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Abstract

Models commonly employed to fit current claims data and predict future
claims are often parametric and relatively inflexible. An incorrect model
assumption can cause model misspecification which leads to reduced profits
at best and dangerous, unanticipated risk exposure at worst. Even mixture
models may not be sufficiently flexible to properly fit the data. Using a
Bayesian nonparametric model instead can dramatically improve claim pre-
dictions and consequently risk management decisions in group health prac-
tices. The improvement is significant in both simulated and real data from
a major health insurer’s medium-sized groups. The nonparametric method
outperforms a similar Bayesian parametric model, especially when predicting
future claims for new business (entire groups not in the previous year’s data).
In our analysis, the nonparametric model outperforms the parametric model
in predicting costs of both renewal and new business. This is particularly
important as healthcare costs rise around the world.
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1. Introduction

As George Box famously said, “essentially, all models are wrong, but
some are useful” (Box and Draper, 1987). This is especially true when the
process being modeled is either not well understood or the necessary data are
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unavailable. Both are concerns in health insurance. Our knowledge of the
human body and understanding of what makes it sick are limited, but the
main difficulty is lack of available data; limited by both technology /cost (e.g.
DNA sequences and complete blood panels) and privacy (e.g. patient records
especially of prospective policyholders). This is even more prevalent in group
health where data on the individual policyholders can be sparse. Bayesian
nonparametric (BNP) models are a flexible option to describe both current
and prospective healthcare claims. As will be shown, in modeling group
health claims BNP models are superior to traditional Bayesian parametric
models. Both model types could be used in premium calculations for small
groups or prospective blocks of business, and to calculate experience-based
refunds. Precise estimation is especially important now as healthcare costs
continue to consume an increasing share of personal wealth around the world.
The importance of proper prediction is exemplified and described in both
Klinker (2010) and Harville (2014).

One of the principles of Bayesian methods very familiar to actuaries is
improvement in the process of estimating, say, the pure premium for a block
of business by “borrowing strength” from related experience through cred-
ibility. For example, if the size of a block is small enough, the exposure in
previous years may be limited. In this case, estimates of future costs may be
based more heavily on other, related experience in an effort to mitigate the
effects of small sample random variation. We refer to Klugman (1992) for a
thorough review of credibility, especially from a Bayesian perspective.

Hierarchical Bayesian models offer an extremely useful paradigm for pre-
diction in this setting. However, in somewhat simplistic terms, successful
Bayesian model specification hinges on selecting scientifically appropriate
prior distributions. When there is an unanticipated structure in the function
defining the prior, posterior distributions (and prediction) will, by definition,
be flawed.

This leads us to consider a Bayesian nonparametric model formulation.
Bayesian nonparametric methods build from prior models that have large
support over the space of distributions (or other functions) of interest. An
increased probability of obtaining more precise prediction comes with the
increased flexibility of BNP methods. We refer to Dey et al. (1998), Walker
et al. (1999), Miiller and Quintana (2004), Hanson et al. (2005), and Miiller
and Mitra (2013) for general reviews on the theory, methods, and applications
of Bayesian nonparametrics. We also refer to Zehnwirth (1979) for an early
application of BNP methods in credibility. In this paper, we will demonstrate



why BNP methods are useful when building statistical models, especially
when prediction is the primary inferential objective.

A brief outline of the paper follows. First, we specify the mathematical
structure of the models in the full parametric and nonparametric settings.
The parametric model is described first since the nonparametric setting par-
allels and extends the parametric setting. We provide more detail for the
nonparametric setting since it is less familiar. Additionally, we provide the al-
gorithms necessary to implement the nonparametric model in the Appendix.
We next present a small simulation study to demonstrate the performance
of the two models in situations where the structure used to generate the
data is known. Finally, we present results from analyses of claims data from
1994 and compare the two formulations by evaluating their performance in
predicting costs in 1995.

2. The models

2.1. The hierarchical parametric Bayes model

We present the traditional parametric Bayesian model first since the non-
parametric formulation is based on the parametric version. To develop the
parametric model, we need to characterize the likelihood and the prior dis-
tributions of the parameters associated with the likelihood. There are two
things to consider when thinking about the form of the likelihood: the prob-
ability a claim will be made and the amount of the claim, given a claim is
made. The probability a claim is made differs from group to group and in
our data is around 0.70. Thus, about 30% of the data are zeros, meaning no
claim was filed for those particular policies. We chose to deal with this by
using a likelihood with a point mass at zero with probability m; for group 1.
The parameter m; depends on the group membership.

The cost of a claim given that a claim is paid is positively skewed. We
choose a gamma density for this portion of the likelihood with parameters
v and €. In a previous analysis of this data, Fellingham et al. (2005, p. 11)
indicated that “the gamma likelihood for the severity data is not rich enough
to capture the extreme variability present in this type of data.” However,
we will show that with the added richness furnished by the nonparametric
model, the gamma likelihood is sufficiently flexible to model the data.

