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Abstract

The choice of kernel in an integro-difference equation (IDE) approach to model

spatio-temporal data is studied. By using approximations to stochastic partial dif-

ferential equations, it is shown that higher order cumulants and tail behavior of the

kernel affect how an IDE process evolves over time. The asymmetric Laplace and the

family of stable distributions are presented as alternatives to the Gaussian kernel. The

asymmetric Laplace has an extra parameter controlling skewness, whereas the class of

stable distributions includes parameters controlling both tail behavior and skewness.

Simulations show that failing to account for kernel shape may lead to poor predictions

from the model. For an illustration with real data, we consider ozone pressure measure-

ments collected biweekly by radiosonde at varying altitudes. We compare the results

obtained with the different kernel families and confirm that better model prediction

may be achieved by electing to use a more flexible kernel.
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1 Introduction

A spatio-temporal data set refers to data collected across a spatial field and over several time

points. Climatological and environmental variables provide several common and abundant

examples of data recorded in space and time. In addition to traditional examples of envi-

ronmental space-time variables, such as temperature or precipitation, there is an increasing

ability to store and monitor the dynamics of different types of georeferenced processes. Data

for housing costs, crime rates, population growth, soil content, and disease incidence, are

some of the many examples of variables that are of interest in areas as diverse as spatial

econometrics, epidemiology, and geography, to mention a few.

The field of time series has produced a rich body of literature during at least the last 50

years (Hamilton, 1994; Shumway and Stoffer, 2011). Spatial statistics, despite the seminal

work by Matheron (1963), was a fringe area as recently as the early 1990s (Cressie, 1993),

but has since received a great deal of attention within the statistical community. Spatio-

temporal models stem naturally from these areas, but a systematic treatment of spatio-

temporal statistical models has only recently been developed (Cressie and Wikle, 2011).

Compared to times series and spatial statistics, the fundamental challenge of spatio-temporal

models is to capture the interactions between the spatial and temporal components.

Three general methods are currently used to analyze data from spatio-temporal processes

of the form {Xt(s) : s ∈ S, t ∈ T }, where s indexes the spatial domain S and t indexes the

time domain T . The first involves an extension of the traditional approach to modeling

random fields, focusing on the first and second moment of the process. The goal is to

find general families of space-time correlation functions of the form Cov(Xt(s), Xu(v)) =

C(s, v, t, u), which are “smooth everywhere” and yet “allow different degrees of smoothness”

(Stein, 2005). In this setting, both s and t are considered as continuous indexes. This lends

flexibility to the models, but requires dealing with potentially large covariance matrices. This

approach can thus have important computational drawbacks when large spatial domains or

long time periods are considered.
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A second common modeling approach for spatio-temporal data is an extension of deter-

ministic dynamical models that incorporates stochastic components. This leads to stochastic

partial differential equation (SPDE) models. For instance, Jones and Zhang (1997) consider

the SPDE ∂
∂t
Xt(s) − β ∂2

∂s2
Xt(s) + αXt(s) = δt(s), where δt(s) is a zero mean error process.

This SPDE is called a diffusion-injection equation and is just one of the various SPDE-based

models commonly used for naturally occurring physical processes (Heine, 1955; Zheng and

Aukema, 2010).

The third method is to obtain an explicit description of the dynamics of the process by

specifying its evolution as a function of the spatial distribution of the process. A dynamic

spatio-temporal model can be written as

Xt(s) =M(Xt−1(s), s,θ) + εt(s), t = 1, . . . , T,

where M represents a specific model configuration, governing the transfer of information

from time t − 1 to time t. Here, θ is a parameter vector, and εt(s) is a zero mean noise

process which may have a spatially dependent covariance structure. In these models, the

process evolves as an entire spatial field over a discrete time component. Cressie and Wikle

(2011) strongly support this approach, and suggest a “hierarchical dynamical spatio-temporal

model” of the form

Yt = BtXt + εt, εt ∼ N(0,Vt), t = 1, . . . , T (1)

Xt = Mt(Xt−1,θ) + ωt, ωt ∼ N(0,Wt), t = 1, . . . , T, (2)

where Yt is the vector of data, andXt is a vector of latent variables representing an underlying

process that is linked to Yt through the incidence matrix Bt. Moreover, εt and ωt are noise

terms with specified covariances Vt and Wt, respectively.

A specific case of the model described by equations (1) and (2) is the integro-difference
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equation (IDE) spatio-temporal model. We consider IDE models of the form

Xt(s) = eλ
∫
k(s− u|θ)Xt−1(u)du+ ωt(s), (3)

where k(·) is a redistribution kernel with parameter vector θ, and ωt(s) is an error process

which may be spatially colored. This kernel weights the contribution of the process at time

t − 1 to the process at time t at location s. The scaling term λ controls the growth or

decay of the process. Typically, the center of the kernel for each location is somewhere

near s, resulting in nearby values being weighted more heavily than others. The spatial

dependency in the IDE model arises from nearby observations sharing large contributions

from many of the same observations of the previous time point. Thus, the spatial and

temporal relationships interact with each other as the process evolves, producing a non-

separable process. Furthermore, the kernel width affects the smoothness of the resulting

process.

Originally used by ecologists studying the growth and spread of species (Kot et al.,

1996), integro-difference equations were introduced for general spatio-temporal processes

in Wikle and Cressie (1999). In Wikle (2002) the IDE kernel is specified parametrically

through a Gaussian distribution with unknown location and scale parameters. The stochastic

properties of the process that results from an IDE, such as stationarity and separability, are

explored in Brown et al. (2000) and Storvik et al. (2002). An important extension where the

mean of the kernel is spatially indexed is presented in Wikle (2002) and Xu et al. (2005).

Overall, the literature is dominated by IDE models based on Gaussian kernels. Though

there is some mention of non-Gaussian kernels, it is without exploring the modeling benefits

and inferential issues arising from the use of more general kernel families. Spatio-temporal

data can have a variety of features that may not be represented well by a Gaussian kernel

IDE model. As shown here, these features include dispersion, extra-diffusion, and flexibility

in local behavior. In this paper, we focus on the exploration of the properties and the
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development of inferential methods to deal with IDE models based on relatively simple

non-Gaussian parametric families of kernels. Our main purpose is to show how using non-

Gaussian kernels in IDE modeling can add value to spatio-temporal modeling. We will show

that, for hierarchical models as in equations (1) and (2), an IDE with a kernel more flexible

than the Gaussian can lead to improved model performance and prediction, and capture a

wider array of process dynamics. We restrict the scope of this paper to one-dimensional

space for ease in computation, but we expect that the same advantages arising from the use

of non-Gaussian kernels in one dimension will also emerge when using non-Gaussian kernels

in two dimensions.

The rest of the paper is organized as follows. In Section 2 we use two approximations

of the IDE to differential equations to theoretically justify the use of more flexible kernels.

Section 3 provides modeling techniques for the IDE model and presents two alternatives to

the Gaussian kernel. Direct comparison of model fit and prediction is performed for each

kernel choice in Section 4, for both real and synthetic data. Concluding remarks are made

in Section 5, and the four appendices collect technical details.

