
TCP Inigo
Fighting Congestion With Both Hands

Andrew Shewmaker (agshew@gmail.com) Carlos Maltzahn
Katia Obraczka
Scott Brandt

University of California Santa Cruz
This research was partially funded by a Google Faculty Award

November 15, 2014

Abstract

The Land of Net is always in peril from unscrupulous “princes” and
six-fingered apps. TCP Inigo is the hero of this story. He functions
surprisingly well, considering he has a drinking problem or two and prefers
to fight with his left hand even though he’s right handed. Join TCP Inigo
as he overcomes his faults and defeats the six-fingered apps who killed his
buffer.

1 Introduction

I am not the TCP . . . My name is Westwood; I inherited the name
TCP from the previous protocol, just as the next will inherit it from
me. The protocol I inherited it from is not the real TCP either. Its
name was Reno. The original TCP has been retired fifteen years
and living like a king in Tahoe.

- The Dread Pirate TCP Westwood

This paper will not delve into the long history of TCP. It builds off of Data
Center TCP (DCTCP) [1]. DCTCP improves congestion control by using ECN
markings to estimate the extent of congestion instead of just the presence of
it. Given congestion markings on all of the packets in a window, DCTCP will
halve the window just like traditional TCP does when it detects packet loss
or when TCP+ECN does when it sees a single ECN marking. If DCTCP sees
fewer markings it will back off proportionally less.

DCTCP is transitioning out of academic status, with support already in or
coming to MS Windows, Linux, and FreeBSD. It also serves as the basis for con-
tinuing academic research. HULL [4] adds packet pacing and phantom queues
to DCTCP, sacrificing some utilization in order to reduce latencies. Deadline-
aware DCTCP (D2TCP) [13] modifies the congestion response further to enable
fine-grained, soft QoS. And the IETF is discussing other ways to improve con-
gestion notification and DCTCP.

1

mailto:agshew@gmail.com

2 Drinking Problems

Below is a list of some significant issues with DCTCP. It inherited some from
previous TCP’s, and some are specific to its method of measuring congestion.
Since TCP Inigo is based on DCTCP, then it had better deal with them.

DCTCP assumes receiver-side modification

This causes problems with incremental rollout and heterogenous environ-
ments. One-sided DCTCP [6] avoids this requirement, but must make
compromises that reduce its effectiveness if the receiver has been modi-
fied.

DCTCP is vulnerable to ack-loss

ACKs might be lost due to congestion on the reverse path or an intermit-
tent link fault. In this situation, DCTCP’s congestion estimate becomes
inaccurate, which results in overshooting and undershooting the optimal
window size [7].

DCTCP can exhibit instability

The longer the RTT of a flow, the more delayed the signal of conges-
tion is in getting back to a sender. Delayed signals, along with DCTCP’s
suggested single threshhold value used to mark packets in switches, can
cause instability in some circumstances [5, 8]. Chen, et. al suggest using
a double threshhold [5], showing that it is able to handle approximately
five more flows than a single threshhold before collapsing due to incast.
But the double threshold implementation is more complicated, and that
increase in complexity is likely to inhibit its adoption. Zats, et. al pro-
pose direct and more informative congestion feedback with FastLane [15].
While improved congestion notification like FastLane’s would benefit re-
sponse time and stability, it requires significant changes in switches and
hosts.

DCTCP responds to congestion only once per window

As in regular TCP, this exacerbates round-trip-time unfairness where flows
with large RTTs get a smaller portion of the bottleneck bandwidth. The
original authors of DCTCP propose a modification in which it responds
to each ACK [2], and simulation results looked promising. Unfortunately,
this idea is problematic to implement because it requires subtracting less
than one packet from the window for each ACK reporting congestion.

DCTCP only works if ECN is enabled and configured

DCTCP wasn’t intended for use outside the data center, so requiring ECN
isn’t much of an issue. However, it would be nice if the benefits of DCTCP
could be experienced in every situation that standard TCP is currently
deployed. Unfortunately, it doesn’t appear likely that ECN will become

2

common across the Internet or that switches will be configured to mark
ECN according to DCTCP’s guidelines.