Let f(y;7,0) denote the density at y of the gamma distribution with



shape parameter v and scale parameter 6. Hence,

fly:7.0) = evrl(y) y'exp (%y) : (1)

The likelihood follows using a compound distribution argument:
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where ¢ indexes the group number, N, is the number of groups, ¢ indexes
the observation within a specific group, L; is the number of observations
within group ¢, m; is the proportion of zero claims for group i, #; and ~;
are the parameters for group i, y;, is the cost per day of exposure for each
policyholder, and I denotes the indicator function. Thus, we have a point
mass probability for y;; = 0 and a gamma likelihood for y;, > 0.

As discussed in the opening section, the choice of prior distributions is
critical. One of the strengths of the full Bayesian approach is the ability it
gives the analyst to incorporate information from other sources. Because we
had some previous experience with the data that might have unduly influ-
enced our choices of prior distributions, we chose to use priors that were only
moderately informative. These priors were based on information available for
other policy types. We did not use any of the current data to make decisions
about prior distributions. Also, we performed a number of sensitivity anal-
yses in both the parametric and the nonparametric settings and found that
the results were not sensitive to prior or hyperprior specification in either
case.

For the first stage of our hierarchical prior specification, we need to choose
random-effects distributions for the parameters m; and (v;,6;). We assume
independent components conditionally on hyperparameters. In particular,

i | fr ind- Beta(pr, 02), i =1,..., Ny,
Vi | 6 H}SL Gamma(b7 B)? 1 =1, "'7N97 (3>
;| 0 ind. Gamma(d, ), i=1,...,Ny.

Here, to facilitate prior specification, we work with the Beta distribution
parametrized in terms of its mean p, and variance o2, that is, with density
given by
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where ¢ = 02 (u3 — p3 — px0%), 2 = 0. (fir — 2/% + 3/% — 0% + pr07),
and Be(+, -) denotes the Beta function, Be(r, t) fo 1 —w)du, r > 0,
t>0 (Forbes et al., 2011). We choose spec1ﬁc values for the hyperparame—
ters 02, b, and d and assign reasonably non-informative priors to u,, 5 and
d. We note that sensitivity analyses showed that the values chosen for the
hyperparameters had virtually no impact on the outcome. For the prior dis-
tributions, we take a uniform prior on (0, 1) for p, and inverse gamma priors
for 8 and ¢ with shape parameter equal to 2 (implying infinite prior variance)
and scale parameters Ag and As, respectively. Hence, the prior density for
B is given by A2 a6~ 3exp(—Ag/B) (with an analogous expression for the prior
of 9). Further detalls on the choice of the values for 02, b, d, Ag, and As in
the analysis of the simulated and real data are provided in Sections 3 and 5,
respectively.
The posterior for the full parameter vector
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where p(u,), p(3), and p(d) denote the hyperpriors discussed above.

This model can be analyzed using Markov chain Monte Carlo (MCMC)
to produce samples from the posterior distributions of the parameters (Gilks
et al., 1995). To predict new data, we first draw new parameter values by
using the marginalized version of the model obtained by integrating over the
hyperprior distributions. Operationally, this means taking the current values
of the hyperparameters at each iteration of the MCMC and drawing values
of the (7,0, m,) from their respective prior distributions given the current
values of the hyperparameters. Predicted values are then drawn from the
likelihood using (7x, 6«, 7). Prediction of new data is therefore dependent
on the form of the prior distributions of the parameters. The importance



of this idea cannot be overstated. The consequence of this notion is that
if the prior distributions are misspecified, draws of new parameters will not
mirror the actual setting, and predictions of new data must be incorrect.
Additionally, if the parameters of the prior distributions are fixed, then the
predictions for the groups not currently in the data set will not be impacted
by the data at all. Hyperprior distributions allow the current data to inform
the prior distributions and therefore affect the prediction of new groups.
Estimation of parameters present in the current model will not be impacted
as long as the prior distributions have appropriate support and are not so
steep as to overpower the data. The impact on estimating costs is that those
costs arising from groups that may be present in the future but are not being
modeled with the current data must be wrong if the prior specification of
the parameters’ distribution is not accurate. This reveals the strength of the
nonparametric model. Since the nonparametric prior is placed on the space
of all plausible random-effects distributions rather than on the parameters
of a parametrically specified distribution, the appropriate prior specification
will be uncovered during the analysis. We demonstrate the impact of this
idea in Section 5.

2.2. The nonparametric Bayesian model

The parametric random-effects distributions chosen for the ;, v;, and 6;
in Section 2.1 might not be appropriate for specific data sets. Moreover, since
these are distributions for latent model parameters, it is not intuitive to an-
ticipate their form and shape based on exploratory data analysis. Bayesian
nonparametric methods provide a flexible solution to this problem. The key
idea is to use a nonparametric prior on the random-effects distributions that
supports essentially all possible distribution shapes. That is, the nonpara-
metric model allows the shape of the random-effects distributions to be driven
by the data and to take any form. Since the nonparametric prior model can
be centered around familiar parametric forms, it is still relatively simple to
develop approaches to prior elicitation.

