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Abstract: We present a Bayesian nonparametric modeling approach to inference and risk

assessment for developmental toxicity studies. The primary objective of these studies is to

determine the relationship between the level of exposure to a toxic chemical and the probability

of a physiological or biochemical response. We consider a general data setting involving clustered

categorical responses on the number of prenatal deaths, the number of live pups, and the number

of live malformed pups from each laboratory animal, as well as continuous outcomes (e.g., body

weight) on each of the live pups. We utilize mixture modeling to provide flexibility in the

functional form of both the multivariate response distribution and the various dose-response

curves of interest. The nonparametric model is built from a structured mixture kernel and a

dose-dependent Dirichlet process prior for the mixing distribution. The modeling framework

enables general inference for the implied dose-response relationships and for dose-dependent

correlations between the different endpoints, features which provide practical advances relative

to traditional parametric models for developmental toxicology. We use data from a toxicity
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experiment that investigated the toxic effects of an organic solvent (diethylene glycol dimethyl

ether) to demonstrate the range of inferences obtained from the nonparametric mixture model,

including comparison with a parametric hierarchical model.

KEYWORDS: Dependent Dirichlet process; Developmental toxicology data; Dose-response

relationship; Gaussian process; Nonparametric mixture modeling.

1 Introduction

Developmental toxicity studies, a generalization of the standard bioassay setting, investi-

gate birth defects induced by toxic chemicals. The most common type of developmental

toxicology data structure arises from the Segment II design, where at each experimen-

tal dose level, a number of laboratory animals (or dams) are exposed to the toxin after

implantation. Recorded from each dam are the number of implants, the number of re-

sorptions (i.e., undeveloped embryos or very early fetal deaths) and prenatal deaths, the

number of live pups, and the number of live malformed pups. Resorptions and prenatal

deaths are typically combined in the available data sets, and we interchangeably refer to

this endpoint as non-viable fetuses or prenatal deaths. Additional outcomes measured on

each of the live pups may include body weight and length.

The main objective of this type of toxicity studies is to examine the relationship be-

tween the level of exposure to the toxin (dose level) and the different endpoints, which

include prenatal death (embryolethality), malformation, and low birth weight. The dose-

response curve for each endpoint is defined by the probability of the corresponding out-

come across dose levels. Also of interest is quantitative risk assessment, which evaluates

the probability that adverse effects may occur as a result of the exposure to the substance.

There are a number of quantities examined for risk assessment, including conditional prob-
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abilities of an outcome given specific conditions and correlations between responses.

Incorporating into the modeling approach a continuous outcome, such as weight at

birth, for each of the live pups presents a challenge in that there are now clustered out-

comes that include both discrete and continuous responses. The related literature in-

cludes a plethora of likelihood based estimation methods (e.g., Catalano & Ryan, 1992;

Regan & Catalano, 1999; Gueorguieva & Agresti, 2001); however, these approaches rely

on restrictive parametric assumptions and are limited with regard to uncertainty quantifi-

cation for risk assessment. Regarding Bayesian work, we are aware of only two parametric

approaches. Dunson et al. (2003) propose a joint model for the number of viable fetuses

and multiple discrete-continuous outcomes. A continuation-ratio ordinal response model

is used for the number of viable fetuses and the multiple outcomes are assigned an underly-

ing normal model with shared latent variables within outcome-specific regression models.

In Faes et al. (2006), the proposed model is expressed in two stages; the first models the

probability that a fetus is non-viable, and the second determines the probability that a

viable fetus has a malformation and/or suffers from low birth weight.

For illustrative purposes, we will focus on a study – available from the National Tox-

icology Program database – where diethylene glycol dimethyl ether (DYME), an organic

solvent, is evaluated for toxic effects in pregnant mice (Price et al., 1987). This data ex-

ample (see Figure 1) includes a small set of four active dose levels, with a comparable

number of animals exposed at each dose level (18 − 24 dams). The variability in the

discrete responses is vast, due to the inherent heterogeneity of both the dams and the

pups’ reaction to the toxin. For both endpoints of embryolethality and malformation,

an increasing trend across toxin levels is suggested, although with no obvious parametric

choices for the associated dose-response curves. Large variability is also evident in the

birth weight responses for which a decreasing dose-response relationship is indicated. This
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complex nature of the DYME data is representative of the data structures that arise from

developmental toxicity experiments. Hence, the modeling approach needs to account for

the multiple sources of variability and simultaneously relax potentially restrictive assump-

tions on all inferential objectives.

We provide a comprehensive framework built upon nonparametric mixture model-

ing, which results in flexibility in both the collection of response distributions as well

as the form of the dose-response relationship for the multiple clustered endpoints. The

dependence of the response distributions is governed by the dose level, implying that

distributions corresponding to nearby dose levels are more closely related than those far

apart. The mixture model provides a means to quantify the variability in the response

distributions, which carries over to the dose-response relationships. The assumptions of

the mixture model bestow a foundation for interpolation and extrapolation of the dose-

response curves at unobserved dose levels.

The Bayesian nonparametric model developed here extends our earlier work for discrete

outcomes (Fronczyk & Kottas, 2014; Kottas & Fronczyk, 2013). As detailed in Section

2, the methodology for the general setting with discrete-continuous outcomes involves

non-trivial extensions in the mixture model formulation with respect to properties of the

multiple dose-response curves, as well as in the Markov chain Monte Carlo (MCMC) poste-

rior simulation method. To our knowledge, the literature does not include other Bayesian

nonparametric methods for developmental toxicology data with a multicategory response

classification or with clustered discrete-continuous responses. A Bayesian semiparametric

model for the univariate case of combined prenatal death and malformation endpoints was

proposed in Dominici & Parmigiani (2001) and further extended by Nott & Kuk (2009).

Hwang & Pennell (2013) develop a semiparametric prior model for binary and continuous

responses, which is however applicable only to dam-level outcomes, that is, it does not
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incorporate the clustered binary and continuous pup-level outcomes.

The paper continues as follows. In Section 2, we develop the nonparametric mixture

model and study the dose-response curves for the different endpoints. Section 3 illustrates

the range of inferences obtained from the nonparametric model using the DYME data,

including comparison with a parametric hierarchical model. Finally, concluding remarks

are found in Section 4. The Supplementary Material includes MCMC posterior simulation

details, numerical summaries for the DYME data, as well as additional inference results

to the ones reported in Section 3.

2 Methods

2.1 Model development

To fix notation, consider a given experimental dose level, x, and a number of pregnant

laboratory animals (dams) exposed to the toxin at level x. A generic dam, exposed to dose

x, has m implants of which the number of prenatal deaths are recorded as R. Available

from them−R live pups are binary malformation responses, y∗ = {y∗k : k = 1, . . . , m−R},

and continuous (birth weight) responses, u∗ = {u∗
k : k = 1, . . . , m− R}.

