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Abstract

Botnets continue to constitute a major security threat to users of the internet. We
examine a novel security game between the operator of a botnet and the legitimate
users of the compromised network. The more a btotmaster utilizes his botnet, the more
likely it is he will be detected by the legitimate users of the network. Thus he must
balance stealth and aggression in his strategic utilization of his botnet. The legitimate
users of the network then must decide how vigilant they will be in trying to detect the
presence of the botnet infection.
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1 Introduction

As one of the major security threats to users of the internet, botnets exemplify the dif-
ficulties of network security. They are highly distributed, interconnected and complex.
Furthermore a single botnet can contain thousands of computers, making scores of le-
gitimate computer users unwitting participants in cyber-criminal activities. Though the
research community has taken an interest in the botnet phenomena, theoretical models of
botnets are nascent.

Game theory has become an important modeling tool for network security [3, 16] and
we believe botnets are no exception. Standard security games deal with the traditional
attacker-defender dynamic. When modeling a botnet security game the strategic attacker
is the cyber-criminal controlling the botnet, often called the bot herder or bot master.
However, modeling the defender is not so clear cut. Typically the defender is thought
to be the intended target of an attack. In the case of botnets this might be the security
administrator of a server under a DDoS attack or a network spam filter being bombarded by
a spambot. A missing component of such models are the legitimate computer users whose
compromised computers, often called zombies, make up the botnet. These individuals are
the first line of defense against botnets and understanding the interaction between them
and the bot master is crucial to understanding the botnet threat.

We propose a novel security game which explicitly considers the bot master as a strate-
gic agent pitted against the legitimate users of a computer network targeted to become
a botnet. In our game the bot master must consider the tradeoffs between stealth and
aggressiveness in his utilization of his botnet. The legitimate users of the network (agents)
act as intrusion detection systems and must consider the tradeoffs between the costs asso-
ciated with false alarms (false positives) and the losses associated with missed detections
(false negatives).

One difficulty in dealing with this type of security threat is the distributed, intercon-
nected nature of the agents and their host computers. We propose to extend the Local
Mean Field (LMF) model in [11] to address this difficulty. In [10] the author suggests a
LMF approach to modeling botnets, but the bot master is not explicitly considered as a
strategic agent in their game. Furthermore the agents in [10] and [11] are not trying to
detect the presence of an infection, but are deciding whether or not to invest in security.

Previous work on network security games have considered similar issues. In [17] eco-
nomic models are considered to study the incentives of ad-networks and ISPs to invest in
detecting botnets. Interconnected agents, network externalities and security investments
have been considered in [9] [14] [13] [4] [5] [8] and [11]. Botnet dynamics have been con-
sidered in [6], while botnet economics are considered in [15] and [12].
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2 Two-person Botnet Detection Game

We consider a security game between a bot master (attacker) and the owner of a single
targeted computer (defender). The bot master tries to gain control of the computer directly
with some probability of success p. If the infection is successful then the bot master gains
control of the target computer and can use it for his own nefarious purposes (spam, DDoS
Attacks, click-fraud, etc.). If the botmaster is too aggressive in his use of the compromised
computer, then it is more likely that the defender will detect the infection. For example,
if the bot master is continually using the compromised computer to send large volumes of
spam, there may be a noticeable slow down in performance in the defender’s computer due
to excessive bandwidth consumption as a result of the spamming. The defender may then
decide it is time to patch/replace his computer, thus ridding himself of the infection. We
begin by modeling this simple two-player game and then extend the game to large networks
of targeted computers.

To motivate our game we consider the fact that cyber-criminals are able to compromise
computers by exploiting flaws in the software and hardware of networked systems. A
game theoretic model of software/hardware manufacturers and their incentives to invest in
reducing software system failures is presented in [7] . The authors classify software failures
into two categories: security failures (failures caused by malicious and unauthorized access
to a user’s system) and reliability failures (those failures which are not security failures).
Two observations on which the authors base their game are 1) the source of security
failures and reliability failures is the same (software bugs), and 2) it is too costly for users
to distinguish between the two types of failures. We incorporate these observations into our
game by modeling security failures, reliability failures and a user’s inability to distinguish
between them.

We assume the bot master tries to infect the targeted computer as aggressively as
possible and has an overall probability of success p. Our focus is not on the strategy
of the bot master’s initial infection attempt, but on his strategic behavior in utilizing a
compromised computer once he “owns” it. The bot master infects computers in order to
illegitimately utilize available computational resources, i.e. CPU time, RAM , bandwidth,
electrical power, etc. Specifically we wish to model how aggressive the bot master should
be in utilizing these resources. In what follows we will not model a particular resource,
instead we model a general measurable resource R taking values on R+. The strategic
variable for the bot master is a measure of his aggressiveness in utilizing the resource R.
We call this value A and assume it is chosen from a strategy space A.

We can think of A as a proxy for how much of the infected computer’s resources the
attacker decides to use. In fact we assume there exists a one-to-one mapping b : A → R+

such that b(A) is the directly observable amount of resource R the bot master uses. In
the context of [7] we interpret b(A) as the observable security failures associated with the
resource R of an infected computer. We model the observable reliability failures associated
with resource R as a random variable S with support R+. We denote the cumulative
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distribution function of S by FS(x) and the probability density function by fS(x). We will
assume that FS(x) is strictly increasing and smooth and that fS(x) is differentiable and
strictly positive for all x > 0.

Suppose that the typical resource usage directly attributable to the agent is R0. Let
W ∼ Bernoulli(p) where W = 1 if and only if the direct infection of the bot master is
successful and W = 0 otherwise. We assume W and S are independent. Then the total
resource usage R is a random variable which can be modeled as

R = R0 + b(A)W + S.

The computer owner, or agent, is thought to be a typical user of a computer connected to
the internet. Aware that there are potential security threats the agent must decide how
vigilant he will be in detecting such threats. As in [7] we assume the agent is unable to
reliably distinguish between security failures and reliability failures and thus must consider
the potential costs from both false alarms (false positives) and missed detections (false
negatives). Assuming the value R0 is known, the agent makes a single observation Z =
R−R0 of his system’s software failures, i.e.

Z = b(A)W + S.

Given the observation Z the agent wishes to determine whether or not his computer is in-
fected. Assuming the distributions of S and W are known this becomes a simple hypothesis
testing problem.

H0 : W = 0

H1 : W = 1

Given that higher observed values of Z indicate a higher likelihood of infection, we take
the strategic variable of the agent to be a threshold T in a strategy space T ⊆ R+.1 We
interpret this as a measure of the agent’s tolerance for software failures. If Z ≥ T the agent
decides his computer is infected and takes appropriate measures to remediate the potential
infection. If Z < T then the agent takes no action. For notational simplicity we define
the indicator random variable D = 1{Z≥T}, i.e. D = 1 if and only if Z ≥ T and D = 0
otherwise.

We construct a loss function for the agent by first defining the following indicator
random variables.

X1 =

{
1 if False Positive

0 o.w.

1More generally the agent is free to choose any decision rule mapping observations in R+ to the set
{0, 1}. If C is the set of all such decision rules we assume the agent will choose a g ∈ C that minimizes his
expected posterior loss, i.e. he chooses a Bayesian decision rule. Under the assumptions of our model it
can be shown that the Bayes decision rule g∗ ∈ C is equivalent to the above threshold classifier.
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X2 =

{
1 if False Negative

0 o.w.

X3 =

{
1 if True Positive

0 o.w.

X4 =

{
1 if True Negative

0 o.w.