Thus, through the prior to posterior updating of BNP models, the data
are allowed to drive the shape of the posterior random-effects distributions.
This shape can be quite different from standard parametric forms (when these
forms are not supported by the data), resulting in more accurate posterior
predictive inference when using the nonparametric formulation.

Here, we utilize Dirichlet process (DP) priors (Ferguson, 1973; Antoniak,
1974), a well-studied class of nonparametric prior models for distributions.
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We formulate a nonparametric extension of the parametric model discussed
in the previous section by replacing the hierarchical parametric priors for the
random-effects distributions with hierarchical DP priors (formally, mixtures
of DP priors).

The DP can be defined in terms of two parameters: a parametric baseline
distribution Gy, which defines the expectation of the process; and a positive
scalar parameter «,, which can be interpreted as a precision parameter, since
larger o values result in DP realizations that are closer to Gy. We use G ~
DP(«, Gy) to denote that a DP prior, with parameters o and Gy, is placed on
random distribution G. Using the DP constructive definition (Sethuraman,
1994), a distribution G generated from a DP(a, Gy) prior is (almost surely)
of the form G = Z;’il w; 0y,, where d, denotes a point mass at x. Here, the v,
are i.i.d. from Go, and the weights are constructed through a stick-breaking
procedure, specifically, w; = (;, w; = (; 2;11(1 — (), 1 = 2,3, ..., with the
(x 1.i.d. Beta(1, «); moreover, the sequences {(x,k = 1,2, ...} and {9;,i =
1,2, ...} are independent. Hence, the DP generates discrete distributions
that can be represented as countable mixtures of point masses, with locations
drawn independently from G, and weights generated according to a stick-
breaking mechanism based on i.i.d. draws from a Beta(1, «) distribution.

While it would have been possible to place the DP prior on the joint
random-effects distribution associated with the triple (v;, 0;, 7;), that course
of action would require that the parameters be updated as a group. Since it is
possible that the probability of no claim being made is not associated with the
distribution of costs within a group, we have chosen to treat these parameters
separately. Thus, we have a DP prior for the random-effects distribution, G,
which is associated with the 7;, as well as a separate (independent) DP prior
for the random-effects distribution, G, which corresponds to the (~;, ;).

The nonparametric model can be expressed in hierarchical form as follows:

ind.
Yie | mi; v 0 Nl (g = 0) + (1 —7s) f (Yae; vir 0:) I (yse > 0),
g = 17 ’L“ ’L = 1’ __.’Ng
ml G Y Gy i=1,0N, (6)
(74, 0:) | G2 L Gy, i=1,...,N,

Gl, GQ Hfl\c}l DP(Oél, GIO) X DP(O(Q, GQ()).

Here, a1, as > 0 are the precision parameters of the DP priors, and Gy and
Gy are the centering distributions. Again, the DP priors allow the distribu-
tions GG; and Gy to take flexible prior shapes. The precision parameters ay
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and ay control how close a prior realization Gy, is to Gy for k = 1,2. But in
the resulting posterior estimates, the distributional shape for G; and G5 can
assume nonstandard forms that may be suggested by the data, since we are
not insisting that the prior model for G; and G4 take on specific parametric
forms such as the Beta and Gamma forms in equation (3). The importance
of allowing this level of flexibility is illustrated with the analysis of the claims
data in Section 5.

We set Gio(m) = Beta(r; i, 02), which is the random-effects distribution
used for the m; in the parametric version of the model. Again, we place a
uniform prior on p, and take o2 to be fixed. For Gy we take independent
Gamma components, Gao((7,0);5,d) = Gamma(v;b, 5) x Gamma(0;d,d),
with fixed shape parameters b and d, and inverse gamma priors assigned to
and 0. Again, note that Ggg is the random-effects distribution for the (v;, 6;)
used in the earlier parametric version of the model. In all analyses, we kept
oy and oy fixed.

In the DP mixture model in (6), the precision parameters control the
distribution of the number of distinct elements N} of the vector {m,...,7n,}
(controlled by ;) and N3 of the vector {(v1,601),...,(Vn,.0n,)} (controlled
by a3). The number of distinct groups is smaller than N, with positive
probability, and for typical choices of a; and a is fairly small relative to N,.
For instance, for moderate to large N,

N,
E(N; | o) ~ o log (%) F=12, (7)

and exact expressions for the prior probabilities Pr(N} = m | ag), m =
1,..., N, are also available (e.g., Escobar and West, 1995). These results are
useful in choosing the values of oy and «y for the analysis of any particular
data set using model (6).

