noticeably below 
any of the human provided label distributions. 

 
Figure 14: The human computation algorithm in this 

paper is compared against a standard Haar 
Classifier as implemented in OpenCV. The standard 

computer vision solution does not approach the 
quality of aggregated human labels. 

In order to better understand the performance of 
computer vision based approaches we implemented a 
standard Haar classifier using OpenCV. This 
implementation was not heavily tuned to this dataset, so 
performs worse than published results with custom tuned 
classifiers. Nevertheless we believe it provides some 
insight into the performance that can be expected from 
using a generic unoptimized classifier for object detection. 

We trained the classifier with 422 ground truth images. 
Figure 13 shows the intersection over union scores 



obtained. The computer vision algorithm performs 
noticably worse than the data for human labelers shown 
earlier. 

Lastly we compare the Haar Classifier to our algorithm 
using an ROC curve similar to that reported in many 
computer vision papers, shown in Figure 14. OpenCVs 
detectMultiScale function was used and the minNeighbors 
parameter was varied. We used the 50% intersection over 
union metric to determine matches with ground truth. The 
standard computer vision implementation does not 
approach the level of quality achieved by human 
computation.  

Conclusions 

This paper investigates the use of human computation as a 
platform for object detection in images.  

We presented results showing that different human labor 
platforms have different accuracy and latency 
characteristics. We believe that this variability implies a 
need for designers of human computation algorithms to 
specify the raw label characteristics on which they expect 
their algorithms to perform well. 

We implement a simple aggregation method to combine 
results from several workers and investigate its 
performance. We find that aggregation improves results 
beyond the quality of individual raw labels. 

Finally we compare this human computation based 
object detector to three different computer vision based 
object detectors, finding that human computation 
substantially outperforms computer vision on this task.  

Taken together, these findings suggest that micro-task 
based human labor is a viable platform for developing 
“computer vision” algorithms. Even the extremely simple 
algorithm investigated in this paper showed improvements 
in quality. Further, despite the cost associated with human 
labor, the quality gains were shown to be large enough that 
deployment could be considered in domains which place a 
high value on high accuracy.  
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