2 Theoretical Foundations

This section aims to explain how the choice of kernel affects the process represented by the

IDE. It will justify using more flexible kernels and will motivate how to select those kernels.

Section 2.1 connects the IDE model to a partial differential equation (PDE) constructed from

the cumulants of the kernel. Section 2.2 shows that the IDE model is a solution to a certain

system of PDEs which is constructed from the hazard function of the kernel distribution.

2.1 High Order Cumulants PDE Representation

Brown et al. (2000) consider an IDE model where the time increment is infinitesimal. Using

Taylor expansions, they show that the solution of the IDE in equation (3), when the kernel
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is infinitely divisible and from a location family, satisfies the approximation

∂Xt(s)

∂t
≈ λXt(s)− µ

∂Xt(s)

∂s
+

1

2
σ2∂

2Xt(s)

∂s2
+Bt(s) (4)

where µ and σ2 are, respectively, the mean and the variance of the kernel, and Bt(s) is

Brownian motion. A distribution, F , is infinitely divisible if any random variable X ∼ F

can be written as X =
∑n

i=1Xi, for any n, where Xi are identically distributed random

variables (Steutel and Harn, 2003). Intuitively, the effect of an infinitely divisible kernel

controlling the evolution of an IDE for one unit of time can be decomposed into the sum

of the effects of n IDEs operating on 1/n units of time. Thus, infinite divisibility allows a

discrete time IDE to be approximated by an SPDE, which is a continuous time model. The

model in equation (4) depends on two parameters, µ and σ2 that control, respectively, the

advection and diffusion of the process Xt(s). Thus, the SPDE approximation of the IDE

sheds light on how the kernel parameters control the physical properties of the process Xt(s).

Following the framework in Brown et al. (2000), we establish the following result on an

SPDE representation for an IDE using cumulants of order higher than two. This is achieved

by considering expansions of a Taylor series approximation beyond the first two terms.

Lemma 1. Consider the IDE model Xt(s) =
∫
k(s−u|θ)Xt−1(u)du, where the kernel belongs

to an infinitely divisible, location family of distributions for which the first J + 1 cumulants,

κ1, . . . , κJ+1, exist. Moreover, assume that ∂j

∂sj
Xt−δ(s) exists and that

∣∣∣ ∂j∂sjXt−δ(s)
∣∣∣ is bounded

above, for any (small) δ > 0 and for j = 1, ...J + 1. Then, the solution to the IDE equation

can be approximated by the solution of the equation

∂Xt(s)

∂t
≈

J∑
j=1

(−1)j
1

j!
κj
∂jXt(s)

∂sj
. (5)

Proof. For an infinitely divisible location kernel k(s − u|θ), we define k 1
n
(s − u|θ 1

n
) as an

n-fold self convolution, k 1
n
(x) ∗ k 1

n
(x) ∗ ... ∗ k 1

n
(x) = k(x), and θ 1

n
as the adjusted parameter
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set induced by the self-convolution. Let δ = 1/n. Then, by representing the process at time

t− δ as a Taylor series with J terms, we can write Xt(s) as

∫
kδ(u|θδ)Xt−δ(s− u)du =

∫
kδ(u|θδ)

[
J∑
j=0

(−1)j
1

j!
uj
∂j

∂sj
Xt−δ(s) +R(u)

]
du

where R(u) = (−u)J+1

(J+1)!
∂J+1

∂sJ+1Xt−δ(s
∗(u)), with s∗(u) in a neighborhood of s that depends on

u. Given that the derivatives of Xt−δ(s) are bounded above, we have that

∫
kδ(u|θδ)Xt−δ(s− u)du = Xt−δ(s) +

J∑
j=1

(−1)j
1

j!
Ekδ

[
uj
] ∂j
∂sj

Xt−δ(s) +
O
(
Ekδ

[
uJ+1

])
(J + 1)!

where Ekδ is the expected value with respect to the distribution with density kδ. Note that

the last term in the above expression tends to zero as J becomes large. Whereas in Brown

et al. (2000) J = 2, we consider a larger J obtaining the following approximation

Xt(s)−Xt−δ(s)

δ
≈

J∑
j=1

(−1)j
1

j!
δ−1Ekδ

[
uj
] ∂j

∂sj
Xt−δ(s)

where we have also rearranged terms and divided by δ.

To complete the proof, we need to show that, as δ → 0, δ−1Ekδ [uj] → κj, the j-th

cumulant of the kernel distribution. Using the additivity property for cumulants of sums of

independent random variables, κ′j = δκj, where κ′j is the j-th cumulant for the distribution

with density kδ. The other key result is the relationship between raw moments and cumu-

lants (e.g., Papoulis and Pillai, 2002). In particular, Ekδ [uj] = κ′j + h(κ′1, ..., κ
′
j−1), where

h(κ′1, ..., κ
′
j−1) is a polynomial function every term of which is the product of at least two

of the κ′m, m = 1, ..., j − 1. Hence, δ−1Ekδ [uj] = κj + δ−1h(δκ1, ..., δκj−1), and the result is

obtained since every term of δ−1h(δκ1, ..., δκj−1) includes a factor of δ` with ` ≥ 1.

As previously discussed, the first two cumulants of the kernel control the advection and

diffusion of the resulting process. The third cumulant is known to control dispersion, which in
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this context allows for extra variability in how the process behaves from one spatial location

to the next. Lemma 1 suggests that kernels more flexible than the Gaussian can model more

complicated dynamics.

2.2 Hazard Function PDE Representation

An alternative characterization of an IDE in terms of a PDE has been studied by ecologists

dealing with the dispersal of organisms after their introduction in a foreign region (Neubert

et al., 1995). A simple experiment would consist of a researcher placing a foreign species in

the middle of an open field. After a specified period of time, they would return and measure

how the plant spread over the field. They would use what is essentially an one time step

IDE process to describe the behavior of how the organism spread.

Lemma 2. Let k, S, and h be, respectively, the kernel density, and the corresponding survival

and hazard functions defined as S(s) = 1−
∫ s
−∞ k(u)du and h(s) = k(s)/S(s). Then, setting

the initial condition to u0(s) = Xt−1(s), the system of differential equations

∂uτ (s)

∂τ
= −∂uτ (s)

∂s
− h(τ)uτ (s) and

∂vτ (s)

∂τ
= h(τ)S(0)uτ (s) (6)

has the solution

uτ (s) = Xt−1(s− τ)
S(τ)

S(0)
and vτ (s) =

∫
Xt−1(s− u)k(u)du .

The proof of Lemma 2 is included in Appendix A. In ecology, the interpretation of uτ (s) is

that of a latent process representing the path of particulates in motion. The process vτ (s) is a

measure of the organisms once they have settled. The variable τ is an index of the path of the

process in-between time steps. As τ travels from 0 to∞, the process Xt(s) moves from time

t to time t + 1, and the process uτ (s) becomes 0 as all the particulates settle into locations

contributing to vτ (s). To make this a multi-step process we set the initial value for u
(t)
τ (s)
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Figure 1: The hazard functions for the standard normal, standard Cauchy, and exponential
distributions are shown. The Cauchy has polynomial tails that yield a decreasing hazard
function. The normal distribution has a hazard function which is increasing, and the expo-
nential hazard is constant.

equal to Xt−1(s) and solve the series of differential equations {(u(t)τ (s), v
(t)
τ (s)) : t = 1, ..., T}

piece by piece.

