
Run, Fatboy, Run:
Applying the Reduction to Uniprocessor Algorithm to Other Wide Resources

Andrew Shewmaker Carlos Maltzahn Katia Obraczka
Scott Brandt

University of California Santa Cruz
This research was partially supported by a Google Faculty Award

Abstract
The RUN (Reduction to UNiprocessor) [18, 19, 13] algo-
rithm was first described by Regnier, et al. as a novel and
elegant solution to real-time multiprocessor scheduling.
The first practical implementation of RUN [3] created by
Compagnin, et. al., both verified the simulation results
and showed that it can be efficiently implemented on top
of standard operating system primitives. While RUN is
now the proven best solution for scheduling fixed task
sets with fixed rate on multiprocessors, further work re-
mains to make it practical for common workloads and on
resources other than CPUs.

This technical report briefly describes RUN, then out-
lines enhancements to enable it to support dynamic task
sets, best-effort tasks, and sporadic tasks. It also exam-
ines how RUN might be adapted for use in situations in-
volving an array of multiple resources where some form
of preemptions and migrations are allowed (although
must be minimized). It also describes how buffers can be
sanity checked in a system where a RUN-scheduled re-
source is consuming data from another RUN-scheduled
resource.

1 Introduction

The RUN algorithm takes advantage of two features of
highly loaded systems. First, a busy system has little idle
time, so it makes more sense to solve the dual schedule
(i.e. when tasks aren’t running). The critical nature of
idle time was first noticed by Levin, et al. when they
created a theory explaining all previous optimal 1 multi-
processor algorithms [12, 11]. Second, a highly loaded
system will generally have many small tasks that can
be packed together and treated as one task. Both steps
simplify the problem at hand, and when they are com-
bined recursively they produce a reduction tree that par-

1Optimal in the sense that an algorithm will produce a valid sched-
ule for any task set that is feasible.

titions the scheduling problem amongst the packings and
bounds the interactions between packings.

In a system with N processes and M processors where
each process requires a fixed share of a processor, pack-
ing shrinks the size of N and taking the dual of the sys-
tem reduces the size of M whenever N < 2M By alternat-
ing packing and dual operations, Regnier, et al. showed
that they were able to reduce the difficult multiprocessor
problem down to a simple uniprocessor problem. The
approach is revolutionary because it is simple and prov-
ably more efficient in terms of context switches and mi-
grations than any previous approach (e.g the family of
proportionate fairness and deadline partitioning schedul-
ing algorithms).

In the remainder of this technical report, section 2
describes general improvements to RUN that will be
necessary for practical deployment. Following that,
section 3 describes applications to network hardware
queues, queuing disciplines, and route management.
Section 4 explores scenarios where RUN might be ap-
plicable to storage. Finally, section 5 describes how
to semi-automatically debug underflow and oveflow of
buffers connecting resources managed by scheduling al-
gorithms like RUN.

2 Refinements

2.1 Best-effort Tasks
RUN was designed to use Earliest Deadline First (EDF)
scheduling within packings, but any optimal uniproces-
sor scheduling algorithm will work. In particular, since
RUN already uses knowledge of rates and periods, it
would make sense to use the Rate Based Earliest Dead-
line (RBED) generalization of EDF since it enables inte-
grated scheduling of hard real-time, soft real-time (min-
imum rate with proportional sharing of slack), and best
effort tasks [2].

The theoretical underpinnings of RBED are based

1



on the concept of Resource Allocation and Dispatch-
ing (RAD) reservations, which are (rate, period) tuples
that obsolete priority classes and previously defined rate-
limit specifications. Prior non-realtime scheduling meth-
ods possess a limited number of relative, coarse-grained
classes (priorities), require rates to be strictly satisfisfied
for any measured interval (e.g. Token Bucket Filters),
have common periods between all tasks, or have a fixed
linear mapping between periods to priorities. RAD reser-
vations enable arbitrarily fine-grained Quality of Service
(QoS), possess meanings that stay consistent in a dy-
namic environment, and allow straightforward reasoning
about composing end-to-end QoS.