2.2.1. Posterior inference
To obtain posterior inference, we work with the marginalized version of
model (6), which results from integrating G, and Go over their independent



DP priors,
Yie ‘ iy Yiy 0; 19\51. 7TiI<yz'é = 0)
(1 — 7)) f (yies v, 0:) L (yie > 0),
(= 1,...,Li; 1= 1,...,Ng (8)
(71 e Ny) | i~ P, Ty, | )
(71,01), ., (W, On,) | B0~ p((71,0h), -, (W, On,) | B,6),
B,6,ux ~  p(B)p(S) p(pr)

where, as before, p(3), p(d), and p(p,) denote the hyperpriors for 3, §, and
L

Key to the development of the posterior simulation method is the form of
the prior for the ; and for the (v;, 6;) induced by the DP priors for G and G
respectively. The joint prior for the 7; and for the (7;,6;) can be developed
using the Pdlya urn characterization of the DP (Blackwell and MacQueen,
1973). Specifically,

p(ﬂ-la ooy TN ‘ :u7T> =

Ny i—1
a 1
910(7T1; M, Uzr) H {—1910(7% oy ‘772r> S — Z5Trj(7Tz')} ) (9)
7=1

s (el a;+i—14
and p((v1,61); -, (Vn,,0n,) | B,9) is given by

g20((71,6h); B,0)

Vo i—1
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where g9 and g9y denote respectively the densities corresponding to G19 and
G99. These expressions are key for MCMC posterior simulation, since they
yield convenient forms for the prior full conditionals for each 7; and for each

(74, 6:). In particular, for each i = 1,..., Ny,

C !
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and

(v, 0:) | {(’Vjﬁj) J # i}, B8,0) = G20((7i, 6:); B, 9)

Qo
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1
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Intuitively, the idea for posterior sampling using expressions (11) and (12)
is that proposal values for the parameters are drawn from either the centering
distribution (with probability ax(ax + N, — 1), k = 1,2) or from values for
previous draws of the other parameters (with probabilities (ay + N, — 1)~}
for 7 # i, and with & = 1,2). These proposal values are then treated as in
the parametric setting and are either kept or rejected in favor of the current
value for the parameter.

Implementation of the MCMC method to produce samples from the pos-
terior distributions is not much more difficult than in the parametric setting.
For specific details concerning implementation of the MCMC algorithm in
this nonparametric model, we refer the interested reader to the Appendix.

2.2.2. Posterior predictive inference

We will focus on the posterior predictive distribution for a new group,
that is, a group for which we have no data. The cost for a (new) policyholder
within a new group is denoted by y.. To obtain p(y. | data), we need the
posterior predictive distributions for a new m, and for a new pair (7., 6,).
Let ¢ be the full parameter vector corresponding to model (8), that is, ¢ =
{71'1, ceny 7TNg, (”)/1, 91), ceey ("}/Ng, GNg), ﬁ, (5, ILLﬂ-}

To obtain the expressions for p(m, | data), p((7.,0.) | data) and p(y. |
data), we need an expression for p(y., s, (7s,0«), ¢ | data). This can be
found by adding y. to the first stage of model (6) and 7, and (74, 6.) to the
second and third stages of model (6), and then again marginalizing G; and
G5 over their DP priors. Specifically,

P T (10,0.), 6 | data) = {mI(y. = 0) + (1 - .)
X f (Y3 Yo, 0) (s > 0)}
Xp((ve: 04) | (71,61); -5 (Vv O, ), B, )
Xp(7y | 71, . Ty, fr) X D(@ | data), "
13
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where

Ny
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-
N S n(1.0.). (1
a2+Ng; (,0) (Y, 0). (15)

Now, using the posterior samples for ¢ (resulting from the MCMC al-
gorithm described in the Appendix) and with appropriate integrations in
expression (13), we can obtain posterior predictive inference for ., (7V«, 6s),
and y,. In particular,

p(m, | data) = /p(ﬂ'* | T15 s TN, s i) P(@ | data)de

and therefore posterior predictive draws for 7, can be obtained by drawing
from (14) for each posterior sample for 7, ..., 7, , 1. Moreover,

p((’yﬂwe*) ‘ data) = /p<<7*79*) | (71791)7 EE) (nyg79Ng)7/67 6>p(¢ | data)d¢

can be sampled by drawing from (15) for each posterior sample for (vq,6;),
ey (7N,50n,), B, 6. Finally,

p(ys | data) = [ [ [{mI(ye = 0) + (1 — m) f(ys; %, 0:) 1 (g > 0)}
XP(Ty | T4, oy TN )
Xp((’}/*,e*) | (71701)7 ) (7Ng70Ng>7575)
xp(¢ | data) dm, d(7s, 04) de.

Based on this expression, posterior predictive samples for y, can be obtained
by first drawing 7, and (7., 6.) — using expressions (14) and (15), respectively,
for each posterior sample for ¢ — and then drawing y, from m.I(y, = 0) +
(1 —7) f(ys; Vs, 04) I (y« > 0). Therefore, the posterior predictive distribution
for a new group will have a point mass at 0 (driven by the posterior draws for
m.) and a continuous component (driven by the posterior draws for (7., 6.)).
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Expressions (14) and (15) highlight the clustering structure induced by
the DP priors, which enables flexible data-driven shapes in the posterior
predictive densities p(m, | data) and p((7«, 6.) | data), and thus flexible tail
behavior for the continuous component of p(y, | data). The utility of such
flexibility in the prior is illustrated in the following sections with both the
simulated and the real data.

