

Human Computation for Object Detection

Rajan Vaish1, Sascha T. Ishikawa1, Sheng Lundquist2, Reid Porter2, James Davis1
University of California at Santa Cruz1, Los Alamos National Laboratory2

{rvaish, stishika, davis}@cs.ucsc.edu, {slundquist, rporter}@lanl.gov

May 09, 2013

TR Number: UCSC-SOE-15-03

Abstract
Object detection is a key component of many computer
vision systems. This paper investigates human computation
as a platform for object detection. We investigate and report
on the quality of raw labels obtained from several sources of
human labor. We find that the performance is not the same
in all cases. We investigate and report on the quality of a
simple aggregation algorithm. Finally, we compare our
human computation based object detector against existing
computer vision based approaches.

 Introduction
Object detection in images is an important component of
many existing and possible computer systems. These
include faces in photographs, pedestrians in traffic scenes,
insects in agricultural monitoring, fish in ocean habitat
studies, vehicles in satellite imagery, and subatomic
particles in scientific imaging.
 Although computer vision works well in some domains,
it has lacked robustness in others. This remains an active
area of research, typically requiring customization of
solutions for each new scenario and object type.
 Human computation has been shown to produce image
labels with accuracy beyond what is possible by automated
methods. However, labels produced by humans are not
usable directly because they vary in quality, either because
of differences in human opinion, or because the task is too
difficult for some workers, or due to intentional provision
of incorrect labels.
 A variety of algorithms have been proposed for filtering
and aggregating raw labels provided by workers in human
computation systems. However, these algorithms depend
on the characteristics and statistics of the raw data itself.
For example, some algorithms assume that most human
labels are “correct” and some fraction are “incorrect.” In
this case filtering out the “incorrect” answers using a
verification process is sufficient to produce high quality

results. On the other hand some combinations of tasks and
human computation platforms are not capable of delivering
“correct” results, but rather deliver a set of answers over a
continuous distribution of varying “correctness.” In these
cases an algorithm that attempts to simply verify “correct”
answers is not an appropriate solution.
 Object detection is an example of a domain that
produces a continuous distribution of answers, rather than
correct answers. Workers draw bounding boxes that are
unlikely to match some notion of ground truth exactly at a
pixel level. Instead, the labeled boxes form a distribution in
the general area of the object to be located. If the workers
are very precise these boxes will be tightly clustered. If the
workers are less precise, there might be a large variance in
the boxes provided. In either case, an algorithm that
aggregates multiple labels into a single answer could
provide quality exceeding the best individual label.
 In this paper, we investigate and report on the quality of
raw labels obtained from several sources of human labor.
We find that the quality is not the same in all cases, and
thus is an important parameter of the expected performance
of any algorithm. In addition, all of our raw labels are
relatively inaccurate. The majority of labeled bounding
boxes have less than 80% overlap with ground truth.
 We investigate a simple algorithm to aggregate the raw
labels. We follow other researchers by first eliminating
outliers. Next, since our test images have multiple objects
to label, we cluster the raw bounding boxes into sets, each
of which is aggregated as the mean value of available
labels. The result is quality above what is obtained from
individual workers.
 Our datasets were chosen from the computer vision
literature, and we are thus able to compare directly, the
quality obtained through human computation, to the quality
obtained via computer vision methods. Since the published
computer vision accuracy curves are the result of careful
domain specific optimization, we also report the quality

obtained by implementing a “standard” object detector.
The human-produced labels processed by our algorithm
greatly exceed the accuracy available from the published
computer vision algorithms on these datasets.
 The main contribution of this work is providing an
analysis of the object detection task on human computation
platforms. We investigate the characteristics of raw labels
on more than one platform, the effects of aggregation, and
the improvements available versus existing computer
vision solutions.