Implementing RUN with EDF is easier than with
RBED since EDF only uses the tasks’ deadline infor-
mation. RBED flexibility requires performing an online
calculation of a best effort task’s rate from the ratio of
its individual weight to the total weight of all best effort
tasks.

If minimal preemptions with perfect proportional fair-
ness between best-effort tasks is desired, then RUN can
accomodate that goal. However, RUN could take ad-
vantage of best-effort tasks in a way similar to that of
idle slack packing (see section 2.5). A per resource re-
serve would encourage both schedule partitioning and
work conservation. Tasks with guaranteed rates are best-
fit packed to the best-effort reserve limit while best-effort
tasks are left unassigned. RUN continues with idle slack
packing, but when an idle task is executed or a guaran-
teed task has no work (generating dynamic slack), RBED
chooses the next best-effort task that does have work.

Note that the LITMUS-RT implementation of RUN
[3] does allow best effort tasks to use the processor when
no real-time tasks are scheduled. While this is useful,
RUN with RBED would be simpler than a hierarchical
scheduler such as that. Also, RBED can support a broad
range of quality of service. For instance, some tasks may
only need best effort rates, but do require deadlines to be
met.

2.2 Dynamic Tasks

The description of RUN, as well as its implementation in
simulators and in practice, assumes the entire task set is
known a priori and that it doesn’t change throughout the
life of the system. Certainly this doesn’t reflect reality
and should be addressed. Furthermore, the work required
by the scheduler to adapt to these changes needs to be
minimized.

If a task leaves the system, then it can be trivially
swapped with an equal idle task without disturbing the
schedule (i.e. online slack packing). However, the
change in available utilization means that best effort
tasks should recalculate their rates and be redistributed

in order to maintain perfect proportional sharing. Per-
haps it would be best to only do this work for the affected
subsystem, even if that results in best effort tasks being
treated somewhat unfairly across the entire system.

If a feasible task enters the system and has a rate less
than or equal to an idle task, then it can be inserted with
little effort. However, if the new task has a rate greater
than any one idle task, then RUN must create a new re-
duction tree. Of course, it would best to maintain the pre-
vious reduction tree as much as possible in order to mini-
mize one-time missed deadlines and migration penalties.

In fact, there is an additional constraint in online pack-
ing when compared to offline packing: in addition to
task utilizations summing to less than or equal to one,
the sums of their remaining budget must be less than the
time left until the furthest deadline of the packed tasks.
This is always a constraint, but one that it is obviously
satisfied when the system is offline. Best-effort tasks,
like idle tasks, make RUN’s job easier for dynamic task
sets.

2.3 Sporadic Tasks
Defining all tasks as fixed-rate results in overprovision-
ing resources for a sporadic task. We refer to this unused
utilization as dynamic slack. RUN does not, as of yet,
support the sporadic task model, so there is naturally in-
terest in scheduling algorithms that do. It has been an
open question whether or not RUN can be directly modi-
fied to support sporadic tasks—the original creators of it
have, in fact, proposed the Quasi Partitioned Scheduling
(QPS) algorithm as an alternative [14].

However, if RUN supports both best effort tasks and
dynamic task sets as described above, then it doesn’t
matter if a sporadic task is defined as a fixed-rate task.
The dynamic slack can be used by best effort tasks
packed with sporadic tasks.

2.4 Resource Assignment
The creators of RUN were primarily concerned with pro-
ducing the set of tasks that should run at any given time.
Their task-to processor assignment scheme is simple:

1. leave an executing task on its current processor

2. assign idle tasks to their last-used processor

3. assign remaining tasks arbitrarily

For systems expect zero slack or best effort tasks, it
might also be worth the effort to keep track of the set of
each tasks’ m previously used resources. That way, if a
task must migrate repeatedly, then it is more likely to mi-
grate within a subset of the resources rather than amongst

2



all of the resources within its subsystem. In other words,
this heuristic should help on NUMA systems where the
cost of migration becomes much larger between NUMA
nodes.