Although the number of implants is a random variable, it is natural to assume that

its distribution is not dose dependent for Segment II toxicity experiments where exposure

occurs after implantation. We thus build the joint probability model for (m,R,y∗,u∗)

through f(m)f(R,y∗,u∗ | m), where only the latter distribution depends on dose level x.

Hence, inference for the parameters of the implant distribution is carried out separately

from inference for the parameters of the model for f(R,y∗,u∗ | m). Although more

general models can be utilized, we work with a shifted Poisson implant distribution, that

is, f(m) ≡ f(m | λ) = e−λλm−1/(m− 1)!, for m ≥ 1.
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The main idea of the proposed methodology is to develop the model from a flexible

nonparametric mixture structure for the collection of dose-dependent response distribu-

tions f(R,y∗,u∗ | m), and from that structure obtain dose-response inference for all

endpoints of interest. To build the mixture model, consider first a generic dose level x.

We then represent the multivariate response distribution through the following mixture

∫
Bin (R | m, π(γ))

m−R∏

k=1

Bern (y∗k | π(θ)) N (u∗
k | µ,ϕ) dGx(γ, θ, µ)

where π(u) = exp(u)/{1 + exp(u)}, u ∈ R, denotes the logistic function, and Gx is

the dose-dependent mixing distribution for the mixture kernel parameters (γ, θ, µ). The

Binomial part of the kernel for R | m accounts for the possibility of non-viable fetuses,

whereas the product kernel part for y∗,u∗ | R,m accounts for the potential endpoints of

the live pups. Although not explicitly built in the mixture kernel, dependence between

the malformation responses, y∗k, and weight responses, u∗
k, is induced by mixing on the

parameters of their respective Bernoulli and normal kernel distributions. The mixing

can be extended to the variance, ϕ, of the birth weight normal kernel. This approach

sacrifices the ability to promote an increasing trend (in prior expectation) for one of the

risk functions discussed in Section 2.2, and involves more complex MCMC model fitting.

Therefore, to strike a balance between model flexibility and computational feasibility, we

adopt the location normal mixture component for the continuous endpoint.

Next, we need a flexible prior for the mixing distribution Gx. Here, nonparametric

countable mixing provides desirable flexibility over continuous mixtures, which are limited

to symmetry and unimodality, and an appealing alternative to discrete finite mixtures,

which typically require more complex methods for inference and prior specification. Dis-

crete mixing is particularly important as it allows clustering that, in turn, yields more
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precise inference than parametric hierarchical models; Fronczyk & Kottas (2014) includes

an example where a discrete nonparametric Binomial mixture provides striking improve-

ment in uncertainty quantification over a Beta-Binomial model.

The Dirichlet process (DP) is the most widely used nonparametric prior for discrete

random mixing distributions. We will use DP(α, H0) to denote the DP prior for random

distribution H , defined in terms of a centering (base) distribution H0, and precision

parameter α > 0. Using its constructive definition (Sethuraman, 1994), the DP prior

generates countable mixtures of point masses with atoms drawn from the base distribution

and weights defined by a stick-breaking process. Specifically, a random distribution, H ,

drawn from DP(α, H0) has an almost sure representation as H =
∑∞

l=1 ωlδηl , where δa

denotes a point mass at a, the ηl are i.i.d. from H0, and ω1 = ζ1, ωl = ζl
∏l−1

r=1(1− ζr), for

l ≥ 2, with ζl i.i.d. from a Beta(1,α) distribution (independently of the ηl).

Now, given a DP prior for the mixing distribution, Gx, we have a probabilistic model

for the clustered discrete-continuous outcomes at a specific dose level, x. To complete

the model specification for the collection of response distributions over the range of dose

values, X ⊂ R+, we seek a prior probability model for the collection of mixing distributions

GX = {Gx : x ∈ X}. The dependent Dirichlet process (DDP) prior (MacEachern, 2000)

provides an attractive option for such modeling, since it yields general nonparametric

dependence across dose levels while resulting in a DP prior for each Gx. Here, we utilize

the “common-weights” DDP prior structure,

GX =
∞∑

l=1

ωl δηlX , (1)

where the ωl arise from the DP stick-breaking process and the ηlX = {ηl(x) : x ∈ X} are

independent realizations from a stochastic process G0X over X . Hence, the prior model
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for GX can be viewed as a countable mixture of realizations from the base stochastic pro-

cess G0X , with weights matching those from a single DP. Applications of common-weights

DDP mixture models include: ANOVA settings (DeIorio et al., 2004); spatial modeling

(Gelfand et al., 2005); dynamic density estimation (Rodriguez & ter Horst, 2008); quan-

tile regression (Kottas & Krnjajić, 2009); survival regression (DeIorio et al., 2009); ex-

treme value analysis (Kottas et al., 2012); autoregressive time series modeling (DiLucca et al.,

2013); and modeling for dynamic marked point process intensities (Xiao et al., 2015).

Support properties of DDP prior models are studied in Barrientos et al. (2012).

We thus propose the following DDP mixture model for the collection of dose-dependent

response distributions for clustered binary and continuous outcomes:

f(R,y∗,u∗ | m,GX ) =

∫
Bin (R | m,π(γ))

m−R∏

k=1

Bern (y∗k | π(θ)) N (u∗k | µ,ϕ) dGX (γ, θ, µ) (2)

with GX | α,ψ ∼ DDP(α, G0X ), extending the DP notation and letting ψ denote the

parameters of the base stochastic process G0X . Note that the atoms of the DDP prior

comprise three mixing components, i.e., ηl(x) = (γl(x), θl(x), µl(x)). We accordingly define

G0X through a product of three isotropic Gaussian processes (GPs) with linear mean

functions. Specifically, the GP prior associated with γ has mean function, ξ0 + ξ1x,

variance τ 2, and correlation function exp{−ρ|x−x′|}; the mean function for θ is β0+β1x,

the variance σ2, and the correlation function exp{−φ|x − x′|}; and the GP prior on µ

includes mean function χ0 + χ1x, variance ν2, and correlation function exp{−κ|x − x′|}.

Thereby, the GP hyperparameters are given by ψ = (ξ0, ξ1, τ 2, ρ, β0, β1, σ2,φ,χ0,χ1, ν2, κ).

As discussed in Section 2.2, the form of the GP mean functions is a key part of the

model specification with respect to the implied dose-response curves. The choice of the

exponential correlation functions is driven by simplicity taking into account the fact that

the DDP prior generates non-stationary realizations (with non-Gaussian finite dimensional
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distributions) even though it is centered around isotropic GPs. Smoothness properties of

DDP realizations in the context of spatial modeling are discussed in Gelfand et al. (2005)

and Guindani & Gelfand (2006). In particular, the continuity of the GP realizations that

define G0X yields that the difference between Gx and Gx′ gets smaller as the distance

between dose levels x and x′ gets smaller. In our context, the practical implication is that

of a smooth evolution across dose values for the multivariate response distribution and

for the dose-response relationships associated with the multiple endpoints of interest.