Related Work
A rapidly growing number of large-scale, human-powered
data collection platforms have been built (Little, J. 2012;
Deng, J. 2009), many of which leverage Amazon's
Mechanical Turk for human labor. Collecting image
annotations and labels is one of many applications of
crowdsourcing and bounding boxes (Welinder, P. 2010;
Whitehill, J. 2009) are a popular annotation method. Other
techniques such as polygons and scissor tools have also
been explored (Sorokin, A. 2008; Little, J. 2012).
 All of these papers use raw annotations from workers
and verification processes to exclude poor results. Our
work analyzes a method for aggregating the raw results
from multiple untrained crowd workers, showing that it
improves the final annotation quality.
 High-quality bounding boxes have been explicitly
investigated using human computation tasks for quality
and coverage verification. For example, a study by Su et al.
obtained excellent results and reported that 62% of raw
worker boxes are “visibly tight” (Su et al., 2012).
However, our observed worker quality shows much lower
accuracy, and it is not clear that a verification-based
algorithm would be appropriate under our observed
conditions.
 Efforts have been made to combine machine learning or
computer vision with crowdsourcing to optimize the flow
of task requests (Quinn, A. 2010; Vittayakorn, S. 2011;
Branson, S. 2011; Vijayanarasimhan, S. 2011). Similarly,
explicit comparisons have been conducted comparing CPU
with human cost, and a balance between the usages of two
has been suggested (Vondrick, C. 2010). This work is
orthogonal to the goal of our work, to aggregate labels
once they are obtained.
 Aggregation of weak classifiers has been studied
extensively in machine learning and machine vision (Tao,
L. 2007). Weak classifiers of higher-level data such as
image segmentations have also been combined (Ghosh, S.
2009). Approximate variational methods, including belief
propagation and mean field have been applied to
crowdsourced labels (Liu, Q., 2012). However, none of
these studies explicitly address the aggregation of
bounding box labels obtained from crowdsourced workers.

 Object detection has been extensively studied in
computer vision on images of all types, quality and content
(Lempitsky, V. 2009; Dollar, P. 2009). The data in our
work consists of images of pedestrian (Leibe, B. 2007) and
bumblebees (Miranda, B. 2012) taken from existing
computer vision research. We show that crowdsourced
object detection performs substantially better than CPU-
only methods.

Experimental Setup

Datasets
In our study we use two datasets, each of which was drawn
from the existing computer vision literature on object
detection.
 Bumblebee: Miranda et al. studied the behavior of
bumblebees while pollinating flowers (Miranda, B. 2012).
In our study we used 411 (of a total of 3,237 frames)
640x480 pixel JPEG images. A camera was pointed
towards a sweet pepper flower that was nearly stationary.
The camera records the arrival and departure of a single
bumblebee that spends most of its time on the flower.
Furthermore, the background is static and there is no
occlusion. One frame from this dataset is shown in Figure
1(a).

 (a) (b)

Figure 1: Example frames from the datasets used to
investigate object detection. Note that the bee in (a) is

blurry and thus hard to localize precisely for both
human workers and automated algorithms. The

pedestrians (b) are sometimes partially occluded,
making the problem challenging.

Pedestrian: Leibe et al. studied multi-object detection
and tracking in the context of pedestrians (Leibe, B. 2007).
We used 76 frames of their dataset, consisting of 320x240
images with noticeable compression artifacts. The frames
contain multiple pedestrians, often with heavy occlusion,
and a dynamic background. One frame from this dataset is
shown in Figure 1(b).

Worker Interface
The images were annotated using a custom web-based
annotation tool shown in Figure 2. This interface contains
English language instructions to draw tight bounding

boxes, as well as simple visual examples. The main work
panel allows drawing bounding boxes around multiple
objects, and contains a submit button. Images are displayed
in random order, and workers annotate multiple images as
part of a single task. The interface is implemented in
Processing, and the web backend is implemented with PHP
and Javascript/Ajax code that records all entries in a
MySQL database.

Figure 2: User interface where human workers were

asked to draw bounding boxes around objects of
interest. The interface allows drawing multiple boxes
when there are multiple objects to detect. Examples

of correct boxes are shown next to the work area as a
reference to workers.