2.5 Offline Bin Packing

The effectiveness of the pack step in RUN’s offline re-
duction phase determines the performance of the algo-
rithm in terms of the number of preemptions caused per
job. The authors prove that each release event in a p-
level reduction tree causes at most d(p+ 1)/2e preemp-
tions, and so RUN suffers an average of no more than
d(3p + 1)/2e preemptions per job. Therefore, we are
interested in packing heuristics that minimize both the
number of reduction levels and the number of release
events.

The authors found that most packing heuristics
achieved the same number of reduction levels as long as
the task rates were sorted in descending order. Best Fit
Descending achieves fewer preemptions and migrations
than the others due to its packing of high rate tasks to-
gether first. Worst Fit Descending performs worse in this
regard because it spreads out high rate tasks among bins,
increasing the likelihood that one of those tasks must be
preempted more often.

High rate tasks are at greater risk of suffering preemp-
tion than low rate tasks because they utilize a greater per-
centage of their period. If high rate tasks are packed to-
gether first, as in Best Fit Descending, then short period
tasks are limited in the number of tasks they can preempt.
Likewise, a long period task can only be preempted by a
limited number of tasks. This vulnerability of high rate
tasks also helps explain the humps in preemptions and
migrations in Levin’s figure 3.10 [13]. With a number of
tasks, t, and resources m, the tasks are particularly vul-
nerable when m < t < 2m on a fully utilized system.

Intuitively, one would expect tasks with similar peri-
ods (e.g. harmonic) to decrease the number of release
events, and Levin did report testing that hypothesis with
a Least Common Multiple (LCM) Fit heuristic in his the-
sis. While LCM-fit sometimes results in trees with more
reduction levels, it still achieves 4-5% fewer premptions
and migrations. Unfortunately, it comes at the cost of
signficantly greater algorithmic complexity.

By analyzing the number of additional events when
a long period task is packed with successively shorter
period tasks in figure 1, we can see how LCM-fit fails
to minimize some events. When periods shorten, as in
tasks 8 and 9, the least common multiple remains small
with task 1, but the number of release events continues
to increase. If several tasks with the same periods are
encountered, then the packing benefits from overlapping
events. However, it would be better to pack a few tasks

that were within half a period length of a long task rather
than a few beyond the 2nd harmonic.

Figure 1: The Effect Of Period Length On Events

p
1st harmonic
7/8 p
3/4 p
5/8 p
2nd harmonic
3/8 p
3rd harmonic
4th harmonic

0
11/8
11/4
13/8
1
21/3
2
3

Releases
Per p

In addition to measuring the preemptions caused per
job, it would be illuminating to compare preemptions per
time unit. Since small rate jobs are less likely to be pre-
empted, the number of preemptions per job could look
low even if the per time unit count is high.

There are considerations other than the number of pre-
emptions that might make a heuristic attractive. Below
are brief descriptions of some different packing heuris-
tics and when they might be most useful.

Slack Packing As described in the original paper, Slack
Packing increases the number of independent par-
tions (decreasing migrations) when the system uti-
lization is less than 100%. By adding idle tasks at
the end of the first packing (regardless of primary
packing heuristic).

Worst Fit Decreasing Rates Optimizes spreading large
tasks amongst resources, making it suitable for less
highly loaded situations or when it is more impor-
tant to use each resource rather than using fewer re-
sources. For instance, this would benefit parallel
applications.

Best Fit Decreasing Rates Minimizes the number of
packings and reduction levels (minimizes preemp-
tions and migrations), so it would be suitable for
highly loaded situations or when it is more impor-
tant to use fewer resources than using all resources.

These heuristics have already been evaluated in terms
of performance (i.e. preemptions and migrations) by the
original authors. Further work would be necessary to de-
termine which would be appropriate for a power saving
policy. It might be that it would be necessary to switch
between Worst and Best Fit, as the former might allow all
processors to finish more quickly where the latter could
keep some cores off entirely.

Certainly other heuristics exist, but among these Slack
Packing with Best Fit Decreasing Rates is both simple to
implement and one of the best performing heuristics.