We associate the following costs with each outcome of the detection.

c1 : cost of False Positive

c2 : cost of False Negative

c3 : cost of True Positive

c4 : cost of True Negative

The Xi all depend on the strategies chosen by the players, and in general so do the ci. For
A ∈ A and T ∈ T the defender’s cost is defined as

C(A, T ) =
∑

1≤i≤4

ci(A, T )Xi(A, T ).

The relationship between the Xi, W and D can be expressed in the following way.

X1 = (1−W )D

X2 = W (1−D)

X3 = WD

X4 = (1−W )(1−D)

Taking expectations we have

E[X1] = [1− FS(T )](1− p)
E[X2] = FS(T − b(A))p

E[X3] = [1− FS(T − b(A))]p

E[X4] = FS(T )(1− p)

We assume the following cost functions in our model.

1. c1(a, t) ≡ r + k for constants r ≥ 0 and k ≥ 0
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Figure 1: The botmaster attempts to infect a computer with probability of success p. If
successful the botmaster uses the compromised computer to launch attacks of strength A.

2. c2(a, t) ≡ v(a) : A → R+ is differentiable and non-decreasing with v(0) = 0.

3. c3(a, t) ≡ k

4. c4(a, t) ≡ 0

The function v(·) represents the cost associated with future lost resources when the de-
tection is missed. The value k is the fixed cost associated with remediating a potential
infection such as reinstalling an operating system, updating software or purchasing a new
computer. Notice this cost is incurred whenever the infection is present, regardless of the
agent’s decision. Cost r is the additional cost associated with a false alarm not incurred
during a true detection. Notice c4 ≡ 0 since the agent incurs no cost if he correctly identifies
that his system is not infected. The expected cost of the defender is now

E[C(A, T )] = (r + k)[1− FS(T )](1− p) + [k + (v(A)− k)FS(T − b(A))]p

Notice that a successful attack is the same as a false negative and has indicator random
variableX1. Define the function g : A → R+ to be the utility gained from a successful attack

given an aggressiveness A. We assume g(A) is twice differentiable with dg
dA > 0, d

2g
dA2 ≤ 0

and g(0) = 0. We define the attacker utility as

U(A, T ) = g(A)X1(A, T ).
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Figure 2: An agent makes an observation Z of his computer, not knowing its true state
(infected/not infected). After comparing the observation Z to his chosen tolerance T he
decides whether or not to take action. The four possible outcomes are depicted. The
agent incurs a cost for false negatives and false positives while no cost is incurred for true
positives and true negatives.

The expected utility is then

E[U(A, T )] = g(A)FS(T − b(A))p

Notice the relationship between the functions b(A), v(A) and g(A). The function b(A)
is a direct measurement of stolen resources while v(A) and g(A) are the valuations of the
stolen resources by the defender and attacker respectively. Since b(A) is one-to-one we
may take the strategy of the attacker to be Ā = b(A) with strategy space Ā = R+. Thus
without loss of generality and a recycling of notation we assume b(A) ≡ A and A = R+.
We then have the expected cost/utility functions as follows.

E[C(A, T )] = (r + k)[1− FS(T )](1− p) + [k + (v(A)− k)FS(T −A)]p

E[U(A, T )] = g(A)FS(T −A)p

We can then define the best response correspondences as follows.

σ1(A) = arg min
T

E[C(A, T )]

σ2(T ) = arg max
A

E[U(A, T )]
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The following proposition characterizes the pure Nash equilibrium in the two player
game for the case S ∼ gamma(α, β) with α ≥ 1. We state the proposition without proof
as the arguments needed are developed in the sequel.

Proposition 1. Suppose S ∼ gamma(α, β) with α ≥ 1. Then there exists a unique pure
Nash equilibrium (A∗, T ∗) in the two-player botnet game with T ∗ > A∗ > v−1(k). For the
case α = 1 the solution is given by the following equations.

A∗ =
1

β
log

(
r + k

v(A∗)− k
1− p
p

)
T ∗ = A∗ +

1

β
log

[
1 +

g(A∗)

g′(A∗)

]
For the case α > 1 the solution is given by the following equations.

T ∗ = A∗

(
1−

[
e−βA

∗ r + k

v(A∗)− k
1− p
p

] 1
α−1

)−1

g(A∗)

g′(A∗)
=

∫ T ∗−A∗
0 xα−1e−βxdx

(T ∗ −A∗)α−1e−β(T ∗−A∗)

3 A Large Population Botnet Game

We now extend the botnet detection game introduced above to a game with a large number
of agents in a network. In [11] network externalities in a security investment game between
a large number of interconnected agents are studied. Their so called Local Mean Field
model focuses on the asymptotic properties of the game in the limit of a large number
of agents via the objective method [2]. In [10] the auhor discusses applying the model to
study botnets, but the model presented focused on agent incentives to invest in security
and did not explicitly incorporate the bot master into the model. We wish to extend the
LMF model introduced in [11], explicitly modeling the bot master as a strategic agent.
Following [11] we consider a sequence of Erdos-Renyi random graphs G(n, λ/n) and look
for solutions on the limiting graph as n → ∞. Because Erdos-Renyi graphs converge to
a Galton-Watson Poisson Branching Process, denoted by T (λ), in the sense of local weak
convergence [2], we restrict our analysis to T (λ). The convergence results which justify
this step can be found in section ??. For details on the objective method, local weak
convergence and random distributional equations readers are referred to [2] and [1].

With each computer on the network we associate a unique agent ai with i = 1, 2, 3, ....
For simplicity we assume all agents are homogeneous. In particular they have the same cost
functions and each agent is equally likely to occupy any place in the network. A root agent
is chosen uniformly at random from all agents in the network. This agent will be crucial in
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our equilibrium analysis. We designate the root agent by aø. As in the two person game
above, we assume agents use a threshold decision rule to detect infections. We let A ∈ A
be the aggressiveness of the botmaster, Ti ∈ T the threshold of agent i, and Zi ∈ S the
observation made by agent i. If Zi ≥ Ti then the agent concludes his system has been
compromised and takes measures to remediate the problem. If Zi < Ti then no infection is
detected. In our model we assume that if the agent detects the infection, then he stops the
infection and does not pass it on to his neighbors. Let Si denote the random system noise
observed by agent ai. We assume the Si are i.i.d. for all i = 1, 2, 3, ..., again denoting the
cumulative distribution function by FS(x) and the probability density function by fS(x)
with support S.

Figure 3: When agents are connected in a network, the strategic behavior of each agent
affects the strategic behavior of all other agents as well as that of the botmaster.

Our model on T (λ) is characterized by the following stochastic processes following [11].

Let the random variables χi
i.i.d.∼ Bernoulli(p) indicate a direct infection of agent i by the

bot master, and let the random variables Bkj
i.i.d.∼ Bernoulli(q) indicate contagion from

agent k to agent j for all k 6= j ∈ T (λ). For each i ∈ T (λ) let Wi be the indicator random
variable indicating that infection reaches agent i either from a direct descendant in T (λ) or
directly from the bot master. Let Di be the indicator random variable indicating whether
agent i detects such an infection. We can then define detection outcome indicator random
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variables as follows.