Aggregation Methods
Multiple workers provide a set of bounding boxes, which
vary greatly in quality. Figure 3(a) shows an example of all
boxes received on one query.

One of the primary challenges of aggregation is
determining the correspondence between bounding boxes
and the objects they inscribe, especially when multiple
instances of an object are visible in an image. For each
image we use a mean-shift clustering algorithm on the
entire set of labels to assign boxes from different workers
to clusters. Each cluster represents a single instance of the
object and is aggregated separately.
 A secondary challenge is to remove outlier boxes due to
mistakes or intentional mislabeling so that they do not
adversely affect the final answers. For example, in Figure
3(a) worker(s) incorrectly labeled cars. We implemented
outlier rejection based on worker consensus and bounding
box size.

Mean-shift clustering algorithm
The mean-shift algorithm (Cheng, Y. 1995; Comaniciu, D.
2002) is a nonparametric clustering technique that does not
require the number of clusters to be specified in advance.
Mean-shift treats the points in an N-dimensional feature
space as a probability density where dense regions
correspond to local maxima – or modes – of the underlying

distribution. These local maxima are obtained by randomly
assigning circular search windows of a specified size, or
bandwidth, within the feature space. A gradient ascent
algorithm is used to find the approximate locations of the
modes of each distribution. Finally, points that are closest
to each mode are assigned as members of each cluster.

(a) (b)

Figure 3: (a) Bounding boxes provided by several
workers are shown. Although most workers correctly
labeled pedestrians, some incorrectly labeled cars.

(b) Blue boxes are the result of the mean shift
clustering algorithm followed by outlier rejection and

aggregation. Green boxes are ground truth labels.
Note that the clusters of raw bounding boxes were

replaced by a single aggregate bounding box for each
pedestrian.

Bounding boxes within a single cluster are aggregated
by taking the mean of the dimensions of the boxes within
the cluster. The results of this algorithm are shown in
Figure 3(b). Blue boxes are the result of our clustering
algorithm. Note that groups of individual labels from
workers have been correctly clustered into a single
bounding box around each pedestrian. Green boxes are
ground truth labels provided with the dataset.

Consensus voting outlier rejection
The degree of consensus among workers is one metric that
can be used to remove outliers. Wrong labels, such as the
boxes around cars in Figure 3(a) can be detected because
few workers provide these labels.

We define consensus outlier rejection as follows. Given
an image, we obtain the corresponding set of N bounding
boxes from the set B = {b1,b2,...,bN} of all the raw estimates
of object locations created by human workers. Each
bounding box bk ∈B is specified by the vector x,y,w,h ,
where x and y represent the pixel coordinates of the top left
corner of the box and w and h represent the width and

height of the box, respectively. For each bk ∈B we create a
corresponding binary mask mk , the same dimensions as the
image, in which all pixels inside bk are 1 (white) and those
outside of it are 0 (black). By summing the individual
masks we obtain the consensus map M (Figure 4), which
represents the distribution of total pixel-wise votes across
the image. Given the consensus map of an image, the
average consensus score sk for some bounding box bk is
computed below.To reject consensus outliers we remove
all bounding boxes with scores less than a threshold value
C.

sk =
1

wkhk
M(i, j)

i=x

x+w

∑
j=y

y+h

∑

Figure 4: Consensus map of the agreement between
workers is shown. Note that incorrect boxes drawn

around cars have comparatively low consensus
whereas locations with pedestrians have been labeled
by more workers. We reject bounding boxes in areas

of low consensus.

Size-based outlier rejection
We noticed that very small bounding boxes, probably
created by accident, sometimes fell entirely within a high
consensus area. We also observed larger bounding boxes
that contain multiple pedestrians. Although in both cases
they are in the right general region of an actual object, they
do not represent the actual size dimensions of a correct
object and adversely affect the clustering algorithm.

