
Redo: Reproducibility at Scale
Ivo Jimenez, Carlos Maltzahn

(UC Santa Cruz)
Adam Moody, Kathryn Mohror

(Lawrence Livermore National Laboratory)

Introduction

A key component of the scientific method is the ability
to revisit and reproduce previous results [1,2]. In high
performance computing reproducibility is extremely chal-
lenging due to the large-scale nature of the environment. A
result from a computational experiment has the following
dependencies:

• System. Hardware, OS stack, system libraries, system
configuration.

• User. Binaries/scripts and 3rd party libraries.
• Input data and parameters.
• External services. Databases, parallel file system, etc.

We use the term Computational Job (or just Job) to refer
to the dependencies of an experiment. Having access to the
exact same job should, ideally, enable the regeneration of
a result1. A job’s result is not solely defined by its output;
instead, changes to experiment’s dependencies can result
in one or more of the following:

• Accuracy. Result is not identical to that of a previous
run of the same job, or does not fall within valid
range.

• Performance. Observe a performance difference from
a previous run of the same job.

• Portability. Can’t execute the same job on a distinct
software stack, platform, or compute site.

• Longevity. Unable to reproduce a result due to lack
of identical resources as previous run of the same job.

We argue that if we want computational reproducibility,
we must define unambiguous methods to compare depen-
dencies and results of a computational experiment. That
is, we need tools that automate the process of taking a
result and comparing it against a previously generated
one. Similarly, tooling should allow the comparison of two
jobs in order to identify changes between them. Here, we
present the design of Redo, our reproducibility framework
for capturing an experiment and its results, and automat-
ing job comparison.

1We say ideally since, in reality, re-executing a job might yield
distinct results even if no dependencies are modified, e.g., due to
non-determinism.

Redo: Our Reproducibility Framework

In order to understand Redo’s approach, we need to
introduce first the concept of versioning and versioned
repositories.

Fig. 1. Versioning of an object space.

Versioning: The ability to track multiple versions of
a datum is a powerful primitive that has had a wide
variety of uses in computer science. At a conceptual level,
versioning captures the state of a set of objects (see Figure
1) and performs time-travel operations on them such as
rollback, reset, bifurcate, or merge changes.

Repositories: We view the dependencies of an experi-
ment and its associated results similarly to commits in
the repository of a revision control system. In our case,
we use repositories to store and manage snapshots of not
just code but any type of data, including input data,
user/system environments, as well as output data and
runtime statistics.

Redo’s Meta Repository

Redo maintains a meta repository (a repository of sub-
repositories), in which each commit is a list of references
to specific revisions in each sub-repository2 (Figure 2).
This enables the tracking of lineage for inter- and intra-
dependencies of a job and its results, as well as the execu-
tion of time-travel operations, allowing a computational
researcher to “rewind” or “fast-forward” to particular
points in time.

Given a Redo commit ID, we envision reproducing a result
by (1) checking out a commit from Redo; (2) preparing
the environment and data that the commit refers to; (3)

2This is similar to how git submodules work, but Redo supports
any type of repository (not just git) via plugins.



re-executing the job; (4) capturing and marking the gener-
ated result; (5) storing runtime statistics of the execution
of the job; (6) and obtaining metrics that allow the user
to compare the just-generated result and its dependencies
with previous ones.

Fig. 2. A project in Redo is a super-project that captures the state of
a scientist’s environment by aggregating individual repositories and
their associated versions.

Timelines, Bifurcations and Merges

Redo’s repository can be seen as as a mechanism for
capturing snapshots so that scientists can mark points in a
timeline (Figure 3). Every change of a job’s dependencies
triggers the creation of a new point in the timeline. Multi-
ple changes to a single version have the effect of creating
multiple branches.

Fig. 3. The lineage of a project can take multiple forms, depending
on the use case.

Some changes (e.g., an update to an external dependency)
can result in having two branches that are never joined
back. There are times when merging two timelines is
needed, e.g., when two or more scientists collaborate on
the same code base and they want to reconcile their
changes into a single timeline.

Quantifying Reproducibility

We define a Differentiable Type as any type of data
for which, given two values A and B, we can define a
Similarity Function (SF ) that produces values within the

[0,1] range. For some types, similarity might be obtained
with respect to a third (relative or absolute) baseline value
C.

Examples of differentiable types are: time and space
units; variables of an array (e.g., two temperature val-
ues); source files; states of an external service (e.g., two
versions of the genome browser); virtual machine images
(e.g., they can be introspected in order to determine their
content).

Being able to define differentiable formats is of extreme
importance in the context of reproducibility since it allows
to precisely quantify how much dependencies and results
of an experiment differ.

Preliminary Results

We show results of two experiments (Figure 4) that empha-
sise the scalability issues of reproducibility in large-scale
scenarios. The first (Figure 4a) illustrates the problem of
checking out a system’s image from a central repository to
all the nodes in a supercomputer. The dashed line corre-
sponds to having all the nodes read from the parallel file
system (PFS); the dotted line corresponds to a broadcast
operation done on supercomputer’s fast network.

The second (Figure 4b), typifies the trade-offs that mani-
fest as the number of versions of a dataset increase. For a
computational simulation, versions within a single timeline
(e.g., checkpoints) represent complete overwrites, which
results in small savings. This changes if the number of
branches increases, as a result of slightly modifying a
common parent version (e.g., small tweak to a checkpoint’s
data).

Fig. 4. Preliminary results. Note: These are graph mockups. We
will include actual results on our final version of the poster.

References

[1] J. Freire, P. Bonnet, and D. Shasha, “Computational
reproducibility: State-of-the-art, challenges, and database
research opportunities,” Proceedings of the 2012 ACM
SIGMOD international conference on management of data,
New York, NY, USA: ACM, 2012, pp. 593–596.

[2] V. Stodden, F. Leisch, and R.D. Peng, Implementing
reproducible research, CRC Press, 2014.


	Introduction
	Redo: Our Reproducibility Framework
	Redo's Meta Repository
	Timelines, Bifurcations and Merges

	Quantifying Reproducibility
	Preliminary Results
	References

