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ABSTRACT

Photography provides tangible and visceral mementos of im-
portant experiences. Recent research in content-aware image
processing to automatically improve photos relies heavily on
automatically identifying salient areas in images. While au-
tomatic saliency estimation has achieved estimable success, it
will always face inherent challenges. Tracking the photogra-
pher’s eyes allows a direct, passive means to estimate scene
saliency. We show that saliency estimation is sometimes an
ill-posed posed problem for automatic algorithms, made well-
posed by the availability of recorded eye tracks. We instru-
ment several content-aware image processing algorithms with
eye track based saliency estimation, producing photos that ac-
centuate the parts of the image originally viewed.

Index Terms— Eye Tracking, Saliency, Computational
Photography, Content Aware Resizing, Seam Carving

1. INTRODUCTION

Photos and videos are a powerful medium for capturing a
moment’s fleeting experience and later sharing it with oth-
ers. The best photography does not merely faithfully docu-
ment the scene in front of the camera. Rather, the photogra-
pher uses various artifices to influence the viewer’s perception
of the scene, directing the viewer to notice certain aspects
of the image. This ability is often reserved only for profes-
sional photographers, and achieved at the time of image cap-
ture through framing, exposure, and focus, or aferward with
image editing software.

A casual photographer, while wishing to preserve ’what
they noticed,’ typically settles for simply recording an accu-
rate portrait of what is in front of them. Recent research in
content-aware image processing has dramatically improved
the ability of the amateur photographer to apply software that
automatically or semi-automatically modifies their photo to
accentuate some region of the photo.

Many such algorithms rely crucially on an estimated
saliency map of the image: which regions are important,
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and which are not? Automatic saliency estimation faces two
important challenges. First, determining important and unim-
portant regions of some photos requires high-level scene anal-
ysis beyond current capabilities. Second, objective saliency
may be elusive when two photographers disagree as to the
salient parts of the same scene. The two photographers may
have different motives in taking their pictures, or differing
knowledge of the semantic content scene.

While objective saliency may sometimes be ill-posed, per-
sonal saliency is not. We propose to record the photographer’s
eye movements to identify the parts of the scene they notice,
and to later manipulate the image in order to draw viewers’
eyes to those same regions. Photographs of the same object,
taken from the same place, with the same camera, should dif-
fer depending on the photographer, and what caught their eye.

We show that automatic saliency algorithms can fail to ac-
count for semantic scene content, where eye tracking supplies
useful saliency maps. We further apply content-aware image
processing algorithms using saliency maps derived from eye
tracking.

We believe that the ability to record photographer’s eye
movements is within reach of camera manufacturers, noting
that Canon included an ”Eye Controlled Focus” option in sev-
eral film-based SLR cameras from 1992 to 2004: an eye-
tracker built into the viewfinder directed the camera’s auto-
focus. To our knowledge, however, no camera has recorded
these eyetracks along with the photo. We hope this work in-
spires manufacturers to do so in the future.

The primary contribution of this paper is the demonstra-
tion that eyetrack data may be used to esimate image saliency
for content-aware image processing algorithms that empha-
size those parts of the scene that most struck the viewer’s eye.

2. RELATED WORK

Unfortunately, eye tracking has recieved little attention with
regard to saliency estimation in content aware image process-
ing.

Santella et al [1] created a user interface allowing a com-
puter user to semi-automatically crop an image by record-
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ing their eye tracks while using image editing software. Our
intended application targets photographers at image capture
time, and considers several content aware image procesing
techniques rather than cropping.

In another line of research, Santella et. al. [2], [3],[4]
strive toward an artistic goal, seeking to automate the cre-
ation of stylized cartoons. Conversely, we seek to preserve
the appearance of an authentic image while redirecting a new
viewer’s eye to match. Like us though, they use eyetracks of
individuals to identify regions of interest in images, and use
this information to modify the image.

Several content aware image processing techniques may
be used to direct a viewer’s attention in an image. For ex-
ample, the brightness, contrast, and color saturation may be
selectively diminished or enhanced, or the image may be
cropped the image to limit the viewer’s attention to the areas
desired. More flexible tools of recent interest are content-
aware resizing algorithms, such as Seam Carving [5] or
related methods [6] [7] [8] [9] [10] that selectively enlarge or
shrink different regions of the image.