To remove these boxes we used size based outlier
rejection. Given the set of all bounding boxes {b1,b2,...,bN} ,
any box with width or height more than 3 standard
deviations from the mean was removed prior to clustering.

Experimental Findings

In this section, we’ll discuss our experimental findings:

Worker Demographics
Since the applicability and robustness of our algorithm is
related to the performance of workers, we investigated

multiple crowdsourcing platforms, each employing
different workers. We tried two structured for-pay
crowdsourcing platforms, Amazon’s Mechanical Turk and
an upcoming alternative that we will refer to simply as
Microtask-X (since it is a much smaller and newer
company whose performance is likely to change).

We also investigated an unstructured method of simply
asking all our Facebook friends to participate. In all cases
the workers were directed to an identical work
environment hosted on our own server. Workers on
Mechanical Turk were paid $0.15 per set of 5 images.
Microtask-X set a pay rate outside our control, charging us
$0.05 per set of 20 images. On Facebook, the volunteers
were unpaid.

The majority of Mechanical Turk workers were from
India (82% and 64% of workers for the pedestrian and
bumblebee tasks, respectively) in all trials, with only a
small fraction from each of several countries including
USA, Canada, and UK. In contrast, Microtask-X had a
more diverse workforce that varied across trials with the
majority of workers from Philippines and USA (39% and
28%, respectively) in the pedestrian trials. Most workers in
the bumblebee trials were from Pakistan, Philippines, and
India (32%, 24%, 20%, respectively).

Latency
The time workers take to complete tasks is an important
dimension in human computation algorithms since it is
related to both latency and the necessary pay rate to engage
workers.

 Bumblebee Pedestrian
Platform Median Mean Median Mean

AMT 11 19.8 68 87.4
MTX 9 13.3 58 210.1

FB 8 22.2 - -

Figure 5: Time taken per image for workers to label
bounding boxes.

 Figure 5 reports the time workers took on individual
images in seconds. Notice that the completion time is
roughly similar across services. Because some workers
take a very long time, the distribution is heavy tailed and
the mean is much greater than the median. The pedestrian
tasks take longer per image because there are multiple
smaller bounding boxes to label as compared to the one
large box in the bumblebee dataset. We next looked at the
overall rate at which labels were obtained. This might not
be correlated with the time taken on individual tasks since
workers could simply not be engaged on the project.

We compare the rate of annotation acquisition for our
Bumblebee dataset on Amazon Mechanical Turk (AMT),
Microtask-X (MTX), and by asking our Facebook (FB)

friends in Figure 6. In this case MTX provided labels much
more quickly than AMT. As might be expected, attempting
to ask our friends for free labor in the name of research
resulted in a much slower rate of acquisition. This rate was
sufficiently slow that we ceased using Facebook on
subsequent experiments.

Our comparison of the AMT and MTX platforms for the
pedestrian dataset (not shown) acquired labels much faster
since the pedestrian dataset results in multiple annotations
per image.

Figure 6: Cumulative number of responses since the

job submission for the bumblebee dataset. In this case
the AMT microtask platform provided results much
faster than MTX. Attempting to ask Facebook (FB)

friends to help with our research project resulted in a
slow rate of response.

Quality of work
The algorithms appropriate for aggregating and processing
crowdsourced data are a function of the characteristics of
the raw data. In addition, the accuracy of work might vary
between platforms. We thus investigated the quality of raw
bounding box labels.

The existing literature defines “accurate” in a variety of
ways. One study on crowdsourcing bounding boxes,
labeled as “accurate” only bounding boxes that were a very
tight fit to the object, overlapping nearly 100% (Su, H.
2012). In contrast, another study using computer vision
defined any bounding box that overlapped with ground
truth by more than 50% as “accurate” (Leibe, B. 2007). We
report the quality of bounding boxes generated by
participants using the intersection-over-union metric
presented in (Everingham, M., et al. 2005). A fitness score
between two bounding boxes is computed as the quotient
of the overlapping area to the area spanned by the union of
both boxes. Rather than choose an arbitrary threshold as
“accurate,” we report the distribution of observed qualities.