3



2.6 Affinity

Some work needs to be done to make RUN support re-
source affinity. This is common in the case of processes
in a NUMA system that want to be as close to an at-
tached device (e.g. network card or GPU) as possible.
Affinity can be thought of as a partial pre-specification of
the packings and placements. Pinning a task to a single
resource should be easy to take into account, and regu-
lar recurring sets (i.e. a NUMA nodes) should also be
straightforward to support. However, arbitrary affinity
sets may be unworkable since they might over-constrain
the packing problem. At any rate, affinity support in
RUN requires further investigation.

3 Networking

Providing QoS on networks is complex because sev-
eral independent resources must be managed in concert:
transmission and reception queues on the communicat-
ing hosts and the transmission queues on the switches.
As figure 2 shows, flow is affected by the route it takes,
the bottlenecks on that route, and the manner in which a
host sends its data.

Figure 2: Network QoS Layers

switch

.

.

.

M

1

2

Global
Ethernet SDN Controller / 

Infiniband Subnet Manager

host

transport
protocol

queueing
discipline

tx port
bottleneck 

queue

app app

transport
protocol

Traditional traffic shaping, even combined with a
global routing algorithm ensuring that routes aren’t over-
loaded, could still allow a bottleneck queue to build up
and drop packets. The bottleneck would have to be able
to handle the worst case simultaneous burst from every
flow on that route [10]. Furthermore, even lossless net-
works such as Infiniband suffer from congestion in the
form of congestion trees and the Parking Lot Problem
[4, 5, 21]. In practice, Infiniband’s congestion control

isn’t enabled because it must be tuned to the specific traf-
fic patterns of the system. If the traffic changes, then
overall throughput can be badly hampered.

Therefore, in traditional networks, the transport proto-
col still needs to adapt to congestion in order to minimize
bottleneck queue usage. Alternatively, if switches im-
plemented real-time scheduling algorithms such as RUN,
congestion wouldn’t exist. Alizadeh, et al. showed how
EDF might be implemented efficiently in pFabric [1]. It
will be interesting to explore whether RUN with RBED
might also be implemented efficiently for packet switch-
ing.

3.1 Host Hardware Queues and Qdiscs

Modern network interface hardware often possesses mul-
tiple queues, and Linux has supported them since the
2.6.27 kernel. That support currently allows an ad-
ministrator several options, including pinning hardware
queues to cores or NUMA nodes. While that minimizes
context switches and maximizes cache use, it suffers
from head-of-line blocking. Alternatively, a round-robin
scheduler can be used. While being fair and avoiding
head-of-line blocking, round-robin necessarily hurts ef-
ficiency. This presents another opportunity for the RUN
algorithm. It has provably low numbers of migrations,
and can prevent head-of-line blocking while enforcing
QoS.

In addition to the multiqueue support already men-
tioned, a network classifier control group can tag packets
to be handled by specific software queueing disciplines
(qdiscs). Some of the existing qdiscs are Token Bucket
Filters, Stochastic Fair Queueing, Fair Queuing Con-
trolled Delay (FQ codel), Random Early Detection, and
Proportional Integral controller Enhanced. Each of these
is an attempt to mitigate congestion or reduce buffer
bloat in the network. Most of them concentrate on pro-
viding fairness, some provide coarse-grained QoS with
priority classes.

Only one qdisc, the Hierarchical Fair Service Curve,
claims to support real-time traffic. Configuring a hier-
archy of qdiscs to classify and shape traffic is not triv-
ial, and in general must be fine tuned to the network.
Even FQ codel, a “knobless” qdisc still requires tuning
and some sort of rate-limiting qdisc working in conjunc-
tion with it. Furthermore, it is not intended for datacenter
networks.

Since RUN can schedule flows according to QoS con-
straints across multiple hardware queues, it should be
much simpler to configure. It would need to at least be
able to distinguish packets according to flow, if not sub-
flows multiplexed over a single connection. In that case,
RUN would need to work in concert with a control group
designed to tag packets with (rate, period) information,

4



in addition to the existing network priority control group.
By creating a RUN qdisc, not only will packets trans-

mitted by Linux hosts be scheduled according to modern
real-time theory, but it could lead to a RUN-based net-
work fabric. The Open Virtual Switch (OVS) module
in the Linux kernel is intended to be used for both vir-
tual machine networks as well as the operating system
on hardware switches, and OVS uses the existing Linux
qdiscs to enforce its QoS. Other Linux-based switches
also exist. The efficacy of RUN can first be tested using
Mininet [9], and then on real hardware.