DCTCP halves its window upon packet loss

A behavior inherited from traditional TCP, halving the window on packet
loss causes under-utilization of wireless networks since packet loss may
be due to noise rather than congestion. Wireless DCTCP [14] modifies
DCTCP with an ACK-based estimate of available bandwidth similar to
TCP Westwood in order to tolerate random packet loss. However, esti-
mates like that can easily be too volatile due to issues like ACK com-
pression, and smoothing techniques can make the estimate not responsive
enough. Average or current RTTs are inherently volatile and must be
used with extreme care or avoided.

DCTCP is oblivious to deadline and utilization requirements

Like traditional TCP, DCTCP emphasizes fairness. Coarse-grained QoS
via priority classes is separately provided by other layers in the network.
Deadline-aware DCTCP (D2TCP) [13] adds awareness of deadlines and
remaining work to DCTCP’s congestion response, enabling fine-grained
per-connection, soft QoS. The gamma function it uses to modify the con-
gestion response is inadequate because under high congestion an urgent
flow will back off similarly to a non-urgent flow—instead it should actu-
ally increase its window size. Therefore, D2TCP gives soft QoS support
to TCP, but it could do significantly better.

DCTCP gets bullied by Reno

Newer variants of TCP that seek to minimize queue buildup tend to get
bullied by TCP Reno, which will push until packet loss. Some variants try
to counteract Reno’s bullying, but DCTCP does not. So, an organization
wanting to use DCTCP would either have to upgrade every TCP stack or
configure the switches to separate DCTCP and Reno into separate queues.
That may be difficult or impossible in a multi-tenant environment or when
external traffic must be allowed in.

3 TCP Inigo

Here is how Inigo will deal with each of the previously described issues.

DCTCP assumes receiver-side modification

See next item.

DCTCP is vulnerable to ack-loss

A TCP Inigo receiver will use an experimental option as outlined in [12].
Each ACK will include a measure of congestion, calculated by the receiver

3

in the same way as the sender. That will give Inigo senders an accurate
measure of forward path congestion even with ACK loss. The sender
could even estimate congestion on the reverse path by comparing its idea of
forward path congestion to the receiver’s. If the receiver does not recognize
and use the experimental option, the sender can be set to either refuse to
connect or use one-sided congestion calculations [6].

DCTCP can exhibit instability

In their analysis of QCN, Alizadeh, et al. showed how the averaging prin-
ciple [3] can add stability to a congestion protocol. Inigo will follow their
advice to dampen window adjustments during the congestion avoidance
phase by setting the window size to the average of the previous two win-
dows after a half window’s worth of packets have been sent.

DCTCP responds to congestion only once per window

The DCTCP RTT-fairness enhancement [2] could be made practical by
responding to congestion every cong interval ACKs instead of every ACK,
where 4 < cong interval < window. A minimum of 4 ACKs is used so
that the averaging principle can continue to be applied to the smallest
cong interval. Some may argue that changes to window size shouldn’t
be made more frequently than one RTT since responding more quickly
leaves no time to observe the effect of the last change. However, the
more frequent window reductions proposed are proportionally smaller and
designed to sum up to nearly the same amount of change that would occur
under persistent congestion if the window size was only modified once
per RTT. And the benefit that flows with longer RTTs aren’t penalized
compared to those with shorter RTTs is important for connections outside
the data center or in complex intranet topologies.

DCTCP only works if ECN is enabled and configured

Inigo will approximate DCTCP’s ECN-based measure of congestion via
the ratio f : packetsdelayed → windowsize. Delay will either be based on
RTTs or Relative Forward Delays (RFDs) if the timestamp fidelity allows
it. In this way, the benefits of DCTCP can come to more diverse networks,
including the Internet. This is described in more detail in section 4.