Figure 7: Raw score distribution for the bumblebee
dataset varies greatly across services. Nearly all of

the labels accumulated from Facebook friends had at
least 40% overlap with ground truth, while a large

fraction of AMT labels fell below this quality
threshold.

Figure 8: Quality distribution on the pedestrian

dataset was noticeably higher, and in this case AMT
performed comparatively well.

The distribution of quality scores obtained from each
crowdsourcing platform on the bumblebee dataset is shown
in Figure 7. The horizontal axis reports scores in the range
[0,1], where 0 indicates the bounding box did not overlap
with any ground truth and 1 indicates a perfect overlap
with ground truth. The vertical axis represents the total
number of annotations collected in the dataset. Note that
the distributions of raw labels are not identical. Nearly all
Facebook labels had at least a 40% overlap with ground
truth, while a substantial number of Mechanical Turk
labels fell below this level. Differences can also be seen in
the percentage of labels that are completely wrong (0%
overlap to ground truth). On paid microtask services this
likely corresponds to intentional spammers, and rejecting
these answers is a component of many human computation

algorithms. In this case, Mechanical Turk had a larger
number of responses in this category than did Microtask-X.

The results from our experiments with the pedestrian
dataset are shown in Figure 8. In this case AMT had a
higher distribution of quality than MTX.

Effect of algorithm parameters
Our aggregation method has parameters in both the mean-
shift clustering and consensus voting stages. These can be
used to adjust the relationship between the number of true
and false positives. Following the convention of
Everingham et al. we define true positives as detected
bounding boxes that overlap with a ground truth box by at
least 50% (Everingham, M., et al. 2005). Boxes which do
not sufficiently overlap with ground truth boxes are labeled
false positives. If two boxes from our algorithm overlap
with the same ground truth box, the second is labeled as a
false positive.

Figure 9: Our aggregation algorithm was evaluated
across a range of parameters. Lines are plotted for
fixed values of clustering bandwidth (BW) with the

consensus voting threshold (C) varied.

The results of running our algorithm with different
parameter settings on the pedestrian dataset are shown in
Figure 9. Lines are plotted at different values of the mean
shift clustering bandwidth (BW). Along each line the
consensus voting threshold (C) is varied. When C is 1 a
large number of false positives occur since no boxes are
rejected. As C increases, both the true and false positives
are reduced since more boxes are rejected. From the data,
we noticed that the bandwidth (BW) parameter is best set
at roughly twice size as the bounding boxes. This makes
sense because the clustering bandwidth corresponds to the
dimensions of the spatial search radius in the image.

The results on the bumblebee dataset are shown in
Figure 10. In this case we have plotted lines with different

values of the consensus threshold, C. As the clustering
bandwidth decreases more clusters are created and both
true and false positives increase. From the data we see that
the consensus voting threshold is best set well above 1, but
several votes less than the total number of voters available.

Figure 10: The bumblebee dataset is shown, this time
evaluated by holding the consensus voting threshold
(C) constant and varying the clustering bandwidth
(BW). Note that the algorithm behaves well over a

large range of parameters. The y-axis scale is set to a
very high range to allow visibility.

Comparison with computer vision
Object detection is traditionally framed as a computer
vision problem, so we compare our results against those
from published computer vision research. We find that
even our simple human computation based detector
performs substantially better than existing computer vision
solutions.

Pedestrians: The pedestrian dataset has been the target
of several prior studies. A fixed viewpoint object detector
operating only on single frames is the closest comparison
to the data available to our algorithm (Leibe, B. 2005).
There has also been work on building a coupled detector
and tracker which makes use of temporal information
across frames to improve object localization (Leibe, B.
2007). This later work uses more data than our workers
have available, since we present them only individual
frames. We follow the error metric of 50% overlap, and
reporting methodology of true positive rate versus the
number of false positives per image used in both of these
prior studies. Since both the computer vision and human
computation methods have thresholds to adjust, these are
reported as curves. Figure 11 shows our results together
with the computer vision results. Human computation
provides a much higher detection rate.