Xi = (1−Wi)Di

Yi = Wi(1−Di)

X̃i = WiDi

Ỹi = (1−Wi)(1−Di)

Thus Xi indicates a false positive, Yi a false negative, X̃i a true positive and Ỹi a true
negative by agent i ∈ T (λ) when infected from a direct descendant in T (λ) or directly from
the bot master. The equations for Wi and Di are

Wi = 1− (1− χi)
∏
k→i

(1−BkiWk(1−Dk)),

Di = 1{Si+WiA≥Ti}

Here k → i denotes that agent k is a direct descendant of agent i in the rooted tree. The
equation for the observation Zi is then

Zi = Si +WiA.

The introduction of the processes Wi and Di are done to take advantage of the structure
of T (λ). It is important to note that Wi and Wj are independent of one another when ai
and aj are the same distance away from the root node. In fact because Wi and Di depend
only on the children of ai, the processes {Wi}i∈T (λ), {Xi}i∈T (λ), {Yi}i∈T (λ), {X̃i}i∈T (λ) and

{Ỹi}i∈T (λ) are Recursive Tree Processes. As in [11] it is this structure that makes the model
tractable.

Because the cost function is the same for all agents, and each agent’s a priori knowledge
of the network is the same, we focus our analysis on finding a symmetric equilibrium among
the agents. In particular we seek a Nash equilibrium in which all agents choose the same
strategy T . Clearly there may be equilibrium solutions in which players select different
strategies, but for tractability we focus on symmetric, mutual best responses. Because the
root is chosen uniformly at random we expect there to be an invariant process [1]. The
fundamental recursive distributional equations which define the invariant process on T (λ)
are as follows.

W
d
= 1− (1− χ)

N∏
k=1

(1−BkYk) (1)

D
d
= 1{T≤S+WA} (2)

Y
d
= W (1−D) (3)
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The random variable χ ∼ Bernoulli(p), S ∼ Gamma(α, β), Bk
iid∼ Bernoulli(q) and N ∼

Poisson(λ) are random variables independent of everything in the model. The random
variables Y and Yk k = 1, 2, ..., N are i.i.d copies satisfying (3). Notice that the random
variable Y plays a special role in these equations because the distribution of W depends
on the distribution of Y . Provided solutions exist for equations (1)-(3) we can also define
the other detection indicator random variables.

X
d
= (1−W )D

X̃
d
= WD

Ỹ
d
= (1−W )(1−D)

We now find a solution to (3). This result is analogous to Prop. 2 in [11].

Proposition 2. Let S ∼ FS(·), A, T ∈ S with T ≥ A, 0 < p ≤ 1 and 0 < q ≤ 1.
Then the RDE for Y has a unique solution: P(Y = 1) = 1 − P(Y = 0) = h, where
h = h(A, T, p, q, λ, FS(·)) is the unique solution in [0, 1] of the fixed point equation

h = FS(T −A)[1− (1− p)e−λqh]. (4)

Proof. Let h = P(Y = 1). Then

h = P(Y = 1|W = 1)P (W = 1) + P(Y = 1|W = 0)P (W = 0)

= P(Y = 1|W = 1)P (W = 1).

Conditioned on W = 1 the distributional equation reduces to Y
d
= 1{T>S+A}, giving us

P(Y = 1|W = 1) = P(T > S +A) = FS(T −A).

The distribution for W satisfies

P(W = 0) = P((1− χ)
N∏
k=1

(1−BkYk) = 1)

= (1− p)
∞∑
n=0

(1− P (BkYk = 1))n P(N = n)

= (1− p)
∞∑
n=0

(1− qh)n
λne−λ

n!

= (1− p)e−λqh.

Thus P(W = 1) = 1− (1− p)e−λqh, giving us the following fixed point equation.
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h = FS(T −A)
[
1− (1− p)e−λqh

]
Let f(x, T,A) = FS(T − A)[1 − (1 − p)e−λqx]. Then f is continuous, increasing and

concave in x. Since f(0, γ, T,A) > 0 and f(1, γ, T,A) ≤ 1 there must be a unique fixed
point of f which depends on A, T, p, q, λ, FS(·).

It is important to keep in mind that h depends on all parameters and choice variables
of the model. In particular we will be interested in h(A, T ). We will often suppress this
dependence in the notation for the sake of brevity. With Prop. 2 the distributions of the
remaining detection indicator random variables can be obtained.

Corollary 1. Let S ∼ FS(·), A, T ∈ S with T ≥ A, 0 < p ≤ 1 and 0 < q ≤ 1. Then the
RDEs for X, X̃ and Ỹ have unique solutions which depend on the distribution of Y . In
particular if E[Y ] = h(A, T ) then

E[X] = [1− FS(T )](1− p)e−λqh(A,T ),

E[X̃] = [1− FS(T −A)][1− (1− p)e−λqh(A,T )],

E[Ỹ ] = FS(T )(1− p)e−λqh(A,T ).

Before solving the bot master’s and agents’ optimization problems we will need some
results on the function h(A, T ). By the Implicit Function Theorem h is differentiable in
A and T provided that fS(T − A) 6= 0. A direct computation of the derivative of h with
respect to A gives

∂h

∂A
= −fS(T −A)[1− (1− p)e−λqh] + FS(T −A)

[
λq
∂h

∂A
(1− p)e−λqh

]
.

Solving for ∂h
∂A we have

∂h

∂A
= − fS(T −A)[1− (1− p)e−λqh]

1− FS(T −A)[λq(1− p)e−λqh]
. (5)

The following lemma guarantees the boundedness of the derivatives of h. It will also
be useful in further analysis.

Lemma 1. Define θ(A, T ) = 1− λqFS(T −A)(1− p)e−λqh where h is defined as in Prop.
2. For any λq > 0, 0 ≤ p < 1 and T ≥ A ≥ 0, we have 0 < θ(A, T ) < 1.

Proof. See Appendix A.1.
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We now have that ∂h
∂A ≤ 0. Notice that ∂h

∂T = − ∂h
∂A , thus the same analysis above gives

us ∂h
∂T ≥ 0. Furthermore we see that h(A, T ) may not be differentiable at A = T since

∂h
∂A ≡ 0 for all A > T but ∂h

∂A > 0 for all A < T . In particular if fS(x) > 0 at x = 0 we

will have limT↓A
∂h
∂A > 0 = limT↑A

∂h
∂A . Other important properties of h(A, T ) that will be

useful are that the dependence on A and T appear only in the form T − A as arguments
in FS(·). Thus h(A, T ) = 0 for all (A, T ) pair with A ≥ T . Furthermore for any finite A
the limiting value of h(A, T ) as T →∞ is the same since for fixed finite A we have

lim
T→∞

h(A, T ) = lim
T→∞

FS(T −A)[1− (1− p)e−λqh(A,T )]

= lim
T→∞

[1− (1− p)e−λqh(A,T )]

= 1− (1− p)e−λq limT→∞ h(A,T )

We will denote this limiting value by h∞ = limT→∞ h(A, T ) and observe that it satisfies
the fixed point equation

h∞ = 1− (1− p)e−λqh∞ . (6)

Note that in this limit we recover the probability of infection in [11].

3.1 Utility and Cost Functions

3.1.1 Agent Cost

The agents in our game are statistically homogeneous. For this reason we are interested in
finding a pure, symmetric, mutual strategy T ∗ that all agents in the network will play in
response to a strategy A such that no individual agent has an incentive to unilaterally devi-
ate. As we mentioned before, this is clearly a restrictive class of Nash equilibria and many
non-symmetric equilibria may exist. But motivated by the homogeneity of the agents and
a desire for tractability, we feel it is a reasonable class of equilibria to study. Future work
will entail studying non-symmetric, pure equilibria, mixed equilibria as well as equilibria
among heterogeneous agents.