3. The simulation example

We now present a small simulation study to demonstrate the utility of
the nonparametric approach. We simulated data for two cases; one case
drew random-effects parameters from unimodal distributions, and one case
drew random-effects parameters from multimodal distributions. We focus on
prediction of the response of individuals in new groups because this is the
setting where the nonparametric model offers the most promise.

All the simulated data were produced by first generating a (~;, 6;, m;)
triple from the distributions we will outline. Then, using these parameters,
data were generated for 100 groups with 30 observations in each group. The
data were then analyzed using both the parametric and the nonparametric
models.

In Case I (the unimodal case), the 7; were drawn from a Gamma(2,5)
distribution, the 6; from a Gamma(2,10) distribution, and the m; from a
Beta(4,5) distribution. The draws were independent, and given these pa-
rameters, the data were drawn according to the likelihood in (2).

In Case II (the multimodal case), the ; were drawn from either a Gamma(2, 1)
or a Gamma(50, 1) distribution with equal probability. The 6; were drawn
independently using the same scenario as the v;, and the 7; were drawn in-
dependently from either a Beta(20,80) or a Beta(80,20) distribution with
equal probability. Again, once the parameters were drawn, the data were
produced using the likelihood in (2).

The parametric model was fitted using 02 = 0.03, b = d = 1, and
Ap = As = 40, although sensitivity analyses showed that posterior distribu-
tions were virtually the same with other values of these parameters. These
same values were used for the centering distributions of the nonparametric
model. Also, we chose to use oy = as = 2 to analyze simulation data. We
used 50, 000 burn-in iterations for both models. We followed the burn-in with
100, 000 posterior draws, keeping every 10*" draw for the parametric model,
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and with 1,000,000 posterior draws, keeping every 100* draw for the non-
parametric model. The nonparametric model results in higher correlation
among posterior draws, and the higher thinning rate assures that the draws
have converged appropriately to the posterior distribution.

Now we review the reason behind our simulation choices. In Case I, the
parametric priors we have previously described are correct and should yield
appropriate prediction. In Case II, the parametric priors are not suitable, so
one might expect prediction to be problematic. However, we used the same
nonparametric model in both cases. That is, we let the DP prior structure
identify the appropriate form in both cases. If the nonparametric formulation
is successful, it will not matter what the true prior is, since the nonparametric
model will be able to capture its shape.

The simulation results convey two main messages. The first is that the
parametric model will not replicate the modes unless they are an explicit
part of the prior formulation when predicting parameters for new groups,
while the nonparametric methodology performs this task quite well because
the modes do not need to be an explicit part of the prior formulation. Fig-
ures 1 and 2 demonstrate this. In Figure 1, we see the results from Case I,
the unimodal case. The posterior densities from the parametric model follow
the generated parameter histograms quite closely. The nonparametric model
produces comparable results. However, in Figure 2, it is obvious that the
parametric model cannot predict the multiple modes. The nonparametric
model does this quite well since the prior distributions are covered by the
functional forms supported by the DP priors. This means that unless the pos-
sibility of multiple modes is explicitly addressed in the parametric setting (a
practically impossible task if only data are examined since the multimodality
occurs in the distributions of the parameters and not in the distributions of
the data itself), it would be unreasonable to expect the parametric model to
predict efficiently. On the other hand, the nonparametric model successfully
captures the nonstandard distributional shapes.

The second message is that the posterior point estimation of parameters
for the groups represented in the simulated data sets is quite similar for
both models. In Figures 3, 4, and 5, we show posterior intervals (5" to
95t percentiles) for each group in simulation Case II. Although in this case
the parametric priors are not suitable, both methods separate the modes in
the prior densities quite well for the estimated parameters. It is interesting
that the posterior intervals are generally wider for the parametric model.
This greater width may be explained by examining Figure 2. Since the
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Figure 1: Simulation Case I—unimodal priors. Posterior densities for v, (panels (a) and
(b)), for 6, (panels (c) and (d)), and for 7, (panels (e) and (f)), under the parametric
model (left column) and the nonparametric model (right column). The histograms plot
the generated 7; (panels (a) and (b)), 6; (panels (¢) and (d)), and 7; (panels (e) and (f)),
i=1,...,100.

parametric model must span the space of the multiple modes with only a
single peak, much of the distribution is over space where no parameters occur.
Thus, uncertainty regarding the location of the parameters is overestimated.
Misspecification of the prior can lead to artificially high uncertainty regarding
the parameter estimates.
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Figure 2: Simulation Case II-—multimodal priors. Posterior densities for v, (panels (a)
and (b)), for 6, (panels (c) and (d)), and for 7, (panels (e) and (f)), under the parametric
model (left column) and the nonparametric model (right column). The histograms plot
the generated 7; (panels (a) and (b)), 6; (panels (¢) and (d)), and 7; (panels (e) and (f)),
i=1,...,100.