From the above discussion, we can identify vτ (s) with Xt(s), implying that the dynamics

of a process that satisfies an IDE with no random shocks, are regulated by the PDE in

equation (6). This indicates that the behavior of an IDE process depends on the hazard

function associated with the kernel. Tail behavior and hazard functions are directly related.

This is illustrated in Figure 1 for three densities with different tails. Thus, we expect that

a kernel with thick tails, such as a Cauchy, will produce solutions to the IDE that behave

very differently than those that correspond to a Gaussian kernel IDE.

Lemmas 1 and 2 indicate that there is merit in using IDE kernels with more flexibility

in high order cumulants and tail behavior than the Gaussian kernel. In line with the results

considered in this section, we seek alternative kernels that belong to parametric infinitely

divisible, location families of distributions that possess higher order cumulants and/or have

more flexible tails than the normal. Two parametric families that offer flexibility along these
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lines, without compromising tractability, will be presented in the next section.

3 Modeling Approaches for the IDE Kernel

An attractive characteristic of the IDE model is a dimension-reducing feature which naturally

makes the analysis of the problem more computationally feasible (Wikle and Cressie, 1999).

Relevant results are summarized in Section 3.1. Sections 3.2 and 3.3 propose the asymmetric

Laplace and the stable family of distributions, respectively, as alternatives to the Gaussian

kernel. A brief summary of each of these families of distributions is presented, followed in

Section 3.4 by prior simulations from IDE models with these kernels. Note that, for all the

methods and analyses presented, it is assumed that λ = 0. While λ models growth or decay

of the process, we will use a hierarchical structure that allows for these trends in the first

layer, so the extra parameter is unnecessary. Moreover, for the purposes of comparing model

fits with different kernels it is sufficient to set λ equal to 0.

3.1 Basis Expansion for Model Fitting

We will use an orthogonal basis expansion for both the kernel and the process, where the

basis functions, {φ1, φ2, ...}, are common to both. In particular,

Xt(s) =
∞∑
i=1

φi(s)ai(t) and k(u− s|θ) =
∞∑
j=1

bj(s,θ)φj(u), (7)

where ai(t) are coefficients for the basis expansion of the process, and bj(s,θ) are coefficients

for the basis expansion of the kernel at location s. Using a set of basis functions where

truncation is appropriate, both series in equation (7) may be truncated to the first L terms.

The value for L should be sufficiently large for the basis expansion to accurately approximate

both the kernel and the process. The number of basis functions required for an accurate

representation is inversely related to the width of the kernel with respect to the overall range
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of the data. For instance, a normal distribution with variance 1 may need 15 basis functions,

but when the variance is .1, 30 basis functions may be needed. Also, kernel choice influences

the number of basis functions required. For example, a kernel which is highly skewed will

require more basis functions than a symmetric kernel. To ensure the correct number of basis

functions are being used, the approximation should be checked graphically to ensure that it

fits the distribution well. Recommendations for L under certain distributions will be noted

as they are discussed.

Due to the orthogonality of the basis functions, the components of the integral in equa-

tion (3) can be replaced with the basis expansions in equation (7) and rewritten as follows:∫
k(s−u|θ)Xt(u)du ≈ a′tb(s,θ), where at = (a1(t), ..., aL(t))′ and b(s,θ) = (b1(s,θ), ..., bL(s,θ))′.

Moreover, by placing Xt+1(s) =
∑L

i=1 φi(s)ai(t+ 1) into the left side of equation (3), we ob-

tain a′t+1φ(s) = a′tb(s,θ) + ωt+1(s), where φ(s) = (φ1(s), ..., φL(s))′.

The values for bj(s,θ) are deterministic, given the choice of kernel and the corresponding

parameters. The values for ai(t) are unknown and vary with time. Under the basis expansion,

the process model can be summarized hierarchically as follows:

Xt = Φat + εt (8)

at = (Φ′Φ)−1Φ′Bθat−1 + ωt, (9)

whereXt = (Xt(s1), ..., .Xt(sn))′ is a realization from the process at time t,Bθ = (b(s1,θ) . . .

b(sn,θ)) is a matrix whose columns consist of the vectors of the kernel basis coefficients,

and the (i, j)th element of Φ is φi(sj). The vector εt accounts for both observational error

and truncation error from the basis approximation and ωt accounts for process error.

For a bounded spatial domain, say [r1, r2], it is natural to consider the orthogonal family

given by the Fourier basis. In such case, the kernel needs only be specified through its

characteristic function. For example, a Gaussian kernel has Fourier coefficients b2j−1(s,θ) =

r−1/2 exp (−.5ρ2jσ2) cos(ρj(s + µ)), and b2j(s,θ) = r−1/2 exp (−.5ρ2jσ2) sin(ρj(s + µ)), where
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r = r2 − r1 and ρj = 2πj/r is the spatial frequency. For both the Gaussian density and

the two alternative IDE kernel densities proposed next, technical details concerning the

approximation error of the Fourier basis decomposition are presented in Appendix D.

3.2 Asymmetric Laplace Distribution

The asymmetric Laplace is an infinitely divisible, location family distribution which allows

for skewness and heavier tails than the normal. The distribution is characterized by its mode

ξ, a scale parameter σ, and a parameter controlling the skewness and other shape properties,

κ > 0. The density function is given by

k(x|ξ, σ, κ) =

√
2

σ

κ

1 + κ2


exp

(
−
√
2κ
σ
|x− ξ|

)
if x ≥ ξ

exp
(
−
√
2

σκ
|x− ξ|

)
if x < ξ

which shows how the asymmetric Laplace can be formed from two exponentials with different

intensities. When κ = 1, the distribution simplifies to the (symmetric) Laplace distribution.

The property of infinite divisibility can be found in Kotz et al. (2001). Figure 2 shows

different asymmetric Laplace densities for varying values of κ.

The asymmetric Laplace can be written as a mixture of normals with mean ξ + µW and

variance σ2W , where µ = 2−1/2σ (κ−1 − κ) and W is an exponential distributed random

variable with mean 1 (Kotz et al., 2001). This mixture representation yields the following

result, the proof of which can be found in Appendix B.

Lemma 3. The Fourier coefficients of the basis expansion for a kernel in the asymmetric

Laplace family are:

b2j−1(s,θ) =
(1 + .5ρ2jσ

2) cos(ρj(s+ ξ)) + ρjµ sin(ρj(s+ ξ))

(−1− .5ρ2jσ2)2 + (ρjµ)2
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Figure 2: Asymmetric Laplace densities for different values of the skewness parameter κ.
The distribution is symmetric when κ = 1 and can be highly skewed in either direction when
κ is large or small.

and

b2j(s,θ) =
(1 + .5ρ2jσ

2) sin(ρj(s+ ξ))− ρjµ cos(ρj(s+ ξ))

(−1− .5ρ2jσ2)2 + (ρjµ)2
.