We assume each agent is acting independently and has no knowledge of other agents
other than their similarity in cost function. We investigate what happens when a single
agent deviates from a population threshold T that all other agents in the network are
playing. Because we are concerned with the behavior of a “typical” agent, and the root of
each graph is chosen uniformly at random, we consider the root agent to be our “typical”
agent. Thus for a fixed strategy A and a fixed network strategy T we can define a deviant
node’s strategy Tø, expected cost function Cø(A, T, Tø) and best response correspondence
σø(A, T ). One can think of this process as a network population game within our attacker-
defender game where for a fixed strategy A we are looking for optimal network strategies
T ∗ such that T ∗ ∈ σø(A, T ∗).
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From the recursive distributional equations (1)-(3) it is clear that if the root agent aø

changes his threshold Tø 6= T , this will change his decision rule, but it will not change what
he observes. In other words the probability of a false alarm will change, but the probability
of infection does not change. Recall the variables Yi tell us whether or not the infection
reaches agent i from his children. It is not the probability of infection for agent i, since
agent i can be infected from it’s parent. So if the root agent deviates from the population
strategy T , then equations (1)-(3) are still valid for all agents in the tree except the root.
For the root we need to introduce new distributional equations.

Dø
d
= 1{Tø<S+WA}

Xø
d
= (1−W )Dø

Yø
d
= W (1−Dø)

X̃ø
d
= WDø

Ỹø
d
= (1−W )(1−Dø)

The corresponding distributions computed as in Prop. 2 and Cor. 1 are computed analo-
gously.

Proposition 3. Let S ∼ FS(·), A, T, Tø ∈ S with T, Tø ≥ A, 0 < p ≤ 1 and 0 <
q ≤ 1. Then the RDEs for Xø, Yø, X̃ø and Ỹø have unique solutions which depend on the
distribution of Y . If E[Y ] = h(A, T ) then the distributions are given by the following.

E[Xø] = [1− FS(Tø)](1− p)e−λqh(A,T )

E[Yø] = FS(Tø −A)[1− (1− p)e−λqh(A,T )]

E[X̃ø] = [1− FS(Tø −A)][1− (1− p)e−λqh(A,T )]

E[Ỹø] = FS(Tø)(1− p)e−λqh(A,T )

The root agent’s cost function Cø(A, T, Tø) can now be constructed. As in the two-
person game we let r, k ≥ 0 be constants and v : A → R+ be a differentiable, non-decreasing
function with v(0) = 0. Then the root agent’s cost is

Cø(A, T, Tø) = (r + k)Xø + v(A)Yø + kX̃ø.

The expected cost function is then

C̄ø(A, T, Tø) ≡ E[Cø(A, T, Tø)]

= (r + k)[1− FS(Tø)](1− p)e−λqh + (k + (v(A)− k)FS(Tø −A))[1− (1− p)e−λqh].

To simplify the notation we introduce the constant c and the function ` : A → R+.

c ≡ r + k

`(A) ≡ v(A)− k
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As will become clear in the equilibrium analysis, there are no Nash equilibria for A <
v−1(k). Furthermore if v(A) is constant on any interval, all subsequent results hold with
slight modification. Thus without loss of generality we assume `(A) to be differentiable
and strictly monotonically increasing with `(0) = 0. Again, we will often suppress the
dependence on A for the sake of notational simplicity. This gives us

C̄ø(A, T, Tø) = c[1− FS(Tø)](1− p)e−λqh + (k + `(A)FS(Tø −A))[1− (1− p)e−λqh]. (7)

It is important to notice that the Yk, k = 1, 2, ..., N still satisfy (1)-(3) while only (1) is
valid for the root. Thus from the point of view of an individual agent, if he changes his
own threshold, Tø 6= T , it will not change the value of h for the Yk, k = 1, 2, 3, ..., N . In
particular we have

∂h

∂Tø
= 0.

Thus the best response for the deviant root agent is

σø(A, T ) = arg min
Tø

{c[1− FS(Tø)](1− p)e−λqh + `FS(Tø −A)[1− (1− p)e−λqh]}.

Taking the first derivative we then have

∂C̄ø

∂Tø
= −cfS(Tø)(1− p)e−λqh + `fS(Tø −A)[1− (1− p)e−λqh]. (8)

Notice that since fS(Tø − A) = 0 for all Tø < A we have ∂C
∂Tø

< 0 for all Tø ∈ (0, A).
Thus any global minima will be in the interval [A,∞). Using (8) we define two functions,
H(A, Tø) and V (A, T ).

H(A, Tø) =
fS(Tø −A)

fS(Tø)
(9)

V (A, T ) =
c

`(A)

(1− p)e−λqh

1− (1− p)e−λqh
(10)

From (8) it is not difficult to see that the single function V (A, T )−H(A, Tø) has the same
sign as ∂Cø

∂Tø
. As such we have the relations

∂C

∂Tø

<
>
= 0 ⇐⇒ H(A, Tø)

<
>
= V (A, T ). (11)

It is important to note that H(A, Tø) depends on A and Tø only, while V (A, T ) depends
on A and T only. Thus for fixed A and T the functional form of H(A, Tø) alone will deter-
mine the optimal response of a deviant agent. In particular if H(A, Tø) is non-decreasing
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then C̄ø(A, T, Tø) will be quasi-convex in Tø. However as the network threshold T varies so
too will the optimal response of a deviant agent. To better understand how the functions
V (A, T ) and H(A, Tø) affect a deviant agent’s best response, consider the partial derivative
of V (A, T ) with respect to T .

∂V

∂T
= −c

`

λq(1− p)e−λqh ∂h∂T
[1− (1− p)e−λqh]

2 ≤ 0.

Thus V (A, T ) is a non-increasing function of T and strictly monotonically decreasing for
T > A > 0. We wish to show there is a unique T ∗ such that T ∗ ∈ σø(A, T ∗), i.e. there
exists a unique pure symmetric Nash Equilibrium among agents in the network. It turns
out the monotonicity of H(A, Tø) is sufficient to guarantee this.

Proposition 4. For fixed A ∈ A if H(A, Tø) is non-decreasing then there exists a unique
network threshold T ∗ such that T ∗ ∈ σø(A, T ∗), i.e. there is a unique symmetric, pure NE
among agents in the network.

Proof. Fix A ∈ A. Since V (A, T ) is strictly monotonically decreasing for T > A and
H(A, Tø) is non-decreasing, then three possibilities exist: 1) there exists a unique value
T̃ ∈ [A,∞) such that H(A, T̃ ) = V (A, T̃ ), 2) H(A, Tø) < V (A, T ) for all Tø, T ≥ A, and
3) H(A, Tø) > V (A, T ) for all Tø, T ≥ A. Suppose the first case is true. Then there exists
some values ε1, ε2 ≥ 0 such that H(A, Tø) < V (A, T̃ ) for Tø < T̃ − ε1, H(A, Tø) = V (A, T̃ )
for T̃ − ε1 ≤ Tø ≤ T̃ + ε2, and H(A, Tø) > V (A, T̃ ) for Tø > T̃ + ε2. By (11) we have
σø(A, T̃ ) = [T̃ − ε1, T̃ + ε2]. Clearly T̃ ∈ σø(A, T̃ ). Furthermore, by the uniqueness of T̃
satisfying H(A, T̃ ) = V (A, T̃ ), it is the only value satisfying T̃ ∈ σø(A, T̃ ).