The full Bayesian model is completed with an inverse gamma prior for ϕ, a gamma

hyperprior for α, and with (independent) hyperpriors for the components of ψ. Specifi-

cation of these hyperpriors is discussed in Section 3.1 in the context of the DYME data

example. The technical details on the hierarchical model formulation for the data, the

MCMC posterior simulation method, and the approach to predictive inference at dose

levels outside the set of observed doses are found in the Supplementary Material.

2.2 Functionals for risk assessment

Of key importance is study of dose-response relationships for risk assessment. In addition

to dose-response curves for prenatal death, malformation, and low birth weight, we obtain

risk functions that combine different endpoints. Although the dose-response curves are

not modeled directly, their form can be developed through the respective probabilities

implied by the DDP mixture model for a generic implant (associated with a generic dam)

at dose level x. (For simpler notation, the implicit conditioning on m = 1 is excluded

from the expressions below.) Given an implant at dose x, the Binomial kernel component

in (2) reduces to Bern(R∗ | π(γ)) for the single prenatal death indicator, R∗, with the

remainder of the mixture kernel, Bern(y∗ | π(θ))N(u∗ | µ,ϕ), present when R∗ = 0. More

generally, model (2) can be equivalently expressed in terms of (R∗,y∗,u∗), where R∗ =

9



{R∗
s : s = 1, ..., m} are binary prenatal death responses, by replacing the Bin(R | m, π(γ))

kernel with
∏m

s=1Bern(R
∗
s | π(γ)) and setting R =

∑m
s=1R

∗
s .

The first dose-response curve is for embryolethality, that is, the probability of a non-

viable fetus across effective dose levels,

D(x) ≡ Pr(R∗ = 1 | Gx) =

∫
π(γ) dGx(γ), x ∈ X .

Provided ξ1 > 0 in the linear mean function of the respective DDP centering GP, D(x) is

increasing in prior expectation. Specifically, E(D(x)) =
∫
π(γ)dG0x(γ), where G0x(γ) =

N(γ | ξ0 + ξ1x, τ 2). Since G0x is stochastically ordered in x when ξ1 > 0, and π(γ) is an

increasing function, E(D(x)) is a non-decreasing function of x.

For the malformation endpoint, consider the conditional probability of the corre-

sponding binary response given a viable fetus, M(x) ≡ Pr(y∗ = 1 | R∗ = 0, Gx) =

Pr(y∗ = 1, R∗ = 0 | Gx)/Pr(R∗ = 0 | Gx). Hence, the malformation dose-response curve

is given by

M(x) =

∫
{1− π(γ)}π(θ) dGx(γ, θ)∫

{1− π(γ)} dGx(γ)
, x ∈ X .

Regarding the continuous outcome, we consider two risk assessment functionals. The

first involves the expected birth weight conditioning on a viable fetus, E(u∗ | R∗ = 0, Gx) =
∫
u∗f(R∗ = 0, u∗ | Gx)du∗/{Pr(R∗ = 0 | Gx)}. Using the mixture representation for

f(R∗ = 0, u∗ | Gx), we obtain

E(u∗ | R∗ = 0, Gx) =

∫
{1− π(γ)}µ dGx(γ, µ)∫
{1− π(γ)} dGx(γ)

, x ∈ X .

Alternatively, we can quantify the risk of low birth weight through Pr(u∗ < U | R∗ =

0, Gx), for any cutoff point, U , that is deemed sufficiently small. Following the literature
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(e.g., Regan & Catalano, 1999), we take the cutoff to be two standard deviations below

the average birth weight at the control level. It can be shown that

Pr(u∗ < U | R∗ = 0, Gx) =

∫
{1− π(γ)}Φ((U − µ)/ϕ1/2) dGx(γ, µ)∫

{1− π(γ)} dGx(γ)
, x ∈ X ,

where Φ(·) denotes the standard normal distribution function.

The combined risk of the discrete outcomes can be studied through the probability of

embryolethality or malformation, rd(x) ≡ Pr(R∗ = 1 or y∗ = 1 | Gx) = Pr(R∗ = 0, y∗ =

1 | Gx) + Pr(R∗ = 1 | Gx), which results in

rd(x) = 1−
∫
{1− π(γ)}{1− π(θ)} dGx(γ, θ), x ∈ X .

As with the embryolethality endpoint, it is possible to promote an increasing trend in rd(x)

through E(rd(x)) = 1−
[∫

{1− π(γ)}dN(γ | ξ0 + ξ1x, τ 2)
] [∫

{1− π(θ)}dN(θ | β0 + β1x, σ2)
]
,

where we have used the assumption of independent GP components for G0X . Now, if

ξ1 > 0 and β1 > 0, each of the integral terms above is non-increasing in x and thus

E(rd(x)) is a non-decreasing function of x.

Finally, a full risk function can be built through the probability of either of the discrete

endpoints or low birth weight. Specifically, rf(x) ≡ Pr(R∗ = 1 or y∗ = 1 or u∗ < U |

Gx) = rd(x) + Pr(R∗ = 0, y∗ = 0, u∗ < U | Gx), which thus separates the effect of the

negative outcomes from the discrete and continuous endpoints. Using the expression for

rd(x) and the mixture form for f(R∗ = 0, y∗ = 0, u∗ | Gx), we can write

rf(x) = 1−
∫

{1− π(γ)}{1− π(θ)}{1− Φ((U − µ)/ϕ1/2)} dGx(γ, θ, µ), x ∈ X .

Extending the argument above for E(rd(x)), it can be shown that E(rf (x)) is also a non-
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decreasing function of x provided ξ1 > 0, β1 > 0, and χ1 < 0.

The above restriction on the slope parameters for the GP linear mean functions is

readily implemented through their hyperpriors. We can thus promote increasing trends,

through their prior expectation, in the embryolethality dose-response curve and in both

combined risk functions. Although the argument does not extend to the conditional prob-

ability of malformation or low birth weight, extensive prior simulations suggest that the

ξ1 > 0, β1 > 0, and χ1 < 0 restrictions induce non-decreasing prior expectations also for

these dose-response curves. Given the small number of observed doses in developmental

toxicology data, this level of structure in the prior is key for practicable inference for

the multiple dose-response relationships, since such inference requires interpolation and

extrapolation beyond the observed dose levels. However, the modeling approach does not

imply (with prior probability 1) monotonic dose-response relationships. This is a practi-

cally important feature for toxicity experiments that may depict a hormetic effect. Horme-

sis refers to a dose-response phenomenon characterized by favorable biological responses

to low exposures to toxins (e.g., Calabrese, 2005). For endpoints involving mutation, birth

defects, or cancer, hormesis may result in non-monotonic, J-shaped dose-response curves.

Fronczyk & Kottas (2014) study an example that involves a non-monotonic dose-response

relationship, under the simpler data setting without continuous outcomes.