Content-aware resizing has received extensive attention
since the Seam Carving paper of 2007. Most work focuses
on one of two distinct challenges. First, a saliency map must
be constructed to determine which parts of the image should
be emphasized, and which de-emphasized or removed. Sec-
ond, and separately, the image is nonuniformly resampled to
remove those image regions deemed least important, leaving
the important regions behind. This paper responds to the first
challenge. While typical automatic methods find strong edges
or high-frequency content [11],[12], [5], passively-collected
eye tracks allow a new answer. What does the photographer
want the viewer to see? What the photographer saw.

3. SALIENCY

Tracking a photographer’s eye movements allows the con-
sruction of a saliency map indicating the parts of the scene
most noticed. Looking ahead, we expect that future cam-
eras will soon be equipped with eye trackers built directly into
their viewfinders. Our present experiment, however, was con-
ducted with off-the-shelf equipment in a laboratory setting.
Rather than a camera’s viewfinder, subjects peered through a
half-mirror to see a computer monitor while a Bouis infrared
eye tracker recorded their eye movements. Before viewing a
photo, the subject viewed a sequence of 25 calibration images
consisting of points on a 5x5 grid. This calibration typically
provided an accuracy of 20-50 pixels on an 800x600 screen,
with an accompanying accuracy estimate for each session.

We sample eye gaze directions at 1kHz and estimate
the average time spent looking at each pixel by convolving
with a gaussian filter that spreads the contribution of each
measurement over an area matched to the accuracy of the
measurement. Santella et al [1] used a more sophisticated
methodology to better segment complex objects from their

(a) Original image (b) Saliency from
eye track of subject 1

(c) Saliency from (d) Saliency from
eye track of subject 2 eye track of subject 3

(e) Saliency from (f) Saliency from
Itti automatic algorithm GBVS automatic algorithm

Fig. 1. Saliency of an image is estimated from recorded
eye tracks, and from two automatic saliency estimation al-
gorithms. Note that the automatic algorithms find most of the
image salient, while all three subjects’ eyes concentrate on
the camel’s rider.

backgrounds, but we have found our simple technique suffi-
cient for the tasks at hand.

We compare the observed saliency maps to two automatic
methods. The ’Itti’ algorithm [12] begins by applying a filter
bank to the image. These filter responses are then normalized
and averaged.

The Graph Based Visual Saliency (GBVS) algorithm [11]
constructs a fully-connected graph with a node for each pixel,
with directed edges weighted according to the dissimilarity
between the pixels’ responses to filters and their distance. The
stationary distribution is obtained through the power method
to find ’interesting’ pixels. A new graph is then constructed,
also with a node for each pixel, with connections only be-
tween neighboring nodes, and weighted by the similarity of
their interestingness (as found by the first graph). The power
method is again used to find the stationary distribution, con-
centrating the mass into localized regions. The authors [11]
have kindly provided implementations of the GBVS and Itti
algorithms.
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Figure 1 compares the GBVS and Itti algorithms to
saliency maps derived from recorded eye tracks. Note that
in this case all three subjects’ recorded eye tracks focus on
the person riding the camel, while both saliency algorithms
distributed their attention over a large region of the photo.
The visual cues that make the camel’s rider so interesting to
human viewers are high level semantic cues difficult for any
automatic saliency algorithm to identify.

(a) Original image (b) Saliency from
automatic GBVS algorithm

(c) Saliency from (d) Content aware resizing
eyetracks of subject 3 based on subject 3

(e) Saliency from (f) Content aware resizing
eyetracks of subject 4 based on subject 4

Fig. 2. Saliency maps derived from eyetracks of two subjects
distinctly differ, and the result of content aware resizing thus
differs as well. In this case, the automatic saliency algorithm
finds most of the image to be salient.

4. CONTENT AWARE IMAGE PROCESSING

Content aware image resizing distorts the sizes of different
parts of an image, enlarging or shrinking some more than oth-
ers in order to emphasize salient regions. Differing saliency
maps will emphasize different areas in the resulting image. In
the popular seam carving algorithm, a subset of pixels in the
original image is chosen to appear in the resulting image. To
achieve this, the original image is iteratively shrunk by one
row or one column. Rather than an intact column, a seam is

removed - a set of pixels that are all diagonally or vertically
adjacent, with one pixel from each row. The seam is cho-
sen to preserve the parts of the image weighted highly by the
saliency map and remove the parts given low weight.

Attention can also be drawn to one part of an image by se-
lectively defocusing other parts. This effect is commonly used
by photographers when capturing photos, by using a shallow
depth of field to keep their subject in focus while other objects
are out of focus. A similar effect can be achieved after image
capture by blurring some parts of the image with a gaussian
filter. We applied a different level of gaussian blur at each
pixel, with the kernel’s width smaller for more salient pixels.