Computationally, the non-differentiability of the density at its mode makes it harder to

approximate using basis functions. To get a working approximation using a Fourier basis,

the truncation point required is much larger for the asymmetric Laplace than it is for the

Gaussian density, typically ranging from 30 to 100 basis functions. The more skewed the

distribution is, the harder it becomes to approximate well.

3.3 Stable Distributions

Lemma 2 suggests that the kernel tail behavior will affect IDE evolution. To explore infinitely

divisible kernels with tails that are substantially heavier than those of a Gaussian, we consider

the family of stable distributions. A distribution belongs to the class of stable distributions

if any linear combination of two random variables from a particular class of distributions
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also belong to that same family. Thus, this is a subset of infinitely divisible distributions,

as shown in Samorodnitsky and Taqqu (1997) and Nolan (2003). The stable distributions

are governed by 4 parameters, µ ∈ R, c > 0, α ∈ (0, 2], and β ∈ [−1, 1], and a wide range

of skewness and tail behavior can be achieved by varying the parameters appropriately. A

characteristic of the family of stable distributions is that, in general, it does not have an

analytically available form for the density function, or moments. Specials cases of stable

distributions include the Gaussian distribution when α = 2, the Cauchy distribution when

α = 1 and β = 0, and the Levy distribution when α = 1/2 and β = 1. The family is

generally defined through its characteristic function, which for α 6= 1 is given by

ψ(t|µ, c, α, β) = exp {itµ− |ct|α(1− iβsgn(t) tan(πα/2))} ,

where sgn(t) is equal to 1 when t is positive, −1 when t is negative, and 0 when t is 0. Figure

3 shows how the shape of the density changes with α and β. Note that α controls the tails

and β controls the skewness, while µ and c are location and scale parameters, respectively.

In Appendix B we derive the following result on the Fourier series expansion for IDE kernels

from the stable family of distributions.

Lemma 4. The Fourier coefficients of the basis expansion for a kernel in the family of stable

distributions are:

b2j−1(s,θ) = cos (ρj(s+ µ) + |cρj|αβsgn(ρj) tan(πα/2)) exp (−|cρj|α)

b2j(s,θ) = sin (ρj(s+ µ) + |cρj|αβsgn(ρj) tan(πα/2)) exp (−|cρj|α) .

The quality of this Fourier series approximation depends on the shape of the distribution.

To avoid requiring a large truncation point, it is computationally convenient to restrict

α ∈ (1, 2]. This restricts the tail behavior to be between the Cauchy and the Gaussian

distributions, but still ensures polynomial tail behavior for all values of α < 2. For α < 1,

the required truncation level for a Fourier basis expansion increases tremendously. With

14



−6 −4 −2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

Stable Density by α

α = 2
α = 1.5
α = 1

−6 −4 −2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

Stable Density by β

β = 0
β = −.45
β = .9

Figure 3: Densities from the stable class of distributions with µ = 0 and c = 1, for different
values of the stability parameter α (left panel) and skewness parameter β (right panel).
Smaller α values result in heavier tails and β values far from 0 result in greater skewness.
The left panel fixes β = 0 and the right panel fixes α = 1.1.

α > 1, the number of terms required is comparable to the normal, between 20 and 50, and

thus computational expense will be similar. The high degree of flexibility in modeling the

heaviness of the tails and the skewness combined with similar computational burden as the

Gaussian kernel IDE makes the stable family a very attractive choice for the IDE kernel.

3.4 Prior Simulation

To empirically study how the various kernels affect the IDE model, we perform a series of

prior simulations under four different kernels. The first of these kernels is normal with a mean

of −.67 and a variance of 2. The second kernel is an asymmetric Laplace with parameters

ξ = .85, σ = .63 and κ = 3, resulting in the same mean and variance as the normal kernel, but

with a left skewed density. By matching the means and the variances of these two kernels, we

can explore whether the first two moments dominate the IDE process or if a non-zero third

moment results in different process realizations, as suggested by equation (5). The third
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kernel is a stable distribution with parameters µ = .55, c = .77, α = 1 and β = −.8, which

are chosen such that the resulting density is skewed and shaped to match the asymmetric

Laplace. The final kernel is also a stable distribution with quartiles and a median which

match the normal kernel, having heavy tails and no skewness; the corresponding parameters

are µ = .33, c = .8, α = 1 and β = 0. This will test how tail behavior affects the IDE model

for otherwise similar kernels. These simulations were conducted using the same process

realization at time 0 and without any noise, to avoid confounding any process effects with

random error.

Process realizations are simulated from the IDE model according to equation (3). The

initial condition at t = 0 is a realization from a Gaussian process. The resulting IDE

realizations are shown in Figure 4. These simulations show that, while the general trend

is similar across each kernel choice, the localized features differ for each time point. The

process for the IDE with more flexible kernels behaves as a more colorful version of the

process using a Gaussian kernel, as can be seen best in the third column.

4 Illustrative Data Examples

The theory supports the use of the asymmetric Laplace and the stable family as possible

extensions to the normal distribution for the IDE kernel. To see how these kernels compare

in actual model performance, we apply the IDE model with all three kernels and compare

the predictive results. In Section 4.1 two synthetic data sets will be fit and compared. In

Section 4.2, the methods will be compared using real data collected by ozonesonde readings

on ozone pressure.

4.1 Comparing Model Fits with Synthetic Data

To test the asymmetric Laplace and stable distributions against the normal, data is sim-

ulated under the IDE setting from two different kernels. The first is a mixture of normal
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Figure 4: IDE prior simulations in one-dimensional space for four distinct kernels. From
top to bottom the kernels are normal, asymmetric Laplace, stable with skewness, and stable
with heavy tails and no skewness. The first column plots the IDE kernel density, the second
column shows the simulated process for 5 time points, and the last column compares the
spatial field between the particular kernel and the Gaussian kernel for the third time point.

distributions, .35N(−3, 1) + .25N(−1, 1) + .15N(1, 1) + .1N(3, 1) + .1N(5, 1) + .05N(7, 1),

which results in a skewed density with exponential tails. The second simulation is from an

IDE with a Cauchy kernel, which is a special case of the stable with α = 1 and β = 0.

Each of these simulated data sets spans over 200 gridded spatial locations, between −40 and

40, and over 50 time points. We use independent observation errors arising from a normal
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Figure 5: Synthetic data. Posterior mean and interval estimates for the IDE kernel density
under the model with the Gaussian, asymmetric Laplace, and stable kernels. The top row
corresponds to the data generated from an IDE model with a normal mixture for the kernel,
and the bottom row to the simulated data based on an IDE model with a Cauchy kernel.

distribution with standard deviation .5, and a spatially correlated Gaussian error process

with Matérn covariance function having smoothness parameter 1.5, range 3, and scale .25.