Figure 11: Our human computation algorithm was

compared against the results from two prior
published computer vision papers on the pedestrian
dataset, and found to have a much higher detection

rate.

Bumblebee: The bumblebee dataset has been

investigated using both a Viola-Jones detector, as well as a
detection plus tracking framework that makes use of
temporal coherence (Miranda, B. 2012). Prior work on this
dataset reports true and false positive rates. Given the
number of sub-windows scanned per image, these values
can be converted into the equivalent metric, false positives
per image. The Viola-Jones detector uses between
145,000-575,000 sub-windows to scan each image,
depending on parameter settings (Viola, P. 2004). We use
the lower number to convert false positive rates into false
positives per image.

 True Positive85% True Positive 96%

[Miranda12]
Detection Only

580
false positive/image

[Miranda12]
Detect + Track

 145
false positive/image

Human
Computation

0.007
false positive/image

0.015
false positive/image

Figure 12: The algorithm in this paper is compared
against the published accuracy using a computer

vision method on the bumblebee dataset. The false
positive rate is orders of magnitude lower.

The values from prior work are compared to our method
in Figure 12. Miranda et al. give false positive rates in the
range of 0.1%, which are equivalent to a high number of
false positives per image. Note that our method results in
significantly fewer false positives per image at the same
true positive rate. Using 411 test images, and at true
positive rates chosen to match those given in Miranda et

al., our method produced a total of 3 false positives at 85%
true positive rate, and 6 false positives at 96% false
positive rate. We divide our total false positives by the
number of images to get the comparable metric of false
positives/image.

	

Figure 13: A standard Haar Classifier from OpenCV
was used to find bounding boxes in the bumblebee
dataset. The quality distribution evaluated on the

same (intersection/union) metric is noticeably below
any of the human provided label distributions.

Figure 14: The human computation algorithm in this

paper is compared against a standard Haar
Classifier as implemented in OpenCV. The standard

computer vision solution does not approach the
quality of aggregated human labels.

In order to better understand the performance of
computer vision based approaches we implemented a
standard Haar classifier using OpenCV. This
implementation was not heavily tuned to this dataset, so
performs worse than published results with custom tuned
classifiers. Nevertheless we believe it provides some
insight into the performance that can be expected from
using a generic unoptimized classifier for object detection.

We trained the classifier with 422 ground truth images.
Figure 13 shows the intersection over union scores

obtained. The computer vision algorithm performs
noticably worse than the data for human labelers shown
earlier.

Lastly we compare the Haar Classifier to our algorithm
using an ROC curve similar to that reported in many
computer vision papers, shown in Figure 14. OpenCVs
detectMultiScale function was used and the minNeighbors
parameter was varied. We used the 50% intersection over
union metric to determine matches with ground truth. The
standard computer vision implementation does not
approach the level of quality achieved by human
computation.

Conclusions

This paper investigates the use of human computation as a
platform for object detection in images.

We presented results showing that different human labor
platforms have different accuracy and latency
characteristics. We believe that this variability implies a
need for designers of human computation algorithms to
specify the raw label characteristics on which they expect
their algorithms to perform well.

We implement a simple aggregation method to combine
results from several workers and investigate its
performance. We find that aggregation improves results
beyond the quality of individual raw labels.

Finally we compare this human computation based
object detector to three different computer vision based
object detectors, finding that human computation
substantially outperforms computer vision on this task.

Taken together, these findings suggest that micro-task
based human labor is a viable platform for developing
“computer vision” algorithms. Even the extremely simple
algorithm investigated in this paper showed improvements
in quality. Further, despite the cost associated with human
labor, the quality gains were shown to be large enough that
deployment could be considered in domains which place a
high value on high accuracy.