We now compare saliency maps from viewers with dis-
tinct ideas of what in a scene is salient. In the previous sec-
tion, the three human subjects showed remarkable agreement
in Figure 1 that the camel rider was the most interesting part
of the photo. In contrast, the subject in Figure 3(c) attended
to each of the fish and a rock, while the subject in Figure 3(e)
concentrated only on the large blue fish. What is ”interest-
ing” varies from person to person. This difference in judged
saliency leads to two very different seam carved results. Fig-
ure 3(d) includes all four fish and regions from the top of the
photo, while 3(f) centers tightly around the blue fish. The
GBVS algorithm’s saliency in Figure 3(b), meanwhile, en-
compasses a large part of the image.

Consider the scene of four ultimate frisbee players in Fig-
ure 3. While many viewers will find the players more salient
than the background, viewers will disagree as to whether
some players are more important to the photo than others.
To demonstrate the ability of selective defocus to capture the
photographer’s experience, a subject was asked to look at
each of four players in the photo, in turn. Their eye tracks
were recorded, giving four separate saliency masks, and four
selectively defocused images. Each leaves a different player
in focus while the rest of the image is slightly blurred.

5. CONCLUSION

Content-aware image processing provides exciting and useful
tools to photographers, and depends crucially on estimating
image saliency. We have demostrated that passively track-
ing the eyes of photographers would provide personalized
saliency maps for use in such algorithms.
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(a) Original image

(b) Accentuating player 1 (far leftt)

(c) Accentuating player 2

(d) Accentuating player 3

(e) Accentuating player 4 (far right)

Fig. 3. Viewers may disagree with regard to the salient parts
of an image. This image contains four players, any or all of
whom may be salient, depending on the viewer. To simulate
this, a subject was asked to look at each of the four people
in the photo, in turn. Eye movements during each of those
glances were recorded separately, and were used to render
four different images, each drawing attention to one person
by selectively defocusing the non-salient regions.
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Abstract

Photography provides tangible and visceral mementos of
important experiences. Recent research in content-aware
image processing to automatically improve photos relies
heavily on automatically identifying salient areas in im-
ages. While automatic saliency estimation has achieved
estimable success, it will always face inherent challenges
where saliency involves semantic judgements involving re-
lationships between people or objects in the scene and the
unseen photographer. Tracking the photographer’s eyes al-
lows a direct, passive means to estimate scene saliency. We
instrument several content-aware image processing algo-
rithms with eye track based saliency estimation, producing
personalized photos that accentuate the parts of the image
important to one particular person.

1. Introduction
Photos and videos are a powerful medium for capturing

a moment’s fleeting experience and later sharing it with oth-
ers. The best photography does not merely faithfully docu-
ment the scene in front of the camera. Rather, the photog-
rapher uses various artifices to influence the viewer’s per-
ception of the scene, directing the viewer to notice certain
aspects of the image. Choices at the time of image cap-
ture set up the photo’s framing, exposure, and focus, while
further adjustments are made afterward with image editing
software. Increasing automation has broadened the base of
photographers able to avail themselves of these means of
expression.

A casual photographer, while wishing to preserve ’what
they noticed,’ has historically settled for simply recording
an accurate portrait of what is in front of them. Recent re-
search in content-aware image processing has dramatically
improved the ability of the amateur photographer to apply
software that automatically or semi-automatically modifies
their photo to accentuate some region of the photo.

Many such algorithms rely crucially on an estimated
saliency map of the image: which regions are important,
and which are not? Automatic saliency estimation faces
two important challenges. First, determining important
and unimportant regions of some photos requires high-level
scene analysis beyond current capabilities. Second, objec-
tive saliency may be elusive when two photographers dis-
agree as to the salient parts of the same scene. The two
photographers may have different motives in taking their
pictures, differing knowledge of the semantic content scene,
or different relationships to the subjects of the photo.

While objective saliency struggles amidst ambiguity,
personal saliency is more tractable. The viewers eyes could
be subtly directed to the same parts of the image that
the photographer most noticed. This is made possible by
recording photographers’ eye movements to identify the
parts of the scene to which they attend. Images are then ma-
nipulated to draw viewers’ eyes to those same regions. Pho-
tographs of the same object, taken from the same place, with
the same camera, should differ depending on the photogra-
pher, and what caught their eye. Lacking such a camera,
we conduct experiments in a laboratory setting to demon-
strate its feasibility and explore various image processing
algorithms.

Where automatic saliency algorithms can fail to account
for semantic scene content, eye tracking may supply use-
ful, personalized saliency maps. Content-aware image pro-
cessing algorithms using these saliency maps provide a new
means of communicating one’s experience.