DCTCP halves its window upon packet loss

Inigo will assume some amount of packet loss is normal, and beyond that
approximate DCTCP’s measure of congestion via the ratio f : packetslost →
windowsize. This should enable Inigo to take better advantage of wire-
less networks than other variants of TCP. The adaptation of DCTCP’s
congestion measurement to packet loss is described in section 5.

4

DCTCP is oblivious to deadline and utilization requirements

Inigo will calculate urgency as in D2TCP [13], which is similar to what
I proposed in my master’s thesis and PhD proposal [11]. But instead
of modifying the congestion response with a gamma function it will use
a probabalistic response to give stronger guarantees. If a bottleneck is
overloaded with too many flows claiming high urgency, then they will
push the network toward packet loss and Inigo’s behavior will become
similar to Reno’s. See section 6 for more information.

DCTCP gets bullied by Reno

Inigo’s tolerance of some packet loss and its notion of urgency should
make coexistence with Reno feasible. Whereas many TCP variants that
are careful to not overflow buffers tend to get bullied by TCP Reno, Inigo
will be significantly less aggressive in backing off due to packet loss. In
addition, if Inigo enters slow start whenever its congestion ratio is zero,
then it will push back effectively against Reno’s bullying. Furthermore,
by using a notion of urgency calculated using deadlines and the amount
of work remaining, Inigo can ignore some amount of congestion. In the
end, Inigo will play rough if other flows play rough, but it will still halve
its window under chronic congestion, so it shouldn’t push the network to
collapse.

4 Measuring Congestion Via Delay

Inigo seeks to approximate DCTCP’s ECN-based congestion measurement with
one based on timestamps. A person might be tempted to compare the current
RTT to the minimum observed RTT plus three times the median absolute de-
viation (i.e. Is RTT < RTT min + 3 ∗mdev?). This is similar to, but strictly
less than the retransmit timeout.

However, that approach is problematic. First, it will take some time to warm
up the mdev, although it would perhaps be sufficiently warmed up by the end
of slow start. Second, as congestion increases, the mdev will increase, which will
make it less likely that a new larger RTT will count as a mark of congestion.
Third, creating a good average RTT estimator is difficult, although the machine
learning technique employed by Nunes, et al. [9] shows promise.

It is safer to avoid the use of an average RTT or its deviation. A better
criteria would be if rtt < (rtt min + pkt thresh time), then count it as a mark
of congestion. The approximate number of packets, pkt thresh, necessary for
DCTCP to achieve 100% throughput is 17% of the bandwidth delay product,
according to Alizadeh, et. al [2]. And we can see that from an end host’s
perspective that the corresponding delay threshhold would simpy be:

pkt thresh time = 0.17rtt min (1)

Obviously, this threshhold makes small RTT flows more sensitive to conges-
tion than large RTT flows. On the other hand, TCP’s congestion avoidance has
traditionally been biased in the other direction due to the fact that a window

5

grows by one packet per RTT. The overall impact will need to be measured, and
may necessitate a sublinear pkt thresh time that balances the desire to enable
100% throughput for large RTT flows with the need for fairness.

As an alternative to RTT, Inigo could use Relative Forward Delay (RFD) as
introduced by TCP Santa Cruz [10]. RFD is the difference in one way delays,
but can be used in the common scenario of unsynchronized clocks. The major
advantage of RFD over RTT is that it doesn’t conflate congestion on the forward
and reverse paths. TCP Santa Cruz uses it to model the depth of the bottleneck
queue. Unfortunately, TCP Santa Cruz never saw implementation outside of
the ns-2 simulator. Also, when I have attempted to use RFD in a modified
Linux TCP, the RFDs didn’t make sense. I believe this was due to inadequate
TCP timestamps–the granularity wasn’t fine enough in my tests and the TX
timestamp is created too high in the stack, which means measurements include
the time a packet spends in the sender’s buffers.