Because the kernel parameters are embedded within the structure of the evolution matrix,

we use Metropolis-Hastings steps within a dynamic linear model framework to obtain samples

from the posterior distribution of those parameters. Details are provided in Appendix C for

the specific hierarchical model given in Section 4.2.

Posterior mean and pointwise interval estimates for the kernel densities are shown in

Figure 5. The interval estimates are computed as the 95% credible interval of the density at

each point over a grid, using the posterior samples for the kernel parameters. The Gaussian

kernel is unsuccessful in recreating the truth. The more flexible kernels more appropriately

capture the skewness and tail behavior of the underlying IDE kernel.
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True kernel
Fitted kernel Mixture Cauchy

Gaussian 16% 0%
Asymmetric Laplace 70% 4%
Stable 14% 96%

Table 1: Synthetic data. The percentage of times each of the kernels had the lowest energy
score for each of the simulated data sets. The asymmetric Laplace performed the best for
the mixture kernel and the stable family performed the best for the Cauchy kernel.

We compare the predictions from Markov chain Monte Carlo (MCMC) runs using an

energy score, following Gneiting (2002). This procedure allows for simultaneous scoring of a

whole spatial field. The energy score is calculated as

ês(F, y) =
1

m

m∑
i=1

||y(i) − y|| − 1

2m2

m∑
i=1

m∑
j=1

||y(i) − y(j)||, (10)

where y(1), ..., y(m) are samples from F , the posterior predictive distribution and y denotes

the data vector. For each of the simulated data sets we compute energy scores for one step

ahead out-of-sample predictions for 50 time points. Table 1 shows the percentage of times

each of the kernels scored the lowest. The scoring indicates clearly which kernel performs the

best in each case. The asymmetric Laplace outperforms the others for the skewed mixture,

whereas the stable distribution outperforms the others for the Cauchy kernel. To offer an

explanation, note that the polynomial tails of the stable may not match up well with the

exponential tails of the mixture IDE kernel and the Gaussian could not capture the skewness,

but the asymmetric Laplace is able to capture skewness and tail behavior better. Whereas

with the Cauchy IDE kernel, only the stable distribution could match the polynomial tails.

To be able to compare model fits, the number of Fourier basis functions was fixed for all

three models to be 51. The normal and stable distribution kernel IDE models produce similar

results with around 25 basis functions, but the larger number of basis functions is necessary

for the asymmetric Laplace kernel. Using 51 basis functions, it took about 3 hours to get

3,000 MCMC samples from the posterior distribution. Using 25 basis functions, reduces the
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corresponding computing time to 1 hour.

For both of these simulation settings, we tested the hypothesis that α = 2 for the stable

density (which corresponds to the special case of a Gaussian density) by placing a prior on

α that includes a point mass probability of Pr(α = 2) = .2. A high posterior probability of

α being equal to 2 would suggest that the Gaussian IDE kernel is sufficient. For the normal

mixture simulation setting, the posterior probability was Pr(α = 2 | data) = .02, and for the

Cauchy simulation example it was Pr(α = 2 | data) = .06, thus providing further evidence

that there is merit to using the stable IDE kernel distribution instead of the Gaussian.

4.2 Ozone Data

The study of ozone has provided an abundant source of environmental and statistical liter-

ature over the past decades. The effect of lower atmosphere ozone measurements has been

seen to affect other climate variables such as concentration of certain pollutants and tem-

perature (Robeson and Steyn, 1990). Other studies have shown how ozone concentrations

affect crop yields and other agricultural variables (Heck et al., 1984). Understanding lower

atmosphere ozone levels may help to understand and predict many other important variables

which have a direct societal impact.

To study how the kernel choice may affect IDE model performance, we fit our proposed

models to 10 years of low atmosphere ozone pressure data. These data are collected by

ozonesondes, which are balloons that ascend into the atmosphere and record measurements

at regular intervals. The data set we study includes biweekly ozone pressure from October

1996 to October 2006 collected at Koldewey Station near the North Pole. Details about this

weather station and others related to it can be found at http://www.awi.de/en/home/.

The data are collected by releasing a balloon in the air which, at certain intervals through-

out its flight, takes a measurement of ozone pressure in millPascals (mPa). The resulting

data structure poses many issues for modelers. First, the locations at which the data are

collected vary across time. The balloon usually takes measurements at regular intervals, but
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Figure 6: Biweekly ozone pressure measured on a vertical profile, plotted across altitude (0
to 6,000 feet) and over time (October 1996 to October 2006).

this rarely corresponds to a consistent pattern with surrounding time points. Another issue

is that the data collecting mechanism would often fail to reach higher altitudes, leaving the

entire upper half of the observation interval missing. Yet another major issue is that the data

is somewhat irregular and hard to model using standard methods. For this particular illus-

tration, we restrict our focus to the first 6,000 feet, which corresponds to lower-atmosphere

ozone pressure. The data is collected almost every week, though several weeks are missing.

Since this is an illustration, we opt to use biweekly data to avoid missing time points.

Because the balloon moves only in one direction, the domain for space is one-dimensional.

The data is displayed in Figure 6 by altitude and time. There are a few stretches with

outlying observations which are included in the analysis but are not shown so that the finer

details of the data can be viewed, and also to help compare with the fitted values in Figure

10. In Figure 6, we note a potential seasonal trend. To account for this seasonality, we

add two harmonics, Zti = (Z
(1)
ti , Z

(2)
ti ), for i = 1, 2. These variables will evolve through a

21



rotation matrix with frequency ζi. The resulting process has a cyclical forecast function with

a period of 2π/ζi (West and Harrison, 1997, Chp. 8). By including two harmonics we can

account for seasonal variability with two different periods. It is possible to elaborate on this

model by, for example, considering space-varying seasonal components and spatially-varying

kernels. However, we opt to keep the model simpler to focus on the effects of using kernels

with different skewness and tail behaviors. The full model is

Yt(s)|Xt(s), Z
(1)
t1 , Z

(1)
t2 , σ

2 = Xt(s) + Z
(1)
t1 + Z

(1)
t2 + εt(s), εt(s)

i.i.d.∼ N(0, σ2), t = 1, ..., T

Xt(s)|{Xt−1(s) : s ∈ D},θ =

∫
D

k(s− u|θ)Xt−1(u)du+ ωt(s) Z
(1)
ti

Z
(2)
ti

 =

 cos(ζi) sin(ζi)

− sin(ζi) cos(ζi)


 Z

(1)
t−1,i

Z
(2)
t−1,i

+ νt, i = 1, 2

σ2 ∼ gamma(a, b), θ ∼ p(θ), νt|WZ
t ∼ N2(0,W

Z
t ),

where, for any points s1, ..., sn, the vector (ωt(s1), ..., ωt(sn)) has a normal distribution with a

zero mean and some covariance structure, Wt. The matrices Wt and WZ
t are modeled using

discount factors. A discount factor, say δ, is a number between 0 and 1 that determines the

amount of information lost through the process evolution in time (West and Harrison, 1997,

Chp. 6). Note that the amplitude and phase of this cyclical effect will vary smoothly across

time. The IDE kernel is chosen to be Gaussian, asymmetric Laplace, and then stable in three

different model fits. The prior parameters a and b are fixed. An exploratory analysis was

performed where the periods of the two harmonics were included as parameters in the model

and a cluster of posterior mass around 6 months and 12 months was observed. The two

harmonics were then fixed to have periods of 6 and 12 months, which results in ζ1 = 2π/26

and ζ2 = 2π/13, assuming 52 weeks per year.