The primary contribution of this paper is our experi-
mental demonstration of eyetrack data’s applicability to es-
imating personalized image saliency for content-aware im-
age processing algorithms that emphasize those parts of the
scene that most struck the viewer’s eye.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews prior work in deriving saliency from eye
tracks, and in performing content-aware image processing
based on saliency. Section 3 demonstrates the semantic
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ambiguity that frustrates automatic saliency estimation and
motivates personalized, eye tracking based saliency. Sec-
tion 4 presents the results of experiments integrating eye
tracking based saliency with contant aware image process-
ing algorithms, and Section 5 discusses future research di-
rections.

2. Related Work
Eye tracking has to date recieved little attention with re-

gard to personalized saliency estimation in content aware
image processing.

Santella et al [10] created a user interface allowing a
computer user to semi-automatically crop an image by
recording their eye tracks while using image editing soft-
ware. Our intended application targets photographers at im-
age capture time, and considers several content aware image
procesing techniques rather than cropping.

In another line of research, Santella et. al. [11], [12],[13]
strive toward an artistic goal, seeking to automate the cre-
ation of stylized cartoons. Conversely, we seek to preserve
the appearance of an authentic image while redirecting a
new viewer’s eye to match the experience of the photogra-
pher. Our efforts are similar in that both use eyetracks of
individuals to identify regions of interest in images, and use
this information to modify the image.

In order to biometrically mark a photograph’s author,
Blythe et al. [2] embed a small camera within an SLR
viewfinder, in order to document the photographer’s iris,
embedding their identity in a digital watermark. Hua et
al. [6] designed a head-mounted augmented-reality display
that includes eye tracking. A good survey of additional eye
tracking applications is available [4].

We also note that while tomorrow’s augmented-reality
glasses may feature eye tracking, embedding eye tracking
in cameras is not strictly a technology of the future. Canon
included an ”Eye Controlled Focus” option in several film-
based SLR cameras from 1992 to 2004: an eye-tracker built
into the viewfinder directed the camera’s autofocus.

Several content aware image processing techniques may
be used to direct a viewer’s attention in an image. For ex-
ample, the brightness, contrast, and color saturation may
be selectively diminished or enhanced, or the image may be
cropped the image to limit the viewer’s attention to the areas
desired. More flexible tools of recent interest are content-
aware resizing algorithms, such as Seam Carving [1] or re-
lated methods [8] [15] [9] [16] [14] that selectively enlarge
or shrink different regions of the image.

Content-aware resizing has received extensive attention,
particularly over the past 5 years. Most work focuses on
one of two distinct challenges. First, a saliency map must
be constructed to determine which parts of the image should
be emphasized, and which de-emphasized or removed. Sec-
ond, and separately, the image is nonuniformly resampled to

remove those image regions deemed least important, leav-
ing the important regions behind. This paper responds
to the first challenge. While typical automatic methods
find strong edges or high-frequency content [5],[7], [1],
passively-collected eye tracks allow a new answer. What
does the photographer want the viewer to see? What the
photographer saw.

Display

Camera
Half

Mirror

Figure 1. Subjects viewed a screen through a beam splitter, so that
an eye-tracking camera may monitor their eye movements. This
experiment simulations an eye tracker deployed within a camera’s
viewfinder.

3. Saliency

Tracking a photographer’s eye movements allows the
consruction of a saliency map indicating the parts of the
scene most noticed. Looking ahead, we expect to find future
cameras equipped with eye trackers built directly into their
viewfinders. In order to conduct experiments investigating
the utility of this configuration, we simulate this scenario
with off-the-shelf equipment in a laboratory setting.

Rather than a camera’s viewfinder, subjects peered
through a half-mirror to see a computer monitor while a
Bouis infrared eye tracker recorded their eye movements,
as in Figure 1. The eye tracker contains an infrared light
source and a small array of infrared photosensors. Before
viewing a photo, the subject viewed a sequence of 25 cal-
ibration images consisting of points on a 5x5 grid. This
calibration typically provided an accuracy of 20-50 pixels
on an 800x600 screen.

We sample eye gaze directions at 1kHz and estimate the
average time spent looking at each pixel by convolving with
a gaussian filter. The filter width was chosen to spreads
the contribution of each measurement over an area matched
to the measured accuracy of the gaze-direction estimation
while viewing this photo. Santella et al [10] used a more
sophisticated methodology to better segment complex ob-
jects from their backgrounds, but we have found our simple
technique sufficient for the tasks at hand.
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We compare the observed saliency maps to two auto-
matic methods. The ’Itti’ algorithm [7] begins by applying
a filter bank to the image. These filter responses are then
normalized and averaged.