RTTs suffer from those problems too, but RFDs appear to be more sensi-
tive, perhaps due to their smaller size. It might be possible to improve TCP
timestamps or take advantage of the IEEE 1588 Precision Time Protocol, which
creates a TX timestamp either in the NIC or just before. If using those times-
tamps is feasible, then one might ask why not simply implement TCP Santa
Cruz’s method of adapting to congestion. One flaw in its bottleneck queue
model is that it assumes the queue is empty at the beginning of a flow’s exis-
tence, where it might already be congested. It might take a while before TCP
Santa Cruz’s queue model drops below zero and reset its baseline, but in the
meantime a flow would not be getting its fair share. I believe it would be better
to use RFD with DCTCP’s technique.

5 Measuring Congestion Via Loss

It is normal for a wireless network to experience loss, and many academic papers
report losses from 1 to 2.5% on a typical network. In that scenario a few
losses don’t indicate packet loss and chronic congestion, as most TCP variants
assume. Furthermore, more frequent losses don’t indicate an overflowing buffer,
nor do they necessarily indicate chronic congestion, although the likelihood does
increases the busier the wireless network is. Therefore TCP Inigo will assume
2.5% packet loss, and it will use the ratio of unexpected lost packets to window
size. Since the receiver will also be measuring the extent of congestion—via
ECN, timestamps, and loss— the sender will also be able to perform some
sanity checking of its loss-based measure of congestion too.

While it may be desirable for Inigo to detect if it is using a wireless device
and modify its congestion response accordingly, tolerance of some packet loss
is appropriate for wired networks too. That’s beause as link rates increase
toward a medium’s error rate, loss becomes inevitable. Also, if the ECN and
timestamp-based methods of measuring congestion are doing their jobs and all
flows are well behaved, then packet loss due to congestion should become rare.
And if one or more flows aren’t well behaved (e.g. TCP Reno, or too many
deadline-driven flows are claiming to be urgent), then this limited toleration of
packet loss means that Inigo won’t be easily bullied.

Note that just as in DCTCP’s ECN-based congestion ratio, when the loss
ratio appoaches one within a RTT, then Inigo will still halve its window. What

6

about particarly noisy wireless networks? If the observed loss is consistently
greater than 2.5%, regardless of window size, then Inigo will increase its expec-
tation to what it’s observing. In the corner case where Inigo sees large amounts
of packet loss, then it will initially back off, but it will eventually push harder
as it’s expected packet loss increases. If a lower loss ratio is seen at some later
time, then the expected loss ratio will be reset accordingly.

It should be noted that most DCTCP experiments published have reported
very little packet loss, if any. If there is, then DCTCP should respond like Reno.
Since Inigo will be modifying the response to packet loss, we’ll have to test for
unforseen interactions between its congestion control and error control.

Other solutions to fix TCP’s suboptial use of wireless networks have been
proposed, but they tend to horrendously violate layer separation and there are
different types of wireless networks. It would be nice to solve this once, com-
pletely in the transport layer.

6 QoS Support

Deadline Response Principles:

• devolve to proportional fairness

• slow start: Win[2 ∗W,N ∗W], N > 2

• cong avoid: Win[W/2,W + 3]

– growth enhanced by urgency

– backoff enhanced by lack of urgency

• desynchronize flows

• transition from mouse to elephant flow

• add admission control for real guarantees

• kernel-friendly algorithm

Inigo will keep D2TCP’s [13] calculation of urgency based on the ratio of time
to completion to deadline. But Inigo will add support for periodic deadlines,
as well as dynamic adjustment of them. In particular, Inigo will by default
set the amount of work and deadline as appropriate for a mouse flow for one
deadline, then after that use values specified by the application or fall back to
deadline-unaware behavior (i.e. become a best-effort elephant flow).

It’s a good idea to keep slow start exponential so that even low urgency flows
suck up available bandwidth. But urgent flows should grow faster. Ideally, we
could set urgent flows to the line rate, but we can’t assume that is known. But
we might go faster than 2 ∗W .

Flows might be synchronized, causing a bottleneck buffer to fill suddenly.
Desynchronization via a frequency shift (window adjustment) and/or a phase
shift (busy loop) bounded by the flow’s remaining work and deadline could
reduce the maximum depth of the bottleneck buffer.