For the kernel parameters and the observational variance, the posterior distributions are

robust to a wide range of priors. We use a N(0, 3002) prior for the location parameter, and

a gamma(1, .01) prior for the scale parameter in each case. The skewness parameter κ in
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the asymmetric Laplace received a gamma(1, 1) prior. The stable parameters α and β were

assigned scaled Beta(2, 2) prior distributions to match their support. The posterior distribu-

tion was not sensitive to a wide array of slightly informative priors for the kernel parameters,

but more dispersed priors seemed to delay convergence and mix poorly. The important prior

specification is for m0 and C0, which are the mean and covariance, respectively, of the basis

coefficients for the time 0 process. Poor choices for these can greatly affect the posterior for

the kernel parameters. Ozone pressure typically does not stray too far from the range of 2

to 4. Our best guess of the time 0 process is a constant function at 3. The basis coefficients

that define m0 are (3/
√

2r, 0, ..., 0), where r is the period of the Fourier transform used for

the basis. We constructed C0 as a diagonal matrix with decreasing values down the diagonal

so that variances of the higher order terms of the basis function expansion are close to 0. We

present results based on 50,000 MCMC samples (after a burn-in period of 50,000 iterations)

for every parameter of every model. Convergence was assessed using methods found in the

“boa” package in R (Smith, 2007), including the Gelman and Rubin test statistic (Gelman

and Rubin, 1992) and the Geweke test statistic (Geweke et al., 1991).

To demonstrate the practical utility of non-Gaussian IDE kernels, we can study the

kernel estimates, and the posterior distribution of the parameters which control skewness

and heavy tails. The posterior mean estimates for the kernel density under each model are

shown in Figure 7, and it can be clearly seen that the kernel tends to be asymmetric for

models where that is allowed. The posterior distribution for κ in the asymmetric Laplace,

and the stable parameters α an β are shown in Figure 8. Recall that κ controls the skewness

of the asymmetric Laplace, and α and β control the tail behavior and skewness of the stable

distribution. The credible intervals for each of these parameters are shown in Table 2. The

asymmetric Laplace parameter κ includes 1 in the credible interval, suggesting that we can

not rule out symmetry based on the parameter estimates. However, the credible interval for

the stable distribution parameter β does not include 0, suggesting that the IDE kernel is not

symmetric under the stable distribution model.
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Figure 7: Ozone data. Posterior mean estimates for the IDE kernel under the Gaussian,
asymmetric Laplace, and stable models.

Parameter Median 2.5% 97.5%
κ 1.22 .69 1.75

α 1.48 1.26 1.80
β −.57 −.86 −.17

Table 2: Ozone data. Posterior median and 95% credible intervals for certain parameters of
the IDE models with non-Gaussian kernels.

Figure 9 shows profiles of the fitted values of one step ahead predictions for three ob-

servations from the data set using each kernel. Using such profiles, it can be seen that

the Gaussian kernel IDE does not appropriately model ozone pressure in several regions.

The stable distribution, however, seems to perform much better. For the Gaussian model,

only two parameters determine the entire evolution matrix. Figure 9 shows that this is not

enough to provide accurate one step ahead predictions. The stable distribution kernel uses

four parameters and while the accuracy of prediction is certainly increased, the uncertainty

increases as well, resulting in wider credible intervals. The model residuals for the stable

distribution IDE model are shown in Figure 10.
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Figure 8: Ozone data. Posterior density for the skewness parameter κ of the asymmetric
Laplace kernel (left panel). Posterior densities for parameters α and β which control the
tails and the skewness of the stable kernel (middle and right panel).
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Figure 9: Ozone data. The profiles of ozone concentration are shown for three different
months with one step ahead 95% predictive intervals shaded in for each of the three different
kernels.

25



Stable IDE Fitted Values
A

lt
it
u

d
e

 (
m

)

1996 1998 2000 2002 2004 2006

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0
5

0
0

0
6

0
0

0

2.0

2.5

3.0

3.5

4.0

4.5

Stable IDE Residuals

A
lt
it
u

d
e

 (
m

)

1996 1998 2000 2002 2004 2006

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0
5

0
0

0
6

0
0

0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

Figure 10: Ozone data. Fitted values (left) and residuals (right) are shown for every obser-
vation under the IDE model with the stable distribution kernel. The overall fit is good with
the exception of a few outlying stretches.

The one step ahead predictions shown in Figure 9 are calculated for the data set for

all three models. As in the simulated example, these predictions can be scored using the

measure in equation (10). The results of the energy scores can help determine which model

performs the best in one step ahead predictions. Table 3 shows each possible ordering for

the scores and how often they occur. Recall that lower scores refer to a better fit. The

stable distribution has the lowest energy score for 73% of the observations. Only 10% of

the observations have the Gaussian kernel as the lowest score. These scores help discern

the differences that the figures are not able to show. It is clear that the particular criterion

favors the stable distribution IDE kernel over the Gaussian and asymmetric Laplace. As in

the simulation examples, a separate analysis tested the hypothesis that α = 2 in the stable

distribution by placing a prior probability of Pr(α = 2) = .2. The posterior probability was

Pr(α = 2 | data) = .08, again supporting the general stable distribution for the IDE kernel

relative to the special case given by the Gaussian distribution.

To summarize these results, the posterior distribution of the stable kernel parameters

suggest that normality and symmetry are poor assumptions for the IDE kernel. The posterior
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Order Frequency
S<AL<G 53%
AL<S<G 11%
G<S<AL 6%
S<G<AL 20%
AL<G<S 6%
G<AL<S 4%

Table 3: Ozone data. Each possible ordering for the scores of the IDE models under the
three distinct kernels are shown with the percentage of observations that the scores followed
that order. S refers to the stable distribution, AL to the asymmetric Laplace, and G to the
Gaussian kernel.

distribution of the asymmetric Laplace does not rule out symmetry, but the estimate shown

in Figure 7 for the asymmetric Laplace kernel is clearly asymmetric. Scoring procedures

for the out of sample predictions suggest that the model with the stable kernel distribution

performs the best in terms of predictive model accuracy.

5 Conclusions

Spatio-temporal data often present complicated space-time interactions that are difficult to

model accurately. Under the IDE model framework, electing to use a kernel more flexible

than the Gaussian, which is used in nearly all IDE modeling, provides better predictive

accuracy and more potential for successfully capturing the spatio-temporal evolution of the

field. Compared to Gaussian kernel densities, kernels with flexible tail behavior and poten-

tial skewness, facilitate more complicated transfer of dynamics from one time point to the

next. In this paper, we have shown how the choice of kernel influences the process through

theory, simulations, and data analysis. We have proposed two alternative kernel families

with desirable theoretical and computational properties.