As a further inferential goal, we investigate different types of intra-litter correlations,

i.e., correlations for two live pups within the same litter at dose x. In particular, we obtain

inference for the correlation between: the discrete malformation endpoints, Corr(y∗k, y
∗
k′ |

R∗
k = 0, R∗

k′ = 0, Gx); the continuous endpoints, Corr(u∗
k, u

∗
k′ | R∗

k = 0, R∗
k′ = 0, Gx); and

the weight and malformation endpoints, Corr(y∗k, u
∗
k′ | R∗

k = 0, R∗
k′ = 0, Gx). Of interest

is also the intra-fetus correlation between the discrete and continuous outcomes for one

viable fetus, Corr(y∗, u∗ | R∗ = 0, Gx). (The above expressions involve conditioning
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on either m = 2 or m = 1, which is again suppressed from the notation.) Although

parametric hierarchical models can be extended to accommodate dose-dependent intra-

litter correlations, the regression formulation for the dependence on dose is not trivial to

specify. Through flexible modeling for the multivariate response distributions, the DDP

mixture in (2) yields dose-dependent nonparametric inference for the association among

the clustered discrete-continuous outcomes.

Some of the expectations required for the correlation expressions have been obtained,

e.g., M(x) = E(y∗ | R∗ = 0, Gx) = E(y∗2 | R∗ = 0, Gx). The remaining expectations can

be developed using similar derivations. For instance, E(y∗ku
∗
k′ | R∗

k = 0, R∗
k′ = 0, Gx) =

∫
{1 − π(γ)}2π(θ)µ dGx(γ, θ, µ)/[

∫
{1− π(γ)}2dGx(γ)], and E(y∗u∗ | R∗ = 0, Gx) is given

by an analogous expression substituting {1− π(γ)}2 by {1− π(γ)}.

3 Data illustration

We use the data discussed in the Introduction to demonstrate the practical utility of the

model. Conducted by the National Toxicology Program, the particular toxicity study

investigates the organic solvent diethylene glycol dimethyl ether (DYME). There are five

observed dose levels, one control and four active (62.5, 125, 250, and 500 mg/kg). The

number of animals exposed to each level ranges from 18 to 24, and the number of implants

across all doses ranges from 3 to 17, with 25th, 50th, and 75th percentiles of 12, 13, and

14, respectively. More details on the data can be found in the Supplementary Material.

3.1 Prior specification

The DDP mixture model is implemented with an inverse gamma prior for ϕ with shape

parameter 2 and mean 1, a gamma(2, 1) prior for α, and independent hyperpriors assigned
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to the parameters of the centering GPs. More specifically, we use uniform priors on (0, B)

for the GP correlation parameters ρ, φ and κ; inverse gamma priors for the GP variances

τ 2, σ2 and ν2 (with shape parameters equal to 2, implying infinite prior variance); and

normal priors for the intercepts of the linear mean functions ξ0, β0 and χ0. Moreover, to

incorporate the prior structure for the dose-response curves discussed in Section 2.2, we

place exponential priors on ξ1 and β1, and a normal prior on χ1 truncated above at 0.

We specify B using the range of dependence interpretation for the GP exponential

correlation function. For instance, for the first GP component of G0X , 3/ρ is the distance

between dose levels that yields correlation 0.05. The range of dependence is usually

assumed to be a fraction of the maximum interpoint distance over the index space. Hence,

since 3/B < 3/ρ, we specify B such that 3/B = rdmax, for small r, where dmax is the

maximum distance between observed doses; B = 1 was used for the DYME data analysis.

The remaining hyperprior parameters are chosen to provide dispersed prior distributions

for the implied dose-response relationships. In particular, for the DYME data, the prior

mean for D(x) and for M(x) begins around 0.5 and has a slight increasing trend, and the

corresponding 95% prior uncertainty bands essentially span the (0, 1) interval. In addition,

the prior distribution for E(u∗ | R∗ = 0, Gx) across dose levels is centered around 1 g and

spans from about 0 g to 2 g; note that healthy pups weigh 0.5− 1.5 g. A plausible range,

Rw, of birth weight values can also be used to set the prior mean for ϕ through, for

instance, (Rw/4)2. Finally, parameter α controls the number of distinct components in

the DP mixture model for the data induced by the common-weights DDP prior, which

can be used to guide the choice of the gamma prior for α.

Although this approach does not uniquely specify all the hyperpriors, it offers a practi-

cal strategy to complete the DDP mixture model specification based on a small amount of

prior information. Note that all that is required is a rough guess at the number of distinct
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mixture components, a range for the dose values of interest, and a range of values for

the continuous outcome at the control. Interestingly, despite the moderate sample sizes

of the DYME data, there is substantial learning for all DDP prior hyperparameters with

posterior densities significantly concentrated relative to the corresponding prior densities.

3.2 Risk assessment inference results

Figure 2 plots the posterior mean and 90% uncertainty bands of the dose-response curves.

The probability of embryolethality depicts an increasing trend. The conditional proba-

bility of malformation has a skewed shape, with larger uncertainty between the last two

observed dose levels, 250 and 500 mg/kg. The combined risk function for the discrete

outcomes is similar in shape to the malformation dose-response curve, though shifted up

slightly and with decreased uncertainty bands. The expected birth weight curve has a

relatively constant decreasing rate. The probability of low fetal weight (where the cutoff is

0.782 g) reveals an increasing exponential trend with wider uncertainty bands as dose level

increases. Finally, the full risk function is not substantially shifted up relative to the com-

bined risk of the discrete outcomes, suggesting that the embryolethality and malformation

endpoints are the main contributors to the overall dose-response relationship.

Figure 3 shows inference results at the active dose levels for the different types of cor-

relations discussed in Section 2.2. The posterior densities for the intra-fetus correlation

between the malformation and weight outcomes are concentrated around zero, other than

for level 250 mg/kg where a mild negative correlation is suggested. Although not shown

here, the results were similar for the intra-litter correlation between the malformation

and weight endpoints. There is little intra-litter correlation between the malformation

responses at the two smaller active dose levels, whereas increasing the level at 250 mg/kg

increases the correlation such that if one pup exhibits a malformation it is likely another
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pup within that litter will also show birth defects. At dose 500 mg/kg, the rate of embry-

olethality is largest and, thus, not many implants grow enough to develop birth defects.

This limited amount of information from the data may explain the dispersed density for

the corresponding correlation. Finally, the posterior densities for the intra-litter correla-

tion between the fetal weight outcomes are roughly similar at the four active toxin levels

and concentrated mainly on positive values, which reflects that birth weight of a generic

pup affects another pup within the litter in a similar fashion.

Also of interest is inference for the various response distributions. In Figure 4, we re-

port posterior mean estimates for: probability mass functions of the number of non-viable

fetuses given a specific number of implants; probability mass functions of the number

of malformations given a specified number of implants and non-viable fetuses; and fetal

weight densities. More comprehensive results, including point and interval estimates at

all observed dose levels and at new doses, are provided in the Supplementary Material.