4. The data

The data set is taken from a major medical plan, covering a block of
medium-sized groups in Illinois and Wisconsin for 1994 and 1995. Each
policyholder was part of a group plan. In 1994 the groups consisted of 1
to 103 employees with a median size of 5 and an average size of 8.3. We
have claims information on 8,921 policyholders from 1,075 groups. Policies
were all of the same type (employee plus one individual). Table 1 gives some
descriptive summary information about the data in both 1994 and 1995.
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Figure 3: Simulation Case II. Posterior intervals (5 to 95" posterior percentile) for each
Yi, © = 1,...,100 under the parametric (upper panel) and nonparametric (lower panel)
models. The circles denote the actual generated ;.

Table 1: Descriptive statistics for the entire dataset from both 1994 and 1995.

n n Mean | Std. | Median | Maximum | Proportion

obs. | groups Dev. Zero Claims
1994 | 8921 | 1075 | 6.79 | 21.01 1.11 643.02 315
1995 | 8732 | 1129 | 5.18 | 11.63 | 0.88 297.30 357

Although the data are dated from a business perspective, they provide
an opportunity to compare the parametric and nonparametric paradigms
without divulging proprietary information.

Total costs, including deductible and copayments, were accrued by each
policyholder on a yearly basis. The total yearly costs were then divided by
the number of days the policy was in force during the year. As per the pol-
icy of the company providing the data, all policies with annual claims costs
exceeding $25,000 were excluded from all analyses. An analysis of the data
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Figure 4: Simulation Case II. Posterior intervals (5 to 95" posterior percentile) for each
0;, i = 1,...,100 under the parametric (upper panel) and nonparametric (lower panel)
models. The circles denote the actual generated 6;.

including annual claims exceeding $25,000 shows the same multimodal pat-
tern in posterior predictive inference regarding the random effects that we
demonstrate with the data we analyze here (See Figure 6). The only differ-
ence is the v, and 6, parameters cluster at larger values. The 7, parameter
plot is virtually identical. Large daily costs are still possible if the policy
was in force for only a small number of days but is associated with relatively
large total costs.

5. Analysis of the claims data

The 1994 data consists of 8,921 observations in 1,075 groups. Because
of work with other data of the same type, we expected the ~; with the
actual data to be smaller than the ~; we used when we simulated data.
Thus, we used Az = 3, while As remained relatively large at 30 in both
the parametric and nonparametric settings. For the data analysis we used
a1 = as = 3. In both models we used a burn-in of 50,000 with 100,000
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posterior draws, keeping every 10** draw. Both models displayed convergent
chains for the posterior draws of all parameters, based on standard MCMC
diagnostic techniques (Raftery and Lewis, 1996; Smith, 2005).

In Figure 6, we show posterior densities for both the parametric and
nonparametric models for the ~,, 0,, and 7,. We note that the nonparamet-
ric model posterior densities showed multimodal behavior like those demon-
strated in Case II of the simulation study. This multimodal behavior would
be virtually impossible to uncover prior to the analysis since it is in the dis-
tributions of the parameters, not the distribution of the data. Use of the DP
prior offers a flexible way to uncover such nonstandard distributional shapes.

Since the densities actually have this multimodality, we anticipate that
the nonparametric model will do better in predicting costs from new groups.
We would, however, expect that predicting behavior in groups already present
in the data would be quite similar for the two approaches, as was displayed
in the simulation. Also, we would not be surprised by an overestimation of
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Figure 6: Posterior predictive inference for the random-effects distributions for the real
data. Panels (a) and (b) include the posterior density for +, under the parametric and
nonparametric models, respectively. (Note the different scale in these two panels.) The
posterior densities for 6, and for m, are shown in panels (c¢) and (d), respectively; in
all cases, the solid lines correspond to the nonparametric model and the dashed lines
correspond to the parametric model.
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uncertainty in the parameter estimates under the parametric model. Again,
we emphasize that there is no way to uncover this kind of multimodality in
the parameters without using a methodology that spans this kind of behavior
in the prior specifications. There is no way to anticipate this kind of structure
solely by examining the data.

We reemphasize at this point why the prior distributions of the parame-
ters are of such interest when we are predicting values for costs. Predicting
new costs depends on drawing reasonable new values of the parameters. Since
the predictive distributions of the parameters are based on the prior speci-
fication of the parameters, it is imperative that these prior specifications be
flexible if we are going to get accurate predictions of new data.

We chose one group that had fairly large representation in both 1994
and 1995 to check the assertion that both methods should be quite similar in
predicting behavior for a group already present in the data. Group 69511 had
81 members in 1994 and 72 members in 1995. We had no way to determine
how many members were the same in both years. Using posterior samples
from the corresponding triple (;, 7;, 6;), we obtained the posterior predictive
distribution for this group using both models. In Figure 7 (left panel), we
show the posterior predictive distribution for the nonzero data for both the
parametric and the nonparametric model as well as the histogram of the
actual 1995 nonzero data for that group. There is little difference in the
posterior predictive distributions, and both distributions model the 1995 data
reasonably well.