3.2 Routes

In general, it is unlikely that RUN can be directly ap-
plied to global load balancing of routes. However, if
the switches themselves use RUN as just described, then
they should be able to provide valuable information to
a global load balancing algorithm: the amount of un-
reserved rate (i.e. static slack), dynamic slack, num-
ber of best-effort flows, which flows are underflowing or
overflowing and whether they blame upstream or down-
stream. This information, while simple, should be much
more useful to a global scheduler than basic rate and drop
information. The rest of this section discusses why it
would be nice to use RUN for route management and
why it is difficult to apply it.

The edges of networks present an interesting opportu-
nity for RUN. Whether it is a global WAN gateway where
bandwidth is extremely limited and precious or the high
performance interconnect between a supercomputer and
a parallel filesystem, flows should maximize the utiliza-
tion of the available routes while preventing congestion
and data loss. And in cases where there are multiple links
or paths that immediately reconverge on the other side, as
in figure 3, RUN can be applied.

As opposed to traditional distributed multipath rout-
ing approaches described by Hopps [6], RUN would be
used by a SDN (Software Defined Network) Controller
or a Subnet Manager (in the case of Infiniband) to assign
routes to flows after they have passed the standard RAD
admission control test: Would the new flow’s rate cause
the total flow rate to exceed capacity?

To be clear, RUN would not be discovering the topol-
ogy of the network. It is scheduling the routes given to
it to manage. Also, it would take further work to make
RUN take considerations other than a path’s cost (e.g.
security) into account.

Can RUN be used in the case where the multiple
routes aren’t immediately recombined as Jain, et al. ad-
dressed with B4 [7]? Perhaps, but there are two big con-
cerns. First, how would one partition the graph so that
at least the left hand side of the routes looks identical
from RUN’s perspective? In other words, if the graph is

Figure 3: Reduce to Unipath

.

.

.

M

1

2

simply bisected, then RUN assumes that any route will
work and could overload the left side of the graph. It
appears RUN would have to execute recursively on the
graph from the edges inward.

That brings up the second concern: when RUN sched-
ules a task it may migrate between several of the re-
sources. At that point, the single fixed-rate task becomes
a sporadic task on each of those resources. Treating them
each as fixed-rate will quickly exhaust the resources even
though best effort flows could suck up the dynamic slack.
So, even a hard real-time flow would be forced to become
several best-effort flows, and thus comprise the original
guarantee. An additional concern arises from the best
effort tasks. Just because they can use up the dynamic
slack at one hop doesn’t mean the next hop can handle
the burst.

4 Storage

This section is more brief than section 3 because it is not
the current focus of the authors’ research. However, we
share our thoughts concerning RUN as applied to storage
below. In general, RUN isn’t a clear win for scheduling
arrays of storage devices since content is not replicated
everywhere. However, RUN could be useful in some sce-
narios, but would have to fold in lessons learned from
Fahrrad and other real-time storage work done at UC
Santa Cruz [16, 17, 8].

5



4.1 Multiqueue

Linux is in the process of gaining multiqueue support for
storage, just as it did for networking. The block layer
gained support first, and it is being followed by the SCSI
and Device Manager subsystems. At this point, hardware
drivers like NVMe are just beginning to exploit the block
device support. From discussions on the mailing list, it
appears that the I/O scheduler may be last to gain multi-
queue support, and it might be an entirely new “deadline-
ish” scheduler rather than a modification to the standard
CFQ scheduler.

4.2 Reading or Modifying Existing Non-
replicated Data

If data isn’t replicated across all devices, RUN can incor-
porate reads or modifications to a file or object into its
schedule if the task specification (i.e. RAD reservation)
includes affinity information.

4.3 Writing New Data

On a distributed system, when the question arises where
to store new data, RUN would not be constrained by task
affinities and be able to freely manage performance af-
ter other considerations, such as available space are an-
swered.