Computations for the models proposed in this paper are based on truncated expansions

on Fourier bases. Based on both empirical evidence and the theoretical results developed in

Appendix D, asymmetric Laplace kernels require a larger number of coefficients than stable
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distribution kernels with α > 1. The latter can be well approximated with a computational

effort comparable to Gaussian kernels. Hence, when alternatives to the Gaussian IDE model

are needed for large data sets, the stable distribution seems a more practical choice than

the asymmetric Laplace. Additionally, because the stable family can capture a range of tail

behavior as well as skewness, it is more flexible than the asymmetric Laplace.

The models proposed in this paper can be extended in at least three different ways.

First, we can place a Gaussian process prior on the location parameter, along the lines of

Wikle (2002). This will achieve full spatio-temporal non-stationarity. The remaining kernel

parameters can also be spatially varying by using, for example, transformations of Gaussian

processes. Second, we can further extend the flexibility of the kernel shape by considering

non-parametric representations of the kernel. Within a Bayesian setting, we can consider a

Dirichlet process mixture of normals prior on the kernel. Expressions such as (5) still hold

true for such IDE models. Extensions to space-varying kernels can then be achieved by using

a spatial Dirichlet process (Gelfand et al., 2005), resulting in a model whose kernel moments

are completely flexible and change smoothly across a surface. Physical characteristics such

as diffusion, advection, and dispersion will be spatially varying. Ongoing work shows that,

for one-dimensional space problems, a spatial Dirichlet process mixture kernel IDE model

can outperform Gaussian kernel IDE models with spatially varying parameters.

We have developed models for one dimensional spatial settings. While these are useful for

the study of profiles that are very common in environmental variables, such as the ozone data

considered in this paper, it is important to generalize the methodology for higher dimensional

spaces. Conceptually, this extension is straightforward. Nevertheless, inference and compu-

tations for the families proposed in this paper are quite challenging. Starting from a multi-

variate characteristic function, it is possible to obtain the Fourier basis expansion in order to

evaluate the IDE integral, along the lines of the one-dimensional case. For the asymmetric

Laplace, a two-dimensional characteristic function is readily available (Kotz et al., 2001).

However, the computational burden due to the large number of basis functions required for
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a good approximation of the kernel is compounded by the dimensionality. A possible way to

tackle this problem is to use a thresholding approach, where the number of basis functions is

allowed to change from one MCMC iteration to the next. Such an approach requires careful

exploration of the criteria to set to zero a given coefficient. For the stable family, multivariate

generalizations are not immediate. The main difficulty stems from the fact that the char-

acteristic function does not have a parametric form. In fact, the characteristic function for

the multivariate stable distribution is exp
(
iµ′t−

∫
|t′s|α{1− i sgn(t′s) tan(πα/2)}dΓ(s)

)
,

where Γ is a measure with compact support. Γ determines the main orientation, scale

and skewness of the resulting stable distribution (Samorodnitsky and Taqqu, 1997). Fu-

ture work will report on methods to model Γ and to implement a stable family kernel in a

two-dimensional IDE setting.

Appendix A Proof of Lemma 2

Neubert et al. (1995) show that the IDE model can be written as a system of partial dif-

ferential equations. That work is modified to account for asymmetric kernels and processes

defined on the entire real line. The representation for the IDE process is

du

dτ
= −du

ds
− h(τ)u,

dv

dτ
= h(τ)S(0)u.

We confirm that this is an IDE representation using the method of characteristics. To use

this method, we find curves where the PDE is trivial and then create functions of those

curves based on the initial conditions. The characteristics curves can be found by solving

the differential equations dτ = ds and dτ = −(h(τ)u)−1du. The first PDE is simple to

integrate both sides. The second can be solved for u = C exp
[
−
∫
h(τ)dτ

]
.

According to the method of characteristics, the general solution can be written as u =

g(s − τ) exp
[
−
∫
h(τ)dt

]
. Neubert et al. (1995) assume the initial condition u(s, 0) = δ(s)

because all the organisms begin in one location, but in general we can use the initial condition
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u(s, 0) = Xt(s), that is, our initial condition is the process at the previous time. Using

properties of hazard functions, based on this initial condition, the general function for u(s, τ)

is Xt−1(s − τ)S(τ)/S(0) where S(·) is the survival function. Solving for v proceeds by

integrating both sides of dv
dτ

= Xt−1(s− τ)S(τ)
S(0)

h(τ)S(0), which then becomes

v(s, τ) =

∫
Xt−1(s− τ)k(τ)dτ.

If the initial condition for u(x, 0) is Xt−1(s), then the solution for v(s, τ) is Xt(s).

Appendix B Fourier Coefficients

Here, we develop the Fourier representations of the asymmetric Laplace and stable distri-

butions. The asymmetric Laplace distribution can be written as a mixture of normals. If

X is a standard normal and W is a standard exponential, then Y = ξ + µW + σ
√
WX

has an asymmetric Laplace distribution. Hence, conditionally on W , Y has a normal dis-

tribution with mean ξ + µW and variance σ2W . This representation uses the parametriza-

tion µ = 2−1/2σ (κ−1 − κ). To find appropriate basis function expansions for the asym-

metric Laplace distribution in the IDE model, we can use the specific form of the normal

distribution for Y |W and mix over W . Recall that the N(µ, σ2) kernel can be decom-

posed into
∑

j bj(s,θ)φj(u), where the basis functions are φ2j−1(u) = cos(ρju) and φ2j(u) =

sin(ρju), and the coefficients are b2j−1(s,θ) = exp (−.5ρ2jσ2) cos(ρj(s + µ)) and b2j(s,θ) =

exp (−.5ρ2jσ2) sin(ρj(s+ µ)). Therefore, by mixing on W , the asymmetric Laplace distribu-

tion coefficients for the Fourier basis expansion can be found through

b2j−1(s,θ) =

∫ ∞
0

exp (−.5ρ2jσ2W ) cos(ρj(s+ ξ + µW )) exp (−W )dW

=
1

(−1− .5ρ2jσ2)2 + (ρjµ)2
[
(1 + .5ρ2jσ

2) cos(ρj(s+ ξ)) + ρjµ sin(ρj(s+ ξ))
]
.
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Similarly, we obtain

b2j(s,θ) =
1

(−1− .5ρ2jσ2)2 + (ρjµ)2
[
(1 + .5ρ2jσ

2) sin(ρj(s+ ξ))− ρjµ cos(ρj(s+ ξ))
]
.

The stable family of distributions with α 6= 1 has characteristic function of the form

ψ(t) = exp {itµ− |ct|α (1− iβsgn(t) tan(πα/2))}. Decomposing the characteristic function

into its real and imaginary parts and then applying Euler’s formula, we find the coefficients

for the sine and cosine basis functions:

ψ(t) = cos (tµ+ |ct|αβsgn(t) tan(πα/2)) exp(−|ct|α) + i sin (tµ+ |ct|αβsgn(t) tan(πα/2)) exp(−|ct|α).