Now suppose H(A, Tø) < V (A, T ) for all Tø, T > A. Then 11 implies that Cø(A, T, Tø)
is monotonically decreasing in Tø for all T, Tø > A. Thus σø(A, T ) =∞ for all A > 0 and
T > A. In particular σø(A,∞) =∞ and T ∗ =∞.

Finally supposeH(A, Tø) > V (A, T ) for all Tø, T > A. Then 11 implies that Cø(A, T, Tø)
is monotonically increasing in Tø for all T, Tø > A. Thus σø(A, T ) = A for all A > 0 and
T > A. In particular σø(A,A) = A and T ∗ = A.

The following corollary gives us a specific distribution on the noise S which will allow
us to find unique, symmetric network equilibria.

Corollary 2. For fixed A ∈ A if S ∼ Gamma(α, β) with α ≥ 1, β > 0, then there exists a
unique threshold T ∗ such that T ∗ ∈ σø(A, T ∗), i.e. there is a unique symmetric, pure NE
among agents in the network.

Proof. For fixed A ∈ A if S ∼ Gamma(α, β) then fS(x) ∼ xα−1e−βx for x ∈ [0,∞],α, β > 0.
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We then have

H(A, Tø) =
fS(Tø −A)

fS(Tø)

=
(Tø −A)α−1e−β(Tø−A)

Tø
α−1e−βTø

=

(
1− A

Tø

)α−1

eβA.

Clearly H(A, Tø) is monotonically increasing in Tø if α > 1 and constant if α = 1. The
result follows from direct application of Prop. 4.

We can define a network population best response correspondence σp : A → T which
maps a strategy A to the symmetric, mutual best response among agents in the network
for which no individual has an incentive to unilaterally deviate. Prop. 4 and Corr. 2 give
sufficient conditions under which σp(A) is a single valued function.

σp(A) =


A if H(A, T ) > V (A, T ) for all T

T ∗ if T ∗ is the unique solution to H(A, T ∗) = V (A, T ∗)

+∞ if H(A, T ) < V (A, T ) for all T

3.1.2 Bot Master Utility

The bot master maximizes his utility when he gets the most expected functionality out of
the network. His utility will then depend on the fraction of agents that are infected, say ζ,
as well as the degree to which he utilizes the bots, which we measure by his aggressiveness,
A. Since the root agent is chosen uniformly at random from the network it can be thought
of as a typical agent. Thus the probability that the root agent is infected is the expected
proportion of infected agents. Then in the limit of a large population we have ζ = h. On
the infinite Poisson Tree the bot master’s expected utility is

U(A, T ) = g(A)ζ = g(A)h(A, T ). (12)

As in the two-person game we assume g : A → R+ satisfies dg
dA > 0 and d2g

dA2 ≤ 0 with
g(0) = 0. Thus the set of bet responses, σb(T ), for the botmaster is given by

σb(T ) = arg max
A

{g(A)h(A, T )}.

Because we are interested in finding pure Nash Equilibria we wish to find under which
conditions U(A, T ) is strictly quasi-concave and σb(T ) is single valued. Using (4) and (5)
a first order optimality condition for a strategy A∗ ∈ A can be expressed as

g(A∗)

g′(A∗)
=
FS(T −A∗)
fS(T −A∗)

θ(A∗, T ). (13)
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Notice we have used the definition for θ(A, T ) from Lemma 1. The following proposition
gives a sufficient condition for the strict quasi-concavity of the bot master’s expected utility
function.

Proposition 5. For T > 0, if there exists a unique A∗ ∈ A satisfying (13), then U(A, T ) is
strictly quasi-concave with a maximum at A∗ and σb(T ) = A∗. If T = 0 then U(A, T ) = 0
for all A ∈ A and σb(0) ≡ A.

Proof. Let T > 0. Since g(0) = 0 we have U(0, T ) = 0. Furthermore U(A, T ) = 0 for
all A ≥ T and U(A, T ) > 0 for A ∈ (0, T ). Since h(A, T ) is a differentiable function
in A, so too is U(A, T ). Thus by Rolle’s Theorem there exists at least one A∗ in the
open interval (0, T ) such that ∂U

∂A

∣∣
A=A∗

= 0. In addition since U(0, T ) = U(T, T ) = 0
and U(A, T ) > 0 for A ∈ (0, T ), there must be at least one global maximum in the open
interval (0, T ) for T > 0. Clearly if (13) has a unique solution A∗ we must have U(A∗, T )
as a global maximum. Consequently A∗ is the unique optimal response to the strategy T
giving σb(T ) = A∗. Now let T = 0. Since h(A, T ) = 0 when A ≥ T we get U(A, T ) = 0 for
all A. Consequently A ∈ σb(0) for all A ∈ A.

We now state a sufficient condition on FS(·) that guarantee the strict-quasiconcavity
of the botmaster’s utility function for T > 0.

Proposition 6. For fixed T > 0, if ∂
∂A

[
FS(T−A)
fS(T−A)

]
< 1 for all A < T then (13) has a unique

solution A∗ ∈ (0, T ).

Proof. We begin by establishing the following facts.

d

dA

[
g(A)

g′(A)

]
≥ 1 (14)

∂

∂A

[
FS(T −A)

fS(T −A)
θ(A, T )

]
< 1 (15)

Differentiating g(A)
g′(A) we obtain

d

dA

[
g(A)

g′(A)

]
= 1− g(A)g′′(A)

g(A)2
≥ 1.

Differentiating FS(T−A)
fS(T−A) θ(A, T ) we obtain

∂

∂A

[
FS(T −A)

fS(T −A)
θ(A, T )

]
=

∂

∂A

[
FS(T −A)

fS(T −A)

]
θ(A, T ) +

[
1− λqFS(T −A)

θ(A, T )

]
(1− θ(A, T )).
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By assumption ∂
∂A

[
FS(T−A)
fS(T−A)

]
< 1 and by Lemma 1 we have 0 < θ(A, T ) ≤ 1. It remains

to be shown
[

1−λqFS(T−A)
θ(A,T )

]
≤ 1. If FS(T − A) ≥ 1

λq then this is clearly the case. On the

other hand if FS(T −A) < 1
λq then

1− λqFS(T −A) < 1− FS(T −A)(1− p)λqe−λqh = θ(A, T ),

giving us
[

1−λqFS(T−A)
θ(A,T )

]
< 1 from which we obtain ∂

∂A

[
FS(T−A)
fS(T−A) θ(A, T )

]
< 1.

Since g(0)
g′(0) = 0 and FS(T )

fS(T ) θ(0, T ) > 0 properties (14) and (15) guarantee that (13) has
a unique solution. By Prop. 5 the result follows.

The following Corollary gives a particular distribution that guarantees the strict quasi-
concavity of U(A, T ) in A for T > 0.

Corollary 3. If S ∼ Gamma(α, β) with α > 0 and β > 0 then the botmaster’s utility
function is strictly quasi-concave in the large population network infection game.

Proof. See Appendix A.2

Recall that the gamma distribution contains the exponential distribution as a special
case (α = 1).

3.2 Nash Equilibrium

We are now ready to prove existence and uniqueness of a pure, symmetric Nash equilibria
for the large-population botnet detection game with S ∼ Gamma(α, β) with α ≥ 1, β > 0

and A = T = R+. As we have seen the function V (A, T ) = c
`(A)

(1−p)e−λqh(A,T )

1−(1−p)e−λqh(A,T ) played

an important role in determining the response functions of the agents. In the proceeding
analysis we will need the limiting values of this function. For ease of exposition we define
the functions V0 : A → R+ and V∞ : A → R+.