References

Branson, S.; Perona, P.; and Belongie, S. 2011. Strong
supervision from weak annotation: Interactive training of
deformable part models. In ICCV, 1832–1839.
Comaniciu, D., Meer, P. 2002. Mean shift: A robust approach
toward feature Space Analysis. In the IEEE Transactions on
Pattern Analysis and Machine Intelligence, Volume: 24, Issue: 5,
603 - 619.
Cheng, Y. 1995. Mean shift, mode seeking, and clustering. In
Pattern Analysis and Machine Intelligence, IEEE Transactions on
17.8 (1995): 790-799.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-Fei, L.
2009. ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR’09.
Dollar, P., Wojek, C., Schiele, B., Perona, P. 2009. Pedestrian
Detection: A Benchmark. In CVPR’09.

Everingham, M., et al. 2005. The 2005 PASCAL Visual Object
Classes Challenge. In PASCAL Machine Learning Challenges
Workshop, MLCW.
Ghosh, S., Pfeiffer, J.J., Mulligan, J. 2009. A General Framework
for Reconciling Multiple Weak Segmentations of an Image. In
WACV, page 1 - 9. IEEE’09.
Leibe, B., Schindler, K., Van Gool, L. 2007. Coupled Detection
and Trajectory Estimation for Multi-Object Tracking. In
ICCV’07.
Leibe, B., Seemann, E., Schiele, B. 2005. Pedestrian detection in
crowded scenes. In CVPR’05.
Lempitsky, V., Kohli, P., Rother, C., Sharp, T. 2009. Image
Segmentation with A Bounding Box Prior. In ICCV09.
Little, J., Abrams, A., Pless, R. 2012. Tools for Richer Crowd
Source Image Annotations. In WACV, page 369-374. IEEE’12.
Liu, Q., Peng, J., Ihler, A., 2012. Variational Inference for
Crowdsourcing. In NIPS 2012.
Miranda, B., Salas, J., Vera, P. 2012. Bumblebee Detection and
Tracking. IEEE Workshop on Visual observation and analysis of
animal and insect behavior at ICPR, 2012.
Quinn, A., Bederson, B., Yeh, T., Lin, J,. 2010. CrowdFlow:
Integrating Machine Learning with Mechanical Turk for Speed-
Cost-Quality Flexibility. In Technical Report HCIL-2010-09,
University of Maryland.
Sorokin, A., and Forsyth, D. 2008. Utility data annotation with
amazon mechanical turk. 2008 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition
Workshops 51(c):1–8.
Su, Hao., Deng, J., Fei-Fei, L. 2012. Crowdsourcing Annotations
for Visual Object Detection. In AAAI Human Computation
Workshop, 2012.
Tao, L., Ding, C., Jordan, M. 2007. Solving Consensus and Semi-
supervised Clustering Problems Using Nonnegative Matrix
Factorization. In IEEE ICDM '07.
Vijayanarasimhan, S., and Grauman, K. 2011. Large-scale live
active learning: Training object detectors with crawled data and
crowds. In CVPR, 1449–1456.
Viola, P., Jones., M. 2004. Robust real-time face detection. In
International journal of computer vision 57.2 (2004): 137-154.
Vittayakorn, S., and Hays, J. 2011. Quality assessment for
crownsourced object annotations. In Proceeding of British
Machine Vision Conference (BMVC).
Vondrick, C., Ramanan, D., Patterson, D. 2010. Efficiently
Scaling Up Video Annotation with Crowdsourced Marketplaces.
In ECCV'10.
Welinder, P., Perona. P. 2010. Online crowdsourcing: rating
annotators and obtaining cost-effective labels. In CVPR’10.
Whitehill, J.; Ruvolo, P.;Wu, T.; Bergsma, J.; and Movellan, J. R.
2009. Whose vote should count more: Optimal integration of
labels from labelers of unknown expertise. In NIPS, 2035–2043.