The real part of this equation corresponds to the cosine coefficients and the sine part refers

to the sine coefficients in a Fourier transform.

Appendix C MCMC Details

This section details the procedure used for learning model parameters for the ozone data.

As outlined in Cressie and Wikle (2011) and summarized in equations (1) and (2), we use a

hierarchical dynamic linear model framework. Due to the seasonality in the ozone data, we

include two harmonics at the process level. Combining a hierarchical model with the basis

function decompositions in equation (7), we can write the model for data vector, Yt, as

Yt|at, Z(1)
t1 , Z

(1)
t2 , σ

2 ∼ N(Φat + Z
(1)
t1 + Z

(1)
t2 , σ

2I), t = 1 : T

at|at−1,θ,Wt ∼ N((Φ′Φ)−1Φ′Bθat−1,Wt), Z
(1)
ti

Z
(2)
ti

∣∣∣∣∣
 Z

(1)
t−1,i

Z
(2)
t−1,i

 ,W Z
t ∼ N


 cos(ζi) sin(ζi)

− sin(ζi) cos(ζi)


 Z

(1)
t−1,i

Z
(2)
t−1,i

 ,W Z
t

 , i = 1, 2,

The kernel parameters, θ are embedded in the matrix Bθ. To find posterior distributions

for the parameters, we must use Metropolis-Hastings. The parameters of the model include
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the latent variables at and Zti, in addition to the parameter set θ and variance terms σ2,

Wt, and W Z
t . By augmenting the vectors and blocking the matrices in the model we can

rewrite this in the simpler form

Yt = FtXt + ε∗t , ε∗t ∼ N(0,Rt), t = 1 : T

Xt = GtXt−1 + ω∗t , ω∗t ∼ N(0,Qt).

The state vector is now Xt = (a′t,Z
′
t1,Z

′
t2)
′. The matrices here are also redefined as

Ft = (Φ,1,0,1,0), Rt = σ2I, Gt = blockdiag ((Φ′tΦt)
−1Φ′tBθ, J(ζ1), J(ζ2)), where J(ζ)

is a rotation matrix with frequency ζ, and Qt = blockdiag
(
Wt,W

Z
t

)
.

Estimating the states is done using standard filtering formulas as found in Prado and

West (2010). First the prior mean and covariance estimates for X0 must be set as m0 and

C0. Given all information up to time t, denoted as Dt, the posterior distributions of the

state vectors Xt|Dt are N(mt,Ct). These can be found using recursive formulas

mt = Gtmt−1 +Kt (Yt − FtGtmt−1)), Ct = (I −KtFt) (GtCt−1G
′
t +Qt) ,

where Kt = (GtCt−1G
′
t +Qt)F

′
t (Ft (GtCt−1G

′
t +Qt)F

′
t +Rt)

−1. The covariance matri-

ces Wt, and W Z
t can be estimated using discount factors. This involves setting Qt equal

to 1−δ
δ
GtCt−1Gt, for some fixed value for δ. More details are provided in Prado and West

(2010). Given these covariances and the states, the parameters in the kernel and the vari-

ance σ2 can be updated using Metropolis-Hastings steps. The distribution of Yt|Dt,θ, σ
2 is

N(Ftmt,FtCtF
′
t +Rt). New values for θ∗ are proposed from a proposal distribution q(·).

Typically, the variables were transformed so that the proposal distribution could be a normal

distribution. The variance of this normal proposal distribution was tuned to an appropriate

acceptance rate. If the value of the parameters at the previous iteration of the MCMC is
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θ(B−1), then the new values will be accepted with probability

min

(
p(Yt|Dt,θ

∗, σ2)p(θ∗)q(θ(B−1)|θ∗)
p(Yt|Dt,θ(B−1), σ2)p(θ(B−1))q(θ∗|θ(B−1))

, 1

)

and, otherwise, set θ(B) = θ(B−1). A similar Metropolis-Hastings step is used to update σ2.

Appendix D Fourier Series Approximation Error

Let R(u|θ, L) = k(u− s|θ)−
∑L

j=1 bj(s,θ)φj(u) represent the remainder of the error in the

Fourier series approximation for the IDE kernel density. Such error depends on the location

u, the parameter set θ, and the truncation level L. For all three density choices considered

in this work, the L2 norm of the approximation error, ‖R‖2 =
(∫ r2

r1
(R(u|θ, L))2 du

)1/2
, can

be bounded above by a constant that depends on θ and L. The expression for this bound

can be used to study how the parameters affect the approximation error and how the error

compares between the distributions.

As L → ∞, there is no approximation error, that is, k(u − s|θ) =
∑∞

j=1 bj(s,θ)φj(u).

Hence, ‖R‖2 =

(∫ r2
r1

(∑∞
j=L+1 bj(s,θ)φj(u)

)2
du

)1/2

, which, due to orthogonality, simplifies

to
(∑∞

j=L+1{bj(s,θ)}2
)1/2

.

For the Gaussian density, the Fourier coefficients, b2j−1(s,θ) and b2j(s,θ) (given in Sec-

tion 3.1), are each bounded by r−1/2 exp (−.5ρ2jσ2), where r = r2 − r1 and ρj = 2πj/r.

Therefore, the L2 norm of the truncation error is bounded by

‖R‖2 ≤

(
∞∑

j=L+1

r−1 exp (−(2π/r)2σ2j2)

)1/2

≤

(
∞∑

j=L+1

r−1 exp (−(2π/r)2σ2j)

)1/2

= r−1/2

(
(exp (−(2πσ/r)2))

L+1

1 + exp (−(2πσ/r)2)

)1/2

.

Following similar steps, the L2 norm of the truncation error for the stable density ap-
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proximation is bounded by

‖R‖2 ≤ r−1/2

(
(exp (−(2πc/r)α))L+1

1 + exp (−(2πc/r)α)

)1/2

.

In both cases, we note that the ratio of the parameter controlling the spread of the density

and the width of the region where the approximation is made is the main determinant of

how large the bound for the approximation error is. As the spread parameter gets smaller,

a larger L is required to maintain a similar approximation error.

For the asymmetric Laplace distribution, the Fourier coefficients (given in Appendix B)

squared and summed in pairs simplify to {b2j−1(s,θ)}2 + {b2j(s,θ)}2 = 2/{(1 + .5ρ2jσ
2)2 +

(ρjµ)2}. The L2 norm is then bounded above by

‖R‖2 ≤
∞∑

j=L+1

2

(1 + .5(2πjσ/r)2)2 + (2πjµ/r)2
.

While this does not simplify to a closed form expression, we note that the same relationship

holds in that the ratio of the spread parameter to the width of the approximation region is

important in determining how many basis functions are needed to approximate the density

well. Also, note that for the Gaussian and stable densities, the bound is exponentially decay-

ing with L, whereas the bound for the asymmetric Laplace approximation has a polynomial

decay with L, which supports the empirical observation that the Gaussian and stable density

approximation requires fewer basis functions than the asymmetric Laplace.
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