To further quantify the differences between the two models, we computed
a model comparison criterion that focuses on posterior predictive inference.
If yoj, 7 = 1,...,J, represent the non-zero observations from group 69511
in 1995, we can estimate p(yo; | data), i.e., the conditional predictive ordi-
nate (CPO) at yo;, using B! 25:1 F(Yoj: Veps O p), where {(Vap,Oup) : b =
1,..., B} is the posterior predictive sample for (v.,6.) (B = 10,000 in our
analysis). Note that these are cross-validation posterior predictive calcula-
tions, since the 1995 data y; were not used in obtaining the posterior distri-
bution for the model. We expect the CPO for a given data point to be higher
in the model that has a better predictive fit. Of the J = 56 non-zero ob-
servations in 1995, 47 CPO values were greater for the nonparametric model
(84%). The CPO values can also be summarized using the cross-validation
posterior predictive criterion given by Q = J~! Z;.le log(p(yo; | data)) (e.g.,
Bernardo and Smith, 2009). A bigger value of () implies more predictive abil-

20



Prediction for group 69511 Prediction for new groups

0.20
]
0.14
]

0.12
|

0.05
|
0.04 0.06 0.08
| | |

0.02
|

0.00
|
1
J
0.00

Figure 7: Cross-validated posterior predictive inference for the real data. Posterior results
are based on data from year 1994 and are validated using corresponding data from year
1995 (given by the histograms in the two panels). The left panel includes posterior pre-
dictive densities for claims under group 69511. Posterior predictive densities for claims
under a new group are plotted on the right panel. In both panels, solid and dashed lines
correspond to the nonparametric model and parametric model, respectively.
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ity. For the parametric model, we obtain () = —2.86, while for the nonpara-
metric model () = —2.60. Thus, the predictive ability of the nonparametric
model exceeded that of the parametric model for these data.

We also examined the more standard comparison method of mean squared
error (MSE). Using the posterior means as point estimates, the MSE for the
parametric model was 154.21, while the MSE for the nonparametric model
was 118.08. Using posterior medians as point estimates, the difference was
reduced, with the parametric model MSE estimated at 108.46, and the non-
parametric model MSE at 101.40.

Next, we focused on predicting outcomes in 1995 for groups not present in
the 1994 data. There were 8, 732 observations in 1995, and 522 of these obser-
vations came from 101 groups that were not represented in 1994. We treated
these 522 observations as if they came from one new group and estimated
posterior predictive densities for this new group under both the parametric
and nonparametric models. In Figure 7 (right panel), we show the posterior
predictive densities for positive claim costs from a new group overlaid on the
histogram of the corresponding 1995 data. Here, we observe that the poste-
rior predictive distributions of the two models differ, with the nonparametric
model having a higher density over the mid-range of the responses than the
parametric model.

Of the J = 371 non-zero observations in 1995, 327 CPO values were
greater for the nonparametric model (88%). For the parametric model, we
obtain () = —3.20, while for the nonparametric model ) = —2.94.

We also examined the MSE for new groups. Using the posterior means,
the MSE for the parametric model exceeded that of the nonparametric model,
314.92 t0 296.19. Using the posterior medians as the estimator for new claims,
the parametric model MSE exceeded that of the nonparametric model, 327.28
to 310.92. Thus, the predictive ability of the nonparametric model exceeded
that of the parametric model both for a group present in both data sets, and
for new groups not present in the 1994 data.

6. Discussion

Bayesian nonparametric methods provide a class of models that offer
substantial advantages in predictive modeling. They place prior distribu-
tions on spaces of distributions (or functions) rather than on parameters of
a parametrically specified distribution (or function). This broadening of the
prior space allows for priors that may have quite different properties (e.g.,
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skewness, heavy tails, multiple modes) than those anticipated in traditional
parametric model settings.

In the data we examined, the presence of multiple modes in the predictive
distributions for the parameters was not anticipated. However, a posteriori
we can postulate an explanation. If we think of the general population as
being relatively healthy, then we would expect most groups to reflect this
state. However, if there are a few individuals in some groups with less-than-
perfect health (i.e., more frail), we would expect to see longer tails in these
groups. Some small proportion of the groups might have extremely long
tails. Figure 6 illustrates this pattern. The lowest mode of the posterior
distribution of the ~; is generally associated with the largest mode of the 6;.
That is, groups with 7; in a range of 0.59 to 0.63 tend to be associated with 6;
in the range of 13 to 20. In fact, the mean of the 6; associated with +; in the
range of 0.59 to 0.63 is 18.5. Also, the middle modes of the two distributions
tend to be associated (the mean of the 6; associated with v; in the range of
0.65 to 0.68 is 13.6) and the highest mode of the 7; tends to go with the
smallest mode of the 6;. Since these distributions are parameterized to have
means of v0 and variances of v0%, we see that the means of the groups are
relatively stable, while the variances for some groups are quite a bit larger.
This type of cost experience might be due to the age of the clients, but other
explanations are equally plausible. It might just as well result from serious
illness associated with one or two members of relatively small numbers of
groups. So it is possible, though unlikely, that the parametric model might
be able to perform on a par with the nonparametric model with a complete
inclusion of possible covariates in the model. The problem, of course, is that
failing to measure important covariates is a common and ongoing issue in
predictive modeling.