3.3 Model assessment

As an approach to model checking, we examine cross-validation posterior predictive resid-

uals. For any observed dose level x0, the joint posterior predictive distribution for new

number of implants, m0, number of prenatal deaths, R0, malformation responses, y∗
0 =

{y∗0k : k = 1, . . . , m0−R0}, and fetal weight outcomes, u∗
0 = {u∗

0k : k = 1, . . . , m0−R0}, can

be factorized into p(m0 | data) =
∫
f(m0 | λ)dp(λ | data), and p(R0,y∗

0,u
∗
0 | m0, data) =

∫
f(R0,y∗

0,u
∗
0 | m0, Gx0)dp(Θ | data). Here, Θ represents all parameters of the DDP

mixture model f(R0,y∗
0,u

∗
0 | m0, Gx0), which arises from (2) applied at the specific dose

x0. The posterior predictive distribution can be extended to the entire vector of observed

dose levels (as well as to new dose values).

We use one, randomly chosen, cross-validation sample comprising data from 20 dams
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(approximately 20% of the data) spread roughly evenly across the dose levels. After

fitting the DDP mixture model to the reduced DYME data, we obtain for each ob-

served toxin level posterior predictive samples for R0/m0, (m0 − R0)−1
∑m0−R0

k=1 y∗0k, and

(m0−R0)−1
∑m0−R0

k=1 u∗
0k. Figure 5 includes box plots of these samples along with the cor-

responding values from the cross-validation data points. This graphical model checking

approach gives no strong evidence of ill-fitting.

3.4 Comparison with a parametric hierarchical model

To demonstrate the benefits of the nonparametric mixture model relative to simpler model

specifications, we implement a hierarchical model built from parametric distributions and

dose-response curves. We consider the commonly utilized setting for pup-specific outcomes

modelled through a bivariate normal distribution for the weight outcomes and for latent

continuous malformation responses (e.g., Regan & Catalano, 1999; Faes et al., 2006).

Following the notation of Section 2.1, let y∗∗ = {y∗∗k : k = 1, . . . , m − R} be latent

continuous malformation responses, such that y∗k = 1 if and only if y∗∗k > 0. Using again

a shifted Poisson distribution for m, the parametric response distribution is defined by

f(R,y∗∗,u∗ | m) =

∫
Bin(R | m, π)

m−R∏

k=1

N2((y
∗∗
k , u∗

k) | λ, µ, ρ, σ2
u)dHx(π,λ, µ)

where N2(· | λ, µ, ρ, σ2
u) is a bivariate normal distribution with mean vector (λ, µ), corre-

lation parameter ρ, variance corresponding to u∗
k given by σ2

u, and variance corresponding

to y∗∗k fixed at 1 for identifiability. The parametric mixing (random-effects) distribu-

tion Hx comprises independent components: Beta(ζπ(β0+β1x), ζ{1−π(β0+β1x)}) for π,

N(λ0+λ1x, σ2
λ) for λ, and N(µ0+µ1x, σ2

µ) for µ, such that the parameter vector includes ρ,

σ2
u, and the random-effects distribution hyperparameters, (ζ , β0, β1,λ0,λ1, σ2

λ, µ0, µ1, σ2
µ).
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Regarding risk assessment functionals, we consider as in Section 2.2 a generic implant

at dose level x. The prenatal death indicator is R∗, and when R∗ = 0, we observe the

binary malformation outcome y∗, and the fetal weight response u∗. If in the model for

(R∗, y∗∗, u∗) we first integrate out (π,λ, µ) and then y∗∗, the model for (R∗, y∗, u∗) be-

comes Bern(R∗ | π(β0+β1x))N(u∗ | µ0+µ1x, σ2
u+σ2

µ)Bern(y
∗ | q(x, u∗)), where q(x, u∗) =

Φ
(
(1− ρ∗2)−1/2{(1 + σ2

λ)
−1/2(λ0 + λ1x) + ρ∗(σ2

u + σ2
µ)

−1/2(u∗ − µ0 − µ1x)}
)
. Here, ρ∗ =

ρσu(1 + σ2
λ)

−1/2(σ2
u + σ2

µ)
−1/2 is the intra-fetus correlation between the latent malfor-

mation response and the weight outcome. Based on this distribution for (R∗, y∗, u∗),

the embryolethality and malformation dose-response curves are given by Pr(R∗ = 1) =

π(β0 + β1x) and Pr(y∗ = 1 | R∗ = 0) =
∫
q(x, u∗)N(u∗ | µ0 + µ1x, σ2

u + σ2
µ) du

∗. For the

fetal weight endpoint, we obtain E(u∗ | R∗ = 0) = µ0 + µ1x, and Pr(u∗ < U | R∗ = 0) =

Φ({U − µ0 −µ1x}/{σ2
u + σ2

µ}1/2). Intra-litter correlations are derived from the model dis-

tribution for two live pups within the same litter at dose x. The correlation among latent

malformation responses is given by Corr(y∗∗k , y∗∗k′ | R∗
k = 0, R∗

k′ = 0) = σ2
λ/(1 + σ2

λ), and

the correlation among weight outcomes by Corr(u∗
k, u

∗
k′ | R∗

k = 0, R∗
k′ = 0) = σ2

µ/(σ
2
u+σ2

µ).

Note that Corr(y∗∗k , u∗
k′ | R∗

k = 0, R∗
k′ = 0) = 0, although this correlation will be non-zero

under a dependent random-effects distribution for (λ, µ).

We implement the parametric hierarchical model for the DYME data, using an MCMC

algorithm which imputes the latent malformation responses based on their truncated

normal full conditional distributions. Given the latent responses, standard Gibbs sampling

updates are available for the random effects parameters, as well as for λ0, λ1, σ2
λ, µ0, µ1,

and σ2
µ. The remaining hyperparameters, ζ , β0, and β1, as well as ρ and σ2

u are sampled

with Metropolis-Hastings steps. Priors for model parameters were specified such that

prior point and interval estimates for the various dose-response curves were comparable

with the corresponding prior estimates under the DDP mixture model.
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Figure 6 contrasts inference results for three dose-response curves under the paramet-

ric and nonparametric models. Evidently, the DDP mixture model is more successful

in uncovering the dose-response relationships suggested by the data, the most striking

difference with the parametric model arising for the probability of low birth weight.