4.4 Reading from Replicas

Parallel file systems often replicate data between mul-
tiple servers. Usually one server is considered the pri-
mary, but it can become overloaded and want to balance
its client load with its replicas. As long as consistency
among replicas is maintained (trivially true for read-only
access), then RUN might be used to schedule use of the
replicas. If the distributed storage system uses per server
replicas, RUN should work well.

Unfortunately, with regard to Ceph’s per-object repli-
cas [20], RUN may not be a good fit. The problem is
that different objects won’t necessarily share the same
set of storage backends. Instead of having many inde-
pendent RUN schedulers in control of distinct subsets of
resources, you would need one instance of RUN schedul-
ing all resources and complicated affinity sets. So RUN
might work in this case, but it wouldn’t be as parallelized
and the affinity of disjoint sets makes the packing prob-
lem much harder. It may even constrain the bin packing
problem enough that a good packing cannot be found.
This problem deserves further thought.

5 Buffer Analysis

If RAD schedulers are operating according to their de-
sign, then performance is guaranteed. But the RAD
model also enables sanity checking on the buffers be-
tween schedulers. A producer-consumer model, RAD-
Flows [15], derives equations 1 and 2 describing the
amount of buffer space Bmax and time Tmax is the amount
of time it should take for the entire buffer to be rewrit-
ten for a well behaved producer/consumer pair of two
interacting RAD (rate, period) reservations (rp, pp) and
(rc, pc).

Tmax =

{
2pc if pp ≤ pc
3pp if pp > pc

(2)

Given this knowledge, If an application suffers from
overflow or underflow, RAD-Flow buffers can always
point you toward the problem. You can also guard
against the unlikely situation where all RAD schedulers
in a chain are misbehaving by producing and consuming
too quickly.

The following examples assume that a single circu-
lar buffer, as shown in figure 4 can be efficiently ac-
cessed simultaneously by the producer and consumer,
and a timestamp is recorded whenever there is an attempt
to move a pointer. Since we know the amount of time it
takes to rewrite a RAD-Flow buffer, the simple circular
buffer is sufficient to illustrate the general approach for
other buffer data structures.

Figure 4: Circular RAD Buffer

tsts

producer (r, p)consumer (r, p)

circular buffer
B bytes

The examples apply to both blocking and non-
blocking producers. In the blocking case, overflow
doesn’t result in lost data and RAD allows us to deter-
mine whether the producer is blocking because it is at-
tempting to write too quickly or whether the consumer
caused the block by reading too slowly. Non-blocking
producers will lose overflowing data and the same tests
identify whether the producer or consumer bears respon-
sibility.

If the producer pointer circles around to the consumer

6



Bmax =

 2
(⌈

pc
pp

⌉
+1
)

rp pp− rp pp if pp ≤ pc

2rp pp +max
(

0,rp pp−
(⌊

pp
pc

⌋
−1
)

rc pc

)
if pp > pc

(1)

pointer (buffer overflow), then there are three possibili-
ties:

1. the producer is sending faster than its reservation

2. the consumer is too slow

3. both 1 and 2

Since the producer has overtaken the consumer, we
know that it has rewritten the entire buffer from the
consumer pointer on. It must have written to the con-
sumer’s location before the current value of the consumer
timestamp. Because the buffer was sized according to
the RAD reservations, we know the producer’s pointer
should not arrive at the consumer pointer’s location be-
fore tsc +Tmax. Equation 3 uses that information to de-
termine which party is to blame for overflow, and fig-
ures 5 and 6 give examples of both cases.

producer =
{

fast if tsp− tsc < Tmax
slow if tsc− tsp ≥ Tmax

(3)

Figure 5: Overflowing RAD Buffer

7

5

producer (r, 1.5)

consumer (r, 1.2)

(7-5) < 3*1.5, fast

Figure 6: Underflowing RAD Buffer

7

2

producer (r, 1.5)

consumer (r, 1.2) (7-2) > 3*1.5, slow

Similarly, a buffer is underflowing when the consumer
pointer circles to the producer pointer. Equation 4 is a
mirror to equation 3.

consumer =
{

fast if tsc− tsp < Tmax
slow if tsp− tsc ≥ Tmax

(4)

If both the producer and consumer are misbehaving,
then overflow will be blamed on the producer and under-
flow will be blamed on the consumer. Once their issues
are fixed, the buffer will continue to overflow or under-
flow, but the remaining bad actor will be blamed.