V0(A) ≡ lim
T↓A

V (A, T ) =
c

`(A)

1− p
p

, (16)

V∞(A) ≡ lim
T→∞

V (A, T ) =
c

`(A)

(1− p)e−λqh∞
1− (1− p)e−λqh∞

, (17)

where h∞ = limT→∞ h(A, T ) satisfies (6). In what follows we assume the function `(A) is
unbounded as A→∞. The main ideas behind the proofs are valid with slight modification
for the case of a bounded `(·). The monotonicity of `(A) gives us the following Lemma.

Lemma 2. Let V0(a) and V∞(a) be defined as in (16) and (17). Then we have the following.
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1. V∞(a) < V0(a) for all a ∈ (0,∞)

2. dV0
da = − `′(a)

`(a) V0(a) < 0 for all a ∈ (0,∞)

3. dV∞
da = − `′(a)

`(a) V∞(a) < 0 for all a ∈ (0,∞)

4. lima↓0 V0(a) = lima↓0 V0(a) = +∞

5. lima→∞ V0(a) = lima→∞ V0(a) = 0

From the monotonicity of both V0(a) and V∞(a) there must exist unique values A0 and
A∞ satisfying

A0 =
1

β
log V0(A0), (18)

A∞ =
1

β
log V∞(A∞). (19)

To establish our result we will need the following lemmas which give us important
properties of σb(T ) and σp(A).

Lemma 3. Given the expected cost function Cø(A, T ) in (7) with S ∼ gamma(α, β), α ≥ 1,
the following properties of σp(A) hold.

1. For A ≥ 0, σp(A) ≥ A.

2. For 0 ≤ A ≤ A∞, σp(A) =∞.

3. For A > A∞, σp(A) is continuously differentiable with limA↓A∞ σp(A) =∞.

4. Let A ≥ A0. Then for α = 1 we have σp(A) = A, and for α > 1 we have σp(A) > A
with limA→∞ σp(A)−A = 0.

Proof. See Appendix A.3

Lemma 4. Given the expected utility function U(A, T ) in (12) with FS(·) satisfying the
properties of Lemma 6, the following properties of σb(T ) hold.

1. For T > 0, 0 < σb(T ) < T .

2. For T > 0, σb(T ) is continuously differentiable.

3. lim supT→∞ σb(T ) =∞ with
lim supT→∞ (T − σb(T )) > 0.
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4. For all A ∈ (0,∞) there exists a finite T̃ > 0 such that σb(T̃ ) = A.

Proof. See Appendix A.4

Using the previous technical lemmas we can establish one final lemma which will help
us prove the uniqueness of a Nash equilibrium.

Lemma 5. For any (A, T ) ∈ R2 with A∞ < A < T we have

d

dA
[σp(A)−A] < 0 <

d

dT
[T − σb(T )] .

Or equivalently

dσp
dA

< 1,

dσb
dT

< 1.

Proof. See Appendix A.5

We are now ready to state and prove the first main theorem of this paper, namely the
existence and uniqueness of a pure, symmetric Nash equilibrium in the infinite-population
botnet game on T (λ). An analogous result is obtained for a centrally planned network in
Appendix B. The results are extended to G(n, λ/n) in Appendix C.

Theorem 1. Let S ∼ gamma(α, β) with α ≥ 1, β > 0 in the infinite-population botnet
game on T (λ) with homogeneous agents. Then there exists a unique, pure, symmetric
Nash equilibrium, i.e. there exists a unique point (A∗, T ∗) ∈ R2 such that

σb(T
∗) = A∗

σp(A
∗) = T ∗.

Proof. First consider the special case where α = 1 (S ∼ exp(β)). Suppose A ≤ A∞.
It follows from Lemma 3 property 2 that for all A ≤ A∞ we have σp(A) = ∞, hence
U(A, σp(A)) = limT→∞Ah(A, T ) = Ah∞. But for any finite M > 0 we have U(A +
M,T ∗) = (A + M)h∞ > Ah∞ = U(A, T ∗) for all such A. It follows that A is not a best
response and there are no pure Nash equilibrium with A∗ ∈ [0, A∞]. On the other hand
suppose A ≥ A0. By Lemma 3 property 4 σp(A) = A. Then we have U(A, σp(A)) =
U(A,A) = Ah(A,A) = 0, and for sufficiently small ε > 0 we have U(A − ε, A) = (A −
ε)h(A − ε, A) > 0 and the will benefit from decreasing his aggressiveness . Clearly such
an A is not a best response, and any strategy set (A∗, T ∗) with A∗ ≥ A0 is not a Nash
equilibrium.
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We thus restrict our attention to A ∈ (A∞, A0). By property 4 of Lemma 4 there exists
a finite value T∞ such that σb(T∞) = A∞ and a finite value T0 > 0 such that σb(T0) = A0.
By Lemma 3 we have σp(σb(T∞)) =∞ > T∞ and σp(σb(T0)) = σb(T0) < T0. In other words
when looking along the T axis at T∞ the function σp(·) is above the function σb(·) while at
T0 the function σp(·) is below the function σb(·). By the continuity of both σp(·) and σb(·)
the functions must cross at some point (A∗, T ∗) giving us σb(T

∗) = A∗ and σp(A
∗) = T ∗.

The proof for α > 1 is similar to the above with one exception. In this case we have
σp(A) > A for all A with limA→∞ σp(A) = A. Thus the continuity of σp(A) and σb(T ) is
not enough to guarantee the response functions cross.

Suppose σb(·) and σp(·) do not cross. From property 1 of Lemma 4 we have limT→0 σb(T ) =
0. Thus there must exist some finite T∞ such that 0 < σb(T∞) < A∞. Since σp(A) =∞ for
all A ≤ A∞ we then have σp(σb(T∞)) = ∞. Thus σp(σb(T∞)) > T∞. By our assumption
that σb(·) and σp(·) do not cross we must have σp(σb(T )) > T for all T > 0. From Lemma
4 we have T > σb(T ) for all T > 0. Together this gives us the following.

σp(σb(T )) > T > σb(T ) (20)

Recall from the above Lemmas that lim supT→∞ σb(T ) = ∞ and limA→∞ σp(A) − A = 0.
It follows that

lim sup
T→∞

[σp(σb(T ))− σb(T )] = lim
A→∞

[σp(A)−A] = 0.

Then by (20) lim supT→∞[T −σb(T )] = 0. But this contradicts lim supT→∞[T −σb(T )] > 0
from Lemma 4. Hence σb(·) and σp(·) must cross at least once.

Suppose there is more than one point at which σp(A) and σb(T ) cross. Let (A∗1, T
∗
1 )

and (A∗2, T
∗
2 ) be two such points. We then have for i = 1, 2

(A∗i , σp(A
∗
i )) = (σb(T

∗
i ), T ∗i ). (21)

Any points satisfying (21) must also satisfy

σp(A
∗
i )−A∗i = T ∗i − σb(T ∗i ). (22)

But by Lemma 5 there is exactly one point satisfying (22). Hence (A∗1, T
∗
1 ) = (A∗2, T

∗
2 ) and

the equilibrium point is unique.

From the proof of the above theorem we can obtain bounds on where the equilibrium
will be. We state these bounds as a corollary to the theorem.