In this paper, we have omitted possible covariates in all the models to
focus on the differences between the parametric and nonparametric methods.
Covariates can be included under both model settings. In particular, the
nonparametric model can be elaborated by adding a parametric structure
for the covariates, or, in the case of random covariates, by extending the
model to the joint stochastic mechanism of the response and covariates; see,
e.g., Gelfand (1999) and Hanson et al. (2005) for reviews of semiparametric
regression methods, and Taddy and Kottas (2010) on fully nonparametric
regression modeling through density estimation.

While the association between frailty and the multimodal behavior of
the distributions of the parameters may seem reasonable in retrospect, it
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would not be obvious before completing the analysis, and it would not be
uncovered at all using a conventional parametric analysis. Thus, a procedure
that allows for greater flexibility in the specification of prior distributions can
pay large dividends. Bayesian nonparametric modeling offers high utility to
the practicing actuary as it allows for prediction that cannot be matched by
the traditional Bayesian approach. This added ability to predict costs with
greater accuracy will improve risk management.

Appendix: The MCMC algorithm for the nonparametric model

The joint posterior, p(mi,...,7n,, (71,601), -, (Wn,,0n,), B, 0, ix | data),
corresponding to model (8) is proportional to

p(B)p(8)p(pr) (715 oy TNy | fa)D((71501), -5 (YN O,) | B 6)

Ny Ny
X{waio(l—m)Li_Lio} H H fie; i 03) ¢
=1

=1 {£:y;>0}

where L= |{€ Y = 0}|7 so that |{£ D Yie > 0}| =L, — L.

The MCMC algorithm involves Metropolis-Hastings (M-H) updates for
each of the m; and for each pair (7;,6;) using the prior full conditionals in
(11) and (12) as proposal distributions. Updates are also needed for g, ¢,
and p,. Details on the steps of the MCMC algorithm are provided below.

1. Updating the m;: For each ¢ = 1,..., N, the posterior full conditional
for m; is given by

Lo

p(m; | ...,data) o< p(m; | {m; 0 J # i}, pr) X w0 (1 — wi)Li_L“’,

with p(m; | {m; : j # i}, 1) defined in (11). We use the following M-H
update:
(old

o Let m, ) be the current state of the chain. Repeat the following
update R; times (R; > 1).

e Draw a candidate 7; from p(m; | {m; : j # i}, i) using the form
in equation (11).
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e Set m; = 7; with probability

' | ﬁ.szo(l . ﬁ'i)Li_LiO
= min< 1, )
q1 ﬂ_gold)Lig (1 N Wz(old) )Li_LiO

(old

and m; = T, ) with probability 1 — ¢;.

2. Updating the (v;,6;): For each ¢ = 1,..., Ny, the posterior full condi-
tional for (v;,6;) is

p((7i,05) | ..., data) oc p((7i, 6:) | {(5,05) = § # i}, B,0)
< T fieiv,00),

{£L:y;¢>0}

where p((vi,6;) | {(v5,6;) : j # i},B,6) is given by expression (12).
The M-H step proceeds as follows:
o Let (77,6 be the current state of the chain. Repeat the
following update Ry times (Ry > 1).

e Draw a candidate (%;,6;) from distribution p((7;, ;) | {(v;,0;) :
j #1i},,0) using the form in equation (12).

e Set (v, 0;) = (%, 0;) with probability
[T fwed,6)
{L:yi¢>0}

M w00 [
{L:y;0>0}

go =min g 1,

and (i, 0;) = (%(Old), Hl@d)) with probability 1 — gs.

3. Updating the hyperparameters: Once all the m;, ¢« = 1,..., N, are up-
dated, we obtain N (< Ny), the number of distinct 7;, and the dis-
tinct values 73, j = 1,..., Ny. Similarly, after updating all the (i, 6;),
i =1,..., Ny, we obtain a number N5 (< N,) of distinct (v;,6;) with
distinet values (v7,05), j =1,..., N3,

Now, the posterior full conditional for S can be expressed as
N

p(B] ..., data) oc B exp(—Ag/B) x HGamma(v}‘; b, ),

j=1
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SO

N3
p(B | ....data) o< 7% exp(—Ag/B) x [ [ 8" exp(—7;/B)
j=1

o BV expl— (s + 3 )/

therefore, we recognize the posterior full conditional for £ as an inverse
gamma distribution with shape parameter bNy +2 and scale parameter

Ni
AB + Zjil o
Analogously, the posterior full conditional for ¢ is

N3
p(6 ] ...,data) oc 6% exp(—A;/8) x Hgamma(@}f;d, J),

j=1

and we therefore obtain an inverse gamma posterior full conditional

distribution for 6 with shape parameter d/V; + 2 and scale parameter
As + Z] 21 9;
Finally, the posterior full conditional for pu, is given by

NY

p(pr | -, data) o< p(p,) X Hgio(ﬂ;;ﬂmlﬁ)a
j=1

and this does not lead to a distributional form that can be sampled
directly. An M-H step was used with a normal proposal distribution
centered at the current state of the chain and tuned with the variance
to achieve an appropriate acceptance rate.
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