With a chain of reservations, an overflowing upstream
consumer might be the victim of a slow downstream con-
sumer. So, if there are several overflowing buffers in a
row connecting a chain of RAD reservations, then the
blame falls on the furthest downstream consumer. Simi-
larly, the blame for a chain of underflowing buffers per-
colates up to the furthest upstream producer.

There is another mode of misbehavior that is more dif-
ficult to detect. If the producer and consumer are speed-
matched but operating too fast or too slowly, then they
won’t overflow or underflow. However, as long as one
part of a chain is behaving correctly, it will point in the
direction of bad behavior. The only behavior danger-
ous to the system as a whole is when all producers and
consumers in a chain are too fast. This can be guarded
against with a pair of timestamps associated with the be-
ginning of the buffer to track the last time it was pro-
duced or consumed (pick one). Whenever the beginning
is accessed, the current time is compared to the last time
and Tmax, see equation 5.

both fast if tsnow− tshead < Tmax (5)

In practice, comparisons will need to tolerate some
small room for error to account for scheduling quanta
and small indeterminate overheads in timekeeping, etc.

The final case of misbehavior is when every producer
and consumer in the chain are too slow, but that would
only happen when the ultimate producer is slow. In other
words, it will only happen when an application is using
a fraction of its reservation. This is not a danger to the
system and best-effort applications can benefit from the
dynamic slack. References

Conclusion

RUN is an elegant algorithm with immense power, and
it should enable comprehensive QoS across many layers

7



and types of resources. Since RUN schedules are valid
regardless of task-to-resource assignment strategy, pack-
ing scheme (e.g. Worst Fit, Best Fit, Harmonic Period),
or which optimal single resource scheduling algorithm is
used. This means that RUN has the flexibility to sup-
port a policy best suited for the purpose at hand: power
efficiency, performance, simplicity, NUMA support, etc.

This tech report only briefly explores how the Reduc-
tion to Uniprocessor algorithm can be applied to other
resources. In particular, the Radon Network QoS project
will be implementing and evaluating RUN combined
with RBED in the near future. In addition, RAD buffer
theory provides the ability to automatically debug mis-
behavior.

References

[1] Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick McKeown, Balaji Prabhakar,
and Scott Shenker. pfabric: Minimal near-optimal
datacenter transport. In Proceedings of the ACM
SIGCOMM 2013 conference on SIGCOMM, pages
435–446. ACM, 2013.

[2] Scott A. Brandt, Scott Banachowski, Caixue Lin,
and Timothy Bisson. Dynamic integrated schedul-
ing of hard real-time, soft real-time and non-real-
time processes. In Proceedings of the 24th IEEE
Real-Time Systems Symposium (RTSS 2003), pages
396–407, December 2003.

[3] Enrico Mezzetti Davide Compagnin and Tullio Var-
danega. Putting run into practice: implementation
and evaluation. In Proceedings of the 26th Euromi-
cro Conference on Real-Time Systems, 2014.

[4] Ernst Gunnar Gran, Magne Eimot, S-A Reinemo,
Tor Skeie, Olav Lysne, Lars Paul Huse, and Gi-
lad Shainer. First experiences with congestion con-
trol in infiniband hardware. In Parallel & Dis-
tributed Processing (IPDPS), 2010 IEEE Interna-
tional Symposium on, pages 1–12. IEEE, 2010.

[5] Ernst Gunnar Gran, Eitan Zahavi, S-A Reinemo,
Tor Skeie, Gilad Shainer, and Olav Lysne. On the
relation between congestion control, switch arbitra-
tion and fairness. In Cluster, Cloud and Grid Com-
puting (CCGrid), 2011 11th IEEE/ACM Interna-
tional Symposium on, pages 342–351. IEEE, 2011.

[6] Christian E Hopps and Dave Thaler. Multipath is-
sues in unicast and multicast next-hop selection.
2000.