The Graph Based Visual Saliency (GBVS) algorithm [5]
constructs a fully-connected graph with a node for each
pixel, with directed edges weighted according to the dis-
similarity between the pixels’ responses to filters and their
distance. The stationary distribution is obtained through the
power method to find ’interesting’ pixels. A new graph is
then constructed, also with a node for each pixel, with con-
nections only between neighboring nodes, and weighted by
the similarity of their interestingness (as found by the first
graph). The power method is again used to find the sta-
tionary distribution, concentrating the mass into localized
regions. The authors [5] have kindly made available imple-
mentations of the GBVS and Itti algorithms.

Figure 2 compares the GBVS and Itti algorithms to
saliency maps derived from recorded eye tracks. Note that
in this case all three subjects’ recorded eye tracks focus on
the person riding the camel, while both saliency algorithms
distributed their attention over a large region of the photo.
The visual cues that make the camel’s rider so interesting to
human viewers are high level semantic cues difficult for any
automatic saliency algorithm to identify.

4. Content Aware Image Processing
Content aware image resizing distorts the sizes of dif-

ferent parts of an image, enlarging or shrinking some more
than others in order to emphasize salient regions. Differing
saliency maps will emphasize different areas in the result-
ing image. In the popular seam carving algorithm, a subset
of pixels in the original image is chosen to appear in the
resulting image. To achieve this, the original image is it-
eratively shrunk by one row or one column. Rather than an
intact column, a seam is removed - a set of pixels that are all
diagonally or vertically adjacent, with one pixel from each
row. The seam is chosen to preserve the parts of the image
weighted highly by the saliency map and remove the parts
given low weight.

Attention can also be drawn to one part of an image by
selectively defocusing other parts. This effect is commonly
used by photographers when capturing photos, by using a
shallow depth of field to keep their subject in focus while
other objects are out of focus. A similar effect can be ap-
proximated after image capture by blurring some parts of
the image with a gaussian filter. We applied a different
level of gaussian blur at each pixel, with the kernel’s width
smaller for more salient pixels. We find that this subtly de-
emphasizes overlooked regions of the image.

We now compare saliency maps from viewers with dis-
tinct ideas of what in a scene is salient. In the previous
section, the three human subjects showed remarkable agree-

(a) Original image (b) Saliency from
eye track of subject 1

(c) Saliency from (d) Saliency from
eye track of subject 2 eye track of subject 3

(e) Saliency from (f) Saliency from
Itti automatic algorithm GBVS automatic algorithm

Figure 2. Saliency of an image is estimated from recorded eye
tracks, and from two automatic saliency estimation algorithms.
Note that the automatic algorithms find most of the image salient,
while all three subjects’ eyes concentrate on the camel’s rider.

ment in Figure 2 that the camel rider was the most interest-
ing part of the photo. In contrast, the subject in Figure 3
(c) attended to each of the fish and a rock, while the sub-
ject in Figure 3 (e) concentrated only on the large blue fish.
What is ”interesting” varies from person to person. This dif-
ference in judged saliency leads to two very different seam
carved results. Figure 3 (d) includes all four fish and re-
gions from the top of the photo, while Figure 3 (f) centers
tightly around the blue fish. The GBVS algorithm’s saliency
in Figure 3 (b), meanwhile, encompasses a large part of the
image.

Consider the scene of four ultimate frisbee players in
Figure 4. While many viewers will find the players more
salient than the background, viewers will disagree as to
whether some players are more important to the photo than
others. To demonstrate the ability of selective defocus to
capture the photographer’s experience, a subject was asked
to look at each of four players in the photo, in turn. Their
eye tracks were recorded, giving four separate saliency
masks, and four selectively defocused images. Each leaves

3
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(a) Original image (b) Saliency from
automatic GBVS algorithm

(c) Saliency from (d) Content aware resizing
eyetracks of subject 3 based on subject 3

(e) Saliency from (f) Content aware resizing
eyetracks of subject 4 based on subject 4

Figure 3. Saliency maps derived from eyetracks of two subjects
distinctly differ, and the result of content aware resizing thus dif-
fers as well. In this case, the automatic saliency algorithm finds
most of the image to be salient.

a different player in focus while the rest of the image is
slightly blurred.

5. Conclusion
Content-aware image processing provides exciting and

useful tools to photographers, and depends crucially on esti-
mating image saliency. We have demostrated that passively
tracking the eyes of photographers would provide personal-
ized saliency maps for use in such algorithms.
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