7

T_c = B / (3/4 W) # time to complete as in D2TCP

d = min(1000 * T_c / D, 2000) # urgency: 0 < d < 2000

if (prandom_u32_max(2000) < d) # urgent flows more likely to grow

W *= 2 + (d + 500) / 1000 # urgent flows grow more

else

W = 2W # response in [2W, 5W] per RTT

Figure 1: Probabilistic Deadline Slow Start

6.1 Deadline Aware Slow Start

The congestion ratio a is scaled as in DCTCP to 1000 (really 1024). Urgency
d is initially scaled to 1000 and capped at 2000, similarly to D2TCP, but the
range will have to be re-evaluated at different link rates. Also, note that the
random function is more kernel friendly than D2TCP’s gamma function, which
requires some sort of fractional power function or lookup table.

6.2 Deadline Aware Cong Avoid

T_c = B / (3/4 W) # time to complete as in D2TCP

d = min(1000 * T_c / D, 2000) # urgency: 0 < d < 2000

a = (1 - g) a + g * cong_ratio # extent of congestion as in DCTCP

if (prandom_u32_max(2000) > d) # urgent less likely to back off

b = a + a * (2000-d+500) / 1000

b = min(b, 1000) / 1000 # adjusted cong ratio: a < b < 3*a

W = W (1000 - b / 2) / 1000 # response in [W/2, W] per RTT

else

urgent flows more likely to grow and grow more

response in [W+1, W+3] per RTT

W += 1 + (d + 500) / 1000

Figure 2: Probabilistic Deadline Cong Avoid

If cong ratio a = 0 (i.e. no congestion) and urgency d = 0, then there is a
100% chance of backoff. Specifically, the adjusted cong ratio b = 3 ∗ a = 0 and
so W = W .

But if the urgency d = 1800, then there is a 10% chance of backoff. If it does
back off, then the adjusted cong ratio b = a = 0 and W = W . On the other
hand, it has a 90% chance of growth W = 1 + (1800 + 500)/1000 = W + 3.

If cong ratio a = 1000 (i.e. chronic congestion) and urgency d = 0, then
there is a 100% chance of backoff. The adjusted cong ratio b = 3 ∗ a, but is
capped at 1000, so W = 0.5 ∗W .

But again, high urgency d = 1800 would basically override the typical con-
gestion response, just as before with a 10% chance of backoff and 90chance that
the window would increase by 3 packets.

8

6.3 Admission Control

In order to make absolute guarantees of deadlines or utilization, Inigo will re-
quire admission control. Scalable admission control is difficult because there
are multiple domains: a host TX port, one or more subnetwork domains, and
potentialy a host RX port outside of a subnetwork domain.

The host ports could perform admission control using something like a Linux
control group (cgroup). When a connection is being established, a network
cgroup could be checked to make sure that the reserved utilization does not
exceed 100%. The network cgroup would also be referenced by the Inigo sender
when calculating urgency and decrementing the amount of work remaining.

How should a connection communicate a reservation to the SDN? A tradi-
tional client/server protocol would require explicit additional programming and
network configuration effort. Why not use another TCP experimental option?
It would provide information the SDN could use to choose a route for a new
flow and it could communicate a reservation across multiple domains.

Each domain would check the new TCP reservation option and leave it alone
if they agree to it, or change it to indicate only a lesser guarantee can be made.
The receiver echoes the option back to the sender, who might decide to continue
in the face of a lesser guarantee than desired. Note that each switch does not
need to perform access control—just once per SDN domain.

If within an SDN domain, then access to the receiving host’s RX port is
controlled via the nearest switch TX port. However, a wireless p2p network
would necessitate access control on the receiving host. And in any case the
receiver might know that it can’t handle as much data as can be delivered.
Since a server may need to perform a lot of work per transaction, and there is
little to be gained from sending data that must be dropped or suffer long delays
in buffers outside the network stack, it would make sense to link the net cgroup
to others (e.g. disk cgroup). That way, we can compose end-to-end guarantees.