Corollary 4. Let (A∗, T ∗) be the unique, pure, symmetric Nash equilibrium in Theorem
1. Then we have T ∗ ≥ max {A∗, α−1

β } and A∗ ≥ max {0, A∞}. In the special case α = 1,
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i.e. Si ∼ exp(β), we have

max {0, A∞} ≤ A∗ ≤ max {0, A0} ,

A∗ ≤ T ∗ < inf

{
T : σb(T ) =

c

`(A0)

1− p
p

}

4 Discussion and Numerical Examples

Having established the existence and uniqueness of a pure, symmetric Nash equilibrium
in both the centralized and decentralized game, we examine some numerical examples to
study the efficiency of the equilibria. We observe that the infectivity of the graph, i.e. the
parameter λq, controls the relative efficiency of the Nash equilibria. Recall that λ is the
average number of neighbors in the underlying random graph while q is the probability of
contagion between neighbors given the presence of the infection. The parameters λ and q
only appear together as λq in the model, thus we treat them as a single parameter in the
numerical approximations.

Figures 5a and 5b show the expected cost and expected utility at equilibrium for vary-
ing values of the parameter λq. What we find is that for smaller values of λq the centralized
planner is worse off than the decentralized agents, while for larger values of λq the central-
ized planner fares better. More specifically for a given λq let (A∗c(λq), T

∗
c (λq)) be the unique

pure, symmetric equilibrium of the game between centralized planner and bot master and
let (A∗d(λq), T

∗
d (λq)) be the unique pure, symmetric equilibrium of the game between de-

centralized agents and bot master. Define the relative welfare of the network for a given
λq as

W (λq) ≡ C(A∗c(λq), T
∗
c (λq))

Cø(A∗d(λq), T
∗
d (λq))

.

Numerical results suggest the existence of a threshold parameter Λ > 0 such that

W (λq) > 1 for λq < Λ

W (λq) = 1 for λq = Λ

W (λq) < 1 for λq > Λ

Furthermore a lower cost at equilibrium is associated with a less vigilance and higher
infection rates. For example when the centralized planner has a lower cost than the decen-
tralized agents at equilibrium for a fixed value of λq, i.e. for W (λq) < 1, the centralized
planner is less vigilant, i.e. T ∗c (λq) > T ∗d (λq), and actually admits a higher infection rate
than do the decentralized agents, i.e. h(A∗c(λq), T

∗
c (λq)) > h(A∗d(λq), T

∗
d (λq)). Conversely,

when W (λq) > 1 we have T ∗c (λq) < T ∗d (λq) and h(A∗c(λq), T
∗
c (λq)) < h(A∗d(λq), T

∗
d (λq)).

See Fig. 2 for a plots of h(A∗c(λq), T
∗
c (λq)) and h(A∗d(λq), T

∗
d (λq)) and Figs. 4a and 4b for

plots of the equilibrium strategies A∗c , A
∗
d, T

∗
c , T

∗
d as functions of the parameter λq.
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Unless otherwise noted the following values were used for the numerical examples.

p = 0.1

λq ∈ [0, 4]

c = 1

` = 2

Si ∼ exp(1)

(a) A∗ (b) T ∗

Figure 4: Optimal strategies A∗ and T ∗ at equilibrium as functions of λq

5 Conclusion

We have considered a novel network security game between a bot master and decentralized
agents in a targeted network as well as a game between a bot master and a centralized
planner. The game considers the interactions between a bot master’s aggressiveness in
utilizing his botnet and the degree of vigilance exercised by the agents in a targeted network.
To deal with the complexity of the inter-connected nature of botnets we utilized a local
mean field model similar to the one developed in [11] . We were able to show the existence
and uniqueness of a pure, symmetric Nash equilibrium among agents as well as the existence
and uniqueness a pure Nash Equilibrium between the agents and the botmaster. Our
analytical results are valid for infinite rooted Poisson Trees and in the limit of a sequence of
rooted Erdos-Renyi random graphs. Numerical approximations of expected cost and utility
functions suggest some counter intuitive consequences. In particular when contrasting
decentralized agents with a centralized planner, better outcomes (lower costs) are associated
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(a) Cø(A∗, T ∗) and C(A∗, T ∗) (b) U(A∗, T ∗)

Figure 5: Expected costs Cø(A∗, T ∗), C(A∗, T ∗) and expected utility U(A∗, T ∗) at equilib-
rium for varying value of λq

with higher infection rates. Furthermore the centralized planner does not always fare better
than the decentralized agents. The network infection parameter λq appears to exhibit a
threshold between regions where the centralized planner fares better and regions where
the decentralized agents do better. In particular we postulate the existence of a threshold
parameter Λ, such that when λq < Λ decentralized agents fare better, while λq > Λ implies
the centralized planner fares better.

Up to this point we have made several simplifying assumptions about the system un-
der consideration in order to obtain a tractable, analytical model. There are several open
areas of research which we are currently pursing, which address address some of the short-
comings of our model. One extension under consideration is that of heterogeneous agents.
The assumption of heterogeneity is overly restrictive, especially when dealing with social
networks and/or internet topology. Examining larger classes of equilibria, in particular
mixed equilibria, are also being considered. That a true positive excludes the possibility
of contagion is also restrictive and work has been done on weakening this assumption.

A Appendix: Technical Proofs

A.1 Proof of Lemma 1

To prove the lemma we fix T ≥ A ≥ 0 and show that for any value of λq > 0 the inequality
holds. First note that if T = A then θ(A, T, λq) = 1 for all λq > 0. Thus we fix T > A. We
begin by noting that for fixed A and T the Implicit Function Theorem gives us that h(λq)
is a differentiable function of λq. Furthermore we can show that h(λq) is monotonically
increasing in λq as done in [11].From the definition of h(λq) in Prop. 2 it suffices to prove
that λq(FS(T − A)− h(λq)) < 1, or equivalently FS(T − A)− 1

λq < h(λq), for all λq > 0.
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Figure 6: The probability of infection h(A∗, T ∗) as a function λq. Notice how the centralized
planner actually allows the probability of infection to rise as the graph becomes more dense.

The definition in Prop. 2 gives us FS(T − A)p ≤ h(λq). Now, if 0 < λq < 1
FS(T−A)(1−p) ,

then

h(λq) ≥ FS(T −A)p

= FS(T −A)− FS(T −A)(1− p)

> FS(T −A)− 1

λq
.

It follows that the claim is true for all λq ∈ (0, 1
FS(T−A)(1−p)). Now suppose there exists a

value y∗ ≥ 1
FS(T−A)(1−p) such that FS(T − A) − 1

y∗ = h(y∗). Using the definition of h we
have

FS(T −A)− 1

y∗
= FS(T −A)[1− (1− p)e−y

∗(FS(T−A)− 1
y∗ )

]

= FS(T −A)[1− (1− p)e1−y∗FS(T−A)],

which gives

1 = y∗FS(T −A)(1− p)e1−y∗FS(T−A).
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It is straightforward to show that for values 0 < α, β < 1 we must have αβxe1−αx < 1
for all x > 0. But this contradicts our result. Hence no such y∗ exists. By the continuity of
h in λq there are also no values of λq such that FS(T −A)− 1

λq > h(λq). This establishes
our result for fixed A and T . Since the choice of A and T was arbitrary this establishes
the proposition.