We also consider more formal model comparison based on the posterior predictive loss

criterion of Gelfand & Ghosh (1998), applied to each of the endpoints in the same spirit

with Section 3.3. Let j = 1, ..., ni index the dams at observed dose xi, for i = 1, ..., N . For

each xi, we draw replicate responses m̃i, R̃i, ỹ
∗
i = {ỹ∗ik : k = 1, . . . , m̃i − R̃i}, and ũ∗

i =

{ũ∗
ik : k = 1, . . . , m̃i − R̃i}. (Note that the responses from the ni dams at the ith dose

level share the same covariate, xi, and we thus need one posterior predictive sample at

each dose.) For the DDP mixture model, these posterior predictive samples are obtained

as discussed in Section 3.3. Sampling from the required posterior predictive distribution

of the parametric model is also straightforward given its hierarchical structure. Then,

for the embryolethality endpoint, the criterion favors the model M that minimizes the

(possibly weighted) sum of P (M) =
∑N

i=1 niVar(R̃i/m̃i | data), a penalty term for model

complexity, and G(M) =
∑N

i=1

∑ni

j=1{Rij/mij − E(R̃i/m̃i | data)}2, a goodness-of-fit

term. Here, mij and Rij are the data values for the number of implants and the number

of prenatal deaths, respectively, from the jth dam at dose xi. The P (M) and G(M)

components are defined analogously for the malformation endpoint, based on predictive

samples (m̃i−R̃i)−1
∑m̃i−R̃i

k=1 ỹ∗ik, and for the average birth weight endpoint, using predictive

samples (m̃i−R̃i)−1
∑m̃i−R̃i

k=1 ũ∗
ik. The results, reported in Table 1, favor the nonparametric

model across all endpoints. For the embryolethality endpoint, the DDP mixture model

fares better with respect to both criterion components. In the other two cases, the penalty

term is slightly smaller for the parametric model, but the DDP mixture model results in

a substantially smaller goodness-of-fit term.
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The DYME data analysis demonstrates the benefits of the nonparametric model formu-

lation, and the challenges for parametric modeling in this application area which requires

specification of a multivariate response distribution for mixed clustered outcomes, as well

as of various dose-response functions. It is of course possible to increase the flexibility of

the parametric model considered here, by extending the random-effects distribution for

(λ, µ) to include additional polynomial terms in the means, λ0+λ1x and µ0+µ1x, and/or

to enable dose-dependent intra-litter correlations through dose-dependent variances, σ2
λ

and σ2
µ. However, more general parametric dose-response functions become increasingly

more difficult to select, especially for the variance components, and they can substantially

complicate MCMC model fitting. In this respect, the proposed DDP mixture model is

arguably attractive as it can be implemented with a posterior simulation algorithm which

is not more complicated than the ones for general parametric models, while at the same

time allowing the flexibility in distributional and dose-response function shapes provided

by the large support of the nonparametric prior.

4 Discussion

The approach developed here is applicable to developmental toxicity experiments involving

clustered categorical outcomes and continuous responses. The modeling framework pro-

vides flexibility in the multiple response distributions as well as the various risk assessment

quantities. The proposed model involves DDP mixing with respect to three parameters.

This results in a relatively complex setting for prior specification and posterior simula-

tion. However, the data analysis results demonstrate that the methodology is feasible

to implement given sufficient amounts of data, as well as that it can lead to substantial

improvements in predictive inference relative to parametric hierarchical models.
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It is worth noting that the common-weights DDP prior structure is particularly well

suited for nonparametric mixture modeling in the context of developmental toxicity stud-

ies. The general DDP version, GX =
∑∞

l=1 ωlX δηlX , with both weights and atoms evolving

across dose level, is impractical for this application area, since the typical developmen-

tal toxicity experiment involves collections of responses at a small number of dose levels.

Contrarily to the common-weights DDP simplification, we may have chosen a prior struc-

ture where only the weights evolve with dose, that is, GX =
∑∞

l=1 ωlX δηl . Here, the ηl =

(γl, θl, µl) are i.i.d. from a base distribution G0, independently of the stochastic mech-

anism that generates the ωlX = {ωl(x) : x ∈ X}. Given the relatively large number of

mixing parameters in model (2), this prior structure appears on the surface to be a more

suitable simplification of the general DDP prior. However, this “common-atoms” DDP

formulation presents a formidable complication with regard to anchoring the inference for

the various dose-response relationships through a monotonic trend in prior expectation

(see Section 2.2). For instance, under a common-atoms DDP prior, it can be shown for

the embryolethality dose-response curve that E(D(x)) =
∫
π(γ)dG0(γ), which is constant

in x rendering interpolation and extrapolation inference practically useless.

Finally, it may be useful to entertain simpler versions of model (2). A possible

semiparametric version excludes the distribution of prenatal deaths from the DDP mix-

ing, building the response distribution through f(m)fx(R | m)f(y∗,u∗ | R,m), where

fx(R | m) is a parametric distribution, such as a Beta-Binomial with a logistic form for

the probability of embryolethality. Now, the DDP mixture would be reserved for the pup-

specific responses, f(y∗,u∗ | R,m,GX ) =
∫ ∏m−R

k=1 Bern(y∗k | π(θ))N(u∗
k | µ,ϕ)dGX (θ, µ).

This model results in a simplified MCMC algorithm. Also, the conditional probabilities of

malformation and low birth weight can be specified to be increasing in prior expectation.

The downside is that the parametric form for the prenatal death distribution may not be
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sufficiently flexible, as demonstrated in Section 3.4 with the DYME data.
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Figure 1: For the DYME data, the proportion of non-viable fetuses among implants for
each dam at each dose level (left panel), the proportion of malformed pups among the
viable fetuses for each dam at each dose level (middle panel), and the birth weights (in
grams) of the live pups at each dose level (right panel). In the left and middle panels,
each circle corresponds to a particular dam and the size of the circle is proportional to
the number of implants and number of viable fetuses, respectively.
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Figure 2: Posterior mean (solid line) and 90% uncertainty bands (gray shaded region) for:
the probability of a non-viable fetus (top left); the conditional probability of malformation
(top middle); the risk of combined discrete endpoints (top right); the expected birth weight
(bottom left); the conditional probability of low birth weight (bottom middle); and the
full combined risk function (bottom right).
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Figure 3: Posterior densities of the intra-fetus correlation between the malformation and
weight outcomes (left panel), of the intra-litter correlation between the malformation
responses (middle panel), and of the intra-litter correlation between the weight outcomes
(right panel). In each case, results are shown for the four active toxin levels.
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Figure 4: Posterior mean estimates for: the probability mass function of the number of
non-viable fetuses given m = 12 implants, f(R | m = 12, Gx) (left panel); the probability
mass function of the number of malformations given m = 12 implants and R = 2 non-
viable fetuses, f(

∑m−R
k=1 y∗k | m = 12, R = 2, Gx) (middle panel); and the probability

density function for fetal weight, f(u∗ | m = 1, R = 0, Gx) (right panel). In each case,
results are shown for three observed dose levels.
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Figure 5: Box plots of posterior predictive samples for R0/m0 (left panel), (m0 −
R0)−1

∑m0−R0

k=1 y∗0k (middle panel), and (m0 − R0)−1
∑m0−R0

k=1 u∗
0k (right panel) at the five

observed dose levels. The corresponding values from the 20 cross-validation data points
are denoted by “o”.
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Figure 6: Comparison between the parametric and DDP mixture models. Posterior mean
and 90% uncertainty bands for: the probability of a non-viable fetus (left panel); the
conditional probability of malformation (middle panel); and the conditional probability
of low birth weight (right panel). The interval estimates for the parametric model and
the DDP mixture model are denoted by the dashed lines and the gray shaded region,
respectively. Each panel includes the corresponding data-based estimates (denoted by
“o”) at the observed dose levels.