7 Conclusion

The enhancements proposed in TCP Inigo are intended to spread the benefits
of DCTCP to the Internet and wireless networks while making it more robust in
the face of ACK loss, mismatched receivers, Reno, and more. It also promises
per-flow QoS with the potential for hard guarantees with the assistance of an
SDN controller for admission control. All of this still needs to be implemented
and evaluated, of course.

References

[1] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridha-
ran. Data center tcp (dctcp). ACM SIGCOMM computer communication
review, 41(4):63–74, 2011.

[2] Mohammad Alizadeh, Adel Javanmard, and Balaji Prabhakar. Analysis of
dctcp: stability, convergence, and fairness. In Proceedings of the ACM SIG-

9

METRICS joint international conference on Measurement and modeling of
computer systems, pages 73–84. ACM, 2011.

[3] Mohammad Alizadeh, Abdul Kabbani, Berk Atikoglu, and Balaji Prab-
hakar. Stability analysis of qcn: the averaging principle. In Proceedings
of the ACM SIGMETRICS joint international conference on Measurement
and modeling of computer systems, pages 49–60. ACM, 2011.

[4] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar,
Amin Vahdat, and Masato Yasuda. Less is more: Trading a little band-
width for ultra-low latency in the data center. In NSDI, pages 253–266,
2012.

[5] Wen Chen, Peng Cheng, Fengyuan Ren, Ran Shu, and Chuang Lin. Ease
the queue oscillation: Analysis and enhancement of dctcp. In Distributed
Computing Systems (ICDCS), 2013 IEEE 33rd International Conference
on, pages 450–459. IEEE, 2013.

[6] M. Kato. Improving transmission performance with one-sided datacenter
tcp. Master’s thesis, Keio University, 2014.

[7] M. Kuehlewind, R. Scheffenegger, and B. Briscoe. Problem statement and
requirements for a more accurate ecn feedback. Internet draft, IETF.

[8] Abhisek Mukhopadhyay and Priya Ranjan. Nonlinear instabilities of d2tcp-
ii. In Technology, Informatics, Management, Engineering, and Environ-
ment (TIME-E), 2013 International Conference on, pages 99–104. IEEE,
2013.

[9] Bruno Astuto A Nunes, Kerry Veenstra, William Ballenthin, Stephanie
Lukin, and Katia Obraczka. A machine learning approach to end-to-end
rtt estimation and its application to tcp. In Computer Communications and
Networks (ICCCN), 2011 Proceedings of 20th International Conference on,
pages 1–6. IEEE, 2011.

[10] Christina Parsa and J. J. Garcia-Luna-Aceves. Improving TCP conges-
tion control over internets with heterogeneous transmission media. In Pro-
ceedings of the 7th IEEE International Conference on Network Protocols
(ICNP). IEEE, 1999.

[11] A. Shewmaker. Efficient performance guarantees on storage networks.
Technical report, 2012.

[12] J. Touch. Shared use of experimental tcp options. RFC 6994, IETF.

[13] Balajee Vamanan, Jahangir Hasan, and TN Vijaykumar. Deadline-aware
datacenter tcp (d2tcp). ACM SIGCOMM Computer Communication Re-
view, 42(4):115–126, 2012.

[14] Jingyuan Wang, Yunjing Jiang, Yuanxin Ouyang, Chao Li, Zhang Xiong,
and Junxia Cai. Tcp congestion control for wireless datacenters. IEICE
Electronics Express, 10(12):20130349–20130349, 2013.

10

[15] David Zats, Anand P Iyer, Randy H Katz, Ion Stoica, and Amin Vahdat.
Fastlane: An agile congestion signaling mechanism for improving datacen-
ter performance. Technical report, DTIC Document, 2013.

11

	Introduction
	Drinking Problems
	TCP Inigo
	Measuring Congestion Via Delay
	Measuring Congestion Via Loss
	QoS Support
	Deadline Aware Slow Start
	Deadline Aware Cong Avoid
	Admission Control

	Conclusion