A.2 Proof of Corollary 3

Note that

∂

∂A

[
FS(T −A)

fS(T −A)

]
=
FS(T −A)f ′S(T −A)

[fS(T −A)]2
− 1

where f ′S(T − A) = dfS(x)
dx

∣∣∣
x=T−A

. We will show
FS(T−A)f ′S(T−A)

[fS(T−A)]2
< 1 which implies

∂
∂A

[
FS(T−A)
fS(T−A)

]
< 0, giving us the result by Prop. 6. Since the function only depends

on T − A we can do a change of variables x = T − A. It is thus enough to show that
FS(x)f ′S(x)

[fS(x)]2
< 1 for all x ∈ [0, T ). Notice that this is trivially true whenever f ′S(x) ≤ 0, so we

only need to consider the case where f ′S(x) > 0. The density for the gamma distribution

is fS(x) = βα

Γ(α)x
α−1e−βx for x ∈ [0,∞) giving f ′S(x) = βα

Γ(α)x
α−2e−βx(α − 1 − βx). Thus

f ′S(x) ≤ 0 if and only if α − 1 ≤ βx. In particular if α ≤ 1 we are done. We now restrict
our analysis to the cases where α > 1 and x < α−1

β . Define φ(x) and ξ(x) as follows.

φ(x) = (α− 1− βx)

∫ x

0
uα−1e−βudu

ξ(x) = xαe−βx

Differentiating with respect to x we obtain,

φ′(x) = −β
∫ x

0
uα−1e−βudu+ (α− 1− βx)xα−1e−βx,

ξ′(x) = (α− βx)xα−1e−βx.

First note that φ(0) = ξ(0) = 0 and φ′(0) = ξ′(0) = 0. Then for x > 0 we have
φ′(x) < (α − 1 − βx)xα−1e−βx < (α − βx)xα−1e−βx = ξ′(x). It follows that φ(x) < ξ(x)
for all x > 0. Thus we have

FS(x) =
βα

Γ(α)

∫ x

0
uα−1e−βudu <

βα

Γ(α)

xαe−βx

α− 1− βx
=

[fS(x)]2

f ′S(x)
.

This establishes our result.
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A.3 Proof of Lemma 3

Property 1) is evident from the proof of Prop. 4. Let A ≤ A∞. Using the definitions
of H(A, Tø) and V (A, T ) in (9) and (10) respectively, and the monotonicity of V∞(A) in
Lemma 2 we have the following for all T, Tø ∈ [A,∞).

H(A, Tø) ≤ eβA ≤ eβA∞ = V∞(A∞) ≤ V∞(A) ≤ V (A, T )

This corresponds to case 2) in the proof of Prop. 4 which implies σp(A) =∞.
Now fix A > A∞. That σp(A) is single-valued is established in Prop. 4 and Corr. 2.

For any (a, t) ∈ R2 define

G(a, t) = H(a, t)− V (a, t).

Setting g(a, t) = 0 and applying the implicit function theorem gives us the existence of
a continuously differentiable function m(a) such that G(a,m(a)) = 0 for all a in some
open neighborhood of A. Since σp(A) is the unique value satisfying G(A, σp(A)) = 0 for
all A > 1

β log V∞, we must have m(A) = σp(A) for all A > 1
β log V∞. Thus σp(A) is

continuously differentiable for all A > 1
β log V∞.

To show limA↓A∞ σp(A) = ∞ it suffices to show that for any M > 0 there exists an
ε > 0 such that σp(A) > M whenever 0 < A − A∞ < ε. From the definition of σp(A)
and the monotonicity and continuity of H(A, T ) and V (A, T ) in T , it suffices to show that
for any M > 0 there exists ε̃ > 0 such that for any ε < ε̃ there exists δ > 0 such that
H(A∞ + ε,M) > V (A∞ + ε,M) and H(A∞ + ε,M + δ) < V (A∞ + ε,M + δ).

Fix M > A∞. Since V (A∞, T ) is non-increasing in T

V (A∞,M)

V∞(A∞)
=

V (A∞,M)

limT→∞ V (A∞, T )
> 1.

By the monotonicity of `(A) there exists a ε̃ > 0 such that

eβε̃
`(A∞ + ε̃)

`(A∞)
=

(
M

M −A∞

)α−1 V (A∞,M)

V∞(A∞)

Now choose any ε ∈ (0, ε̃). Notice that since h(A, T ) depends on A and T only through
the difference T −A we have for any T > A > 0 and any constant k.

V (A, T − k)

V∞(A)
=

c
`(A)

(1−p)e−λqh(A,T−k)

1−(1−p)e−λqh(A,T−k)

c
`(A)

(1−p)e−λqh∞
1−(1−p)e−λqh∞

=

c
`(A+k)

(1−p)e−λqh(A+k,T )

1−(1−p)e−λqh(A+k,T )

c
`(A+k)

(1−p)e−λqh∞
1−(1−p)e−λqh∞

=
V (A+ k, T )

V∞(A+ k)
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Furthermore V∞(A+k) = `(A∞)
`(A∞+k)V∞(A∞) for any constant k. We thus have the following.

1 < e−βε
`(A∞)

`(A∞ + ε)

(
M

M −A∞

)α−1 V (A∞,M)

V∞(A∞)

< e−βε
`(A∞)

`(A∞ + ε)

(
M

M −A∞

)α−1 V (A∞,M − ε)
V∞(A∞)

= e−βε
`(A∞)

`(A∞ + ε)

(
M

M −A∞

)α−1 V (A∞ + ε,M)
`(A∞)
`(A∞+ε)V∞(A∞)

= e−β(A∞+ε)

(
M

M −A∞

)α−1

V (A∞ + ε,M)

< e−β(A∞+ε)

(
M

M − ε−A∞

)α−1

V (A∞ + ε,M)

= e−β(A∞+ε)

(
M

M − (A∞ + ε)

)α−1

V (A∞ + ε,M)

=
V (A∞ + ε,M)

H(A∞ + ε,M)
.

Now choose δ > 0 such that(
M + δ

M + δ − ε−A∞

)α−1

V (A∞,M + δ − ε) < eβεV∞

Note that δ is guaranteed to exist by the continuity and monotonicity of V (A, T ) and(
T

T−A

)α−1
in T for T > A. We now have

e−βε
(

M + δ

M + δ − ε−A∞

)α−1 V (A∞,M + δ − ε)
V∞

< 1,

which is equivalent to V (A∞ + ε,M + δ) < H(A∞ + ε,M + δ).
Now fix A ≥ A0. For α = 1 we have for all T, Tø > A

H(A, Tø) = eβA ≥ eβA0 =≥ V0(A0) ≥ V0(A) ≥ V (A, T ).

This corresponds to case 1) with T̃ = A or case 3) in the proof of Prop. 4, which implies
σp(A) = A in either case.

For α > 1 we have H(A, Tø) =
(

1− A
Tø

)α−1
eβA. For all T ≥ A we have the following.

lim
Tø↓A

H(A, Tø) = 0 ≤ V∞(A) < V (A, T )

lim
Tø→∞

H(A, Tø) = eβA ≥ V0(A) ≥ V (A, T )
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Since H(A, Tø) is monotonically increasing and V (A, T ) is monotonically decreasing there
must exist a T̃ (A) such that H(A, T̃ ) = V (A, T̃ ) and by the proof of Prop. 4 we must have
σp(A) = T̃ (A). Similarly there must exist a T0(A) such that H(A, T0(A)) = V0(A). By the
monotonicity of H(A, Tø) and V (A, T ) we must have A ≤ T̃ (A) = σp(A) ≤ T0(A) for all
A ≥ A0. Since H(A, T0(A)) = V0(A) we have(

1− A

T0(A)

)α−1

eβA = V0(A).

It follows that

T0(A)−A =
A
[
V0(A)e−βA

] 1
α−1

1− [V0(A