Endpoint Goodness-of-fit term Penalty term
Embryolethality 2.07 2.46 1.04 4.88
Malformation 1.77 12.7 0.895 0.778
Average birth Weight 0.847 45.4 0.167 0.121

Table 1: Comparison between the parametric and DDP mixture models. Values for the
goodness-of-fit and penalty terms of the posterior predictive loss criterion for each of the
embryolethality, malformation, and average birth weight endpoints. The values under the
nonparametric DDP mixture model are given in bold.
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Risk assessment for toxicity experiments with discrete

and continuous outcomes: A Bayesian nonparametric

approach

Supplementary material

Kassandra Fronczyk and Athanasios Kottas ∗

DYME data set

Developmental toxicity studies are designed to assess potential adverse effects of drugs and

other exposures on developing fetuses. A typical experiment consists of four or five dose

groups of 20 to 30 pregnant females, one group serving as a control and the others exposed

to increasing levels of the toxin. Outcomes include fetal deaths and resorptions, several

malformation indicators, and weight reduction. For illustrative purposes, we focus on one

of many studies available from the National Toxicology Program database; the standard

clustered multivariate response example found in the literature is one where diethylene
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versity of California, Santa Cruz. The work of the second author was supported in part by the National
Science Foundation under award DMS 1310438.
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glycol dimethyl ether (DYME), an organic solvent, is evaluated for toxic effects in pregnant

mice (Price et al., 1987). This example (see Table 1) shows clear dose-related reductions

in fetal weight with the highest concentration of DYME resulting in roughly one-half the

mean weight in control animals. The malformation data also suggest trends with dose;

variations exhibit increases at thelower doses, giving way to strong dose-related trends

in full malformations at the highest doses. The combined variation plus malformation

outcome increases monotonically with dose level.

Table 1: Numerical summaries for the DYME data.
Dose Dam Implant Fetal Malformations Litter size Birth Weight

(mg/kg) count count deaths Mean SD Mean SD
0 21 296 14 1 13.4 2.4 1.00 0.11
62.5 18 214 14 0 11.1 3.4 0.96 0.12
125 24 312 21 7 12.1 2.3 0.91 0.11
250 23 299 32 59 11.6 2.1 0.79 0.10
500 22 275 127 128 6.7 3.2 0.55 0.10

Discussion of alternative prior probability models

The structure of the model as a nonparametric discrete mixture is essential. Such a struc-

ture utilizes the flexibility of mixture modeling, while at the same time, the discrete nature

of the DDP-induced mixing distributions yields more effective modeling than parametric

continuous mixtures. Nevertheless, it is of interest to entertain alternative nonparametric

models directly for the dose-dependent response distributions. For example, a dependent

Pólya tree prior could be such an alternative, although it is not clear how far this ap-

proach can be taken with respect to the extension to joint modeling for different outcomes.

Although not considered other priors here, these priors generally do not offer significant

practical advantages relative to the DP when the focus is on flexible inference for random

distributions (as in our work) rather than on clustering inference in practice.
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Another prior found in the literature is the kernel stick-breaking process Dunson & Park

(2008). This prior is similar to the DDP in that it can be represented as an infinite sum

of weights and point masses. The main difference is that the dependence on dose level

in the KSBP occurs in the weights with common point masses. Under this type of prior,

GX =
∑∞

l=1 ωlXδηl , the dose-response curve is given by Pr(y∗ = 1;Gx) =
∑∞

l=1 ωl(x)π(ηl).

Hence, it can be readily shown that E{Pr(y∗ = 1;Gx)} is constant in x, irrespectively of

the stochastic process used for the ωlX = {ωl(x) : x ∈ X}. This is an irremediable limita-

tion for this type of prior specification, since the increasing trend in prior expectation is

critical to anchor the estimation of the dose-response curve at unobserved toxin levels.

MCMC posterior simulation details

In the data sets we studied from the National Toxicology Program database, the dams

are labeled and recorded in ascending numerical order across dose levels. Therefore, they

can be associated as a response vector across the dose levels, and the replicated response

vectors would then be considered to be exchangeable; see Fronczyk & Kottas (2014).

Here, we assume the more natural ANOVA style formulation where dams are considered

exchangeable both across and within dose levels. However, we note that for the data

examples we have studied, inference results are very similar under the two versions of the

hierarchical model formulation for the data.

To fix notation, let mij be the number of implants and Rij the number of prenatal

deaths for the jth dam at dose xi, for i = 1, . . . , N and j = 1, . . . , ni. Moreover, denote

by y∗
ij = {y∗ijk : k = 1, . . . , mij − Rij} and u∗

ij = {u∗
ijk : k = 1, . . . , mij − Rij} the corre-

sponding pup specific binary malformation and continuous weight responses, respectively.

In addition, x = (x1, ..., xN ) denotes the vector of observed toxin levels, and Gx the as-
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sociated mixing distribution which follows a DP(α, G0x) prior implied by the DDP prior

for GX . Here, G0x is given by a product of three N -variate normal distributions induced

by the corresponding GPs used to define G0X . Finally, let

k(R,y∗,u∗ | γ, θ, µ,ϕ) = Bin(R;m, π(γ))
m−R∏

k=1

Bern(y∗k; π(θ))N(u
∗
k;µ,ϕ),

denote the kernel of the DDP mixture model.

The mixture model for the data can be expressed in hierarchical form by introducing

mixing parameters (γij(x), θij(x), µij(x)) for the jth observation (Rij,y∗
ij ,u

∗
ij) at dose xi,

where γij(x) = (γij(x1), ..., γij(xN)) (with the analogous notation for θij(x) and µij(x)).

Conditionally on Gx, the (γij(x), θij(x), µij(x)) are independently distributed according

to Gx, and conditionally on the (γij(x), θij(x), µij(x)) and ϕ, the (Rij ,y∗
ij ,u

∗
ij) are inde-

pendently distributed according to k(· | γij(xi), θij(xi), µij(xi),ϕ), for i = 1, . . . , N and

j = 1, . . . , ni.

We proceed with MCMC posterior simulation via blocked Gibbs sampling (e.g., Ishwaran & James,

2001), which replaces the countable representation in Equation (1) of the paper with a

finite truncation approximation. In particular, for the mixing distribution associated

with the observed toxin levels we have Gx ≈
∑L

l=1 plδ(Vl(x),Zl(x),Tl(x)). Here, pl = ωl, for

l = 1, ..., L−1, and pL = 1−
∑L−1

l=1 pl, and for l = 1, ..., L, (Vl(x), Zl(x), Tl(x)) are indepen-

dent from G0x. The truncation level L can be chosen using distributional properties for

the weights arising from the DP stick-breaking structure. In particular, E(
∑L

l=1 ωl | α) =

1− {α/(α+1)}L, which can be averaged over the prior for α to estimate E(
∑L

l=1 ωl). For

the analysis of the DYME data, we worked with L = 50, which under the gamma(2, 1)

prior for α, yields E(
∑50

l=1 ωl) = 0.99996.