[7] Sushant Jain, Alok Kumar, Subhasree Mandal,
Joon Ong, Leon Poutievski, Arjun Singh, Subba-
iah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu,

et al. B4: Experience with a globally-deployed
software defined wan. In Proceedings of the ACM
SIGCOMM 2013 conference on SIGCOMM, pages
3–14. ACM, 2013.

[8] Tim Kaldewey, Theodore M Wong, Richard Gold-
ing, Anna Povzner, Scott Brandt, and Carlos
Maltzahn. Virtualizing disk performance. In Real-
Time and Embedded Technology and Applications
Symposium, 2008. RTAS’08. IEEE, pages 319–330.
IEEE, 2008.

[9] Bob Lantz, Brandon Heller, and Nick McKeown. A
network in a laptop: rapid prototyping for software-
defined networks. In Proceedings of the 9th ACM
SIGCOMM Workshop on Hot Topics in Networks,
page 19. ACM, 2010.

[10] Jean-Yves Le Boudec and Patrick Thiran. Network
calculus: a theory of deterministic queuing systems
for the internet. Springer-Verlag, Berlin, Heidel-
berg, 2001.

[11] Greg Levin, Shelby Funk, Caitlin Sadowski, Ian
Pye, and Scott Brandt. Dp-fair: A simple model
for understanding optimal multiprocessor schedul-
ing. In Real-Time Systems (ECRTS), 2010 22nd Eu-
romicro Conference on, pages 3–13. IEEE, 2010.

[12] Greg Levin, Caitlin Sadowski, Ian Pye, and Scott
Brandt. Sns: a simple model for understanding
optimal hard real-time multi-processor scheduling.
Univ. of California, Tech. Rep. UCSCSOE-11-09,
2009.

[13] Greg M. Levin. Old And New Approaches To Op-
timal Real-time Multiprocessor Scheduling. PhD
thesis, University of California Santa Cruz, 2013.

[14] Lima-George Massa, Ernesto, Paul Regnier, Greg
Levin, and Scott Brandt. Optimal and adaptive
multiprocessor real-time scheduling: The quasi-
partitioning approach. In Proceedings of the
26th Euromicro Conference on Real-Time Systems,
2014.

[15] Roberto Pineiro, Kleoni Ioannidou, Scott A Brandt,
and Carlos Maltzahn. Rad-flows: Buffering for pre-
dictable communication. In Real-Time and Em-
bedded Technology and Applications Symposium
(RTAS), 2011 17th IEEE, pages 23–33. IEEE, 2011.

[16] Anna Povzner, Tim Kaldewey, Scott Brandt,
Richard Golding, Theodore M Wong, and Car-
los Maltzahn. Efficient guaranteed disk request
scheduling with fahrrad. In ACM SIGOPS Op-
erating Systems Review, volume 42, pages 13–25.
ACM, 2008.

8



[17] Anna Povzner, Darren Sawyer, and Scott Brandt.
Horizon: efficient deadline-driven disk i/o manage-
ment for distributed storage systems. In Proceed-
ings of the 19th ACM International Symposium on
High Performance Distributed Computing, pages
1–12. ACM, 2010.

[18] Paul Regnier, George Lima, Ernesto Massa, Greg
Levin, and Scott Brandt. Run: Optimal multipro-
cessor real-time scheduling via reduction to unipro-
cessor. In Real-Time Systems Symposium (RTSS),
2011 IEEE 32nd, pages 104–115. IEEE, 2011.

[19] Paul D. E. Regnier. Optimal Multiprocessor Real-
time Scheduling Via Reduction To Uniprocessor.
PhD thesis, UFBA-UEFS-UNIFACS, 2012.

[20] Sage A Weil, Scott A Brandt, Ethan L Miller, Dar-
rell DE Long, and Carlos Maltzahn. Ceph: A
scalable, high-performance distributed file system.
In Proceedings of the 7th symposium on Operat-
ing systems design and implementation, pages 307–
320. USENIX Association, 2006.

[21] Philip Williams. Congestion in infiniband net-
works. 2007.

9