Now, consider configuration variable sij for the jth dam at dose xi, such that sij = l,

for l = 1, . . . , L, if and only if (γij(x), θij(x), µij(x)) = (Vl(x), Zl(x), Tl(x)). With the

4



introduction of the sij the hierarchical model for the data becomes

{Rij ,y
∗
ij,u

∗
ij} | {(Vl(x), Zl(x),Tl(x)) : l = 1, . . . , L}, sij ,ϕ

ind.
∼

Bin(Rij ;mij ,π(Vsij (xi)))

mij−Rij∏

k=1

Bern(y∗ijk;π(Zsij (xi)))N(u∗ijk;Tsij (xi),ϕ)

sij | p
i.i.d.
∼

L∑

l=1

plδl(sij), i = 1, . . . , N ; j = 1, . . . , ni

(Vl(x), Zl(x), Tl(x)) | ψ
i.i.d.
∼ G0x, l = 1, . . . , L

where the prior density for p = (p1, ..., pL) is given by a special case of the generalized

Dirichlet distribution, f(p | α) = αL−1pα−1
L (1−p1)−1(1−(p1+p2))−1×· · ·×(1−

∑L−2
l=1 pl)−1.

The model is completed with hyperpriors (discussed in Section 3.1 of the paper) for ϕ, α,

and ψ.

Next, we provide details on sampling from the full conditional distributions required

to implement the blocked Gibbs sampler. The key updates are for the mixing parameters

(Vl(x), Zl(x), Tl(x)). The corresponding full conditional distributions depend on whether

l is associated with one of the active mixture components. Denote by {s∗r : r = 1, . . . , n∗}

the distinct values among the sij. If l /∈ {s∗r : r = 1, . . . , n∗}, then (Vl(x), Zl(x), Tl(x)) is

drawn from the base distribution G0x (given its currently imputed hyperparameters ψ).

When l ∈ {s∗r : r = 1, . . . , n∗}, the posterior full conditional for Vl(x) is proportional to

NN (Vl(x); ξ01N + ξ1x,Λ)
∏

{(i,j):sij=l}

Bin (Rij;mij , π(Vl(xi)))

where 1N is a vector of dimension N with all its elements equal to 1, and the covari-

ance matrix Λ has elements τ 2 exp{−ρ|xi − xi′ |}. Sampling from this full conditional

was approached in several ways, including slice sampling and Metropolis-Hastings (M-H)

random-walk updates with different choices for the proposal covariance matrix. The best
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mixing and acceptance rates were obtained from a Gaussian proposal distribution with

covariance matrix of the same form as the GP prior, that is, a exp{−b|xi − xi′ |}, where a

and b are tuning parameters. The Zl(x) and Tl(x) corresponding to active components are

sampled in the same fashion. These M-H updates can be tuned to obtain sufficiently large

acceptance rates; for instance, for the DYME data the acceptance rates ranged between

15% and 20%.

The full conditional for each sij is a discrete distribution on {1, ..., L} with probabilities

proportional to plk(Rij,y∗
ij,u

∗
ij | Vl(xi), Zl(xi), Tl(xi),ϕ), for l = 1, ..., L. The updates for

p and α are the same with the ones for a generic DP mixture model. Based on the inverse

gamma prior for ϕ (with shape parameter aϕ > 1 and mean bϕ/(aϕ − 1)), its posterior

full conditional is inverse-gamma with revised parameters aϕ + 0.5
∑N

i=1

∑ni

j=1(mij −Rij)

and bϕ + 0.5
∑N

i=1

∑ni

j=1

∑mij−Rij

k=1 (Tsij (xi)− u∗
ijk)

2.

Regarding the parameters, ψ = (ξ0, ξ1, τ 2, ρ, β0, β1, σ2,φ,χ0,χ1, ν2, κ), of the base dis-

tribution G0x, ξ0, β0 and χ0 have normal posterior full conditional distributions, and τ 2,

σ2 and ν2 have inverse gamma posterior full conditional distributions. We sample ξ1, β1

and χ1 through random-walk M-H steps with normal proposal distributions on the log

scale. To update the GP correlation parameters ρ, φ and κ, we have experimented with

M-H steps, but ultimately found the most efficient approach to sample these parameters

was through discretization of their underlying support induced by the uniform prior.

Finally, to extend the inference beyond the N observed dose levels, we can estimate

the various risk assessment functionals at M new doses, x̃ = (x̃1, . . . , x̃M), which may in-

clude values outside the range of the observed doses. Owing to the underlying DDP prior

model for the mixing distributions, the only additional sampling needed is for the mixing

parameters (Ṽl(x̃), Z̃l(x̃), T̃l(x̃)) associated with the new dose levels. The product of GPs

structure for the DDP base stochastic process implies an M-variate normal distribution
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for Ṽl(x̃) conditionally on Vl(x), and analogously for Z̃l(x̃) conditionally on Zl(x), and for

T̃l(x̃) conditionally on Tl(x). Hence, given the posterior samples for (Vl(x), Zl(x), Tl(x))

and other model hyperparameters, we can readily sample the (Ṽl(x̃), Z̃l(x̃), T̃l(x̃)), and

consequently obtain inference for the various dose-response curves and response distribu-

tions at any desired grid over toxin levels.

Additional results from the DYME data analysis

Due to space restrictions, a full investigation of the probability mass functions is not found

within the manuscript. Below, these inferences are given with discussion.

Also of interest is inference for the various response distributions. Figure 1 plots

estimates for the probability mass functions corresponding to the number of non-viable

fetuses given a specific number of implants. Figure 2 shows estimates for the probability

mass functions of the number of malformations given a specified number of implants and

associated number of non-viable fetuses. The DDP mixture model uncovers standard

distributional shapes for most of the toxin levels, although there is evidence of skewness

at x = 250 mg/kg. Finally, Figure 3 includes estimates for fetal weight densities. As

expected, posterior uncertainty is larger at the unobserved dose level, x = 175 mg/kg.

The spread of the densities is the same across toxin levels but the center shifts toward

smaller fetal weight values under increasing dose values. Also noteworthy is the smooth

evolution from left to right skewness in the densities as the toxin level increases.
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Figure 1: Posterior mean (“o”) and 90% uncertainty bands (dashed lines) for the prob-
ability mass function associated with the number of non-viable fetuses given m = 12
implants, f(R | m = 12, Gx). Results are shown for the five observed dose levels and for
the new value of x = 175 mg/kg.
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Figure 2: Posterior mean (“o”) and 90% uncertainty bands (dashed lines) for the proba-
bility mass function associated with the number of malformations given m = 12 implants
and R = 2 non-viable fetuses, f(

∑m−R
k=1 y∗k | m = 12, R = 2, Gx). Results are shown for

the five observed dose levels and for the new value of x = 175 mg/kg.
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Figure 3: Posterior mean (solid line) and 90% uncertainty bands (dashed lines) for the
probability density function for fetal weight, f(u∗ | m = 1, R = 0, Gx). Results are shown
for the five observed dose levels and for the new value of x = 175 mg/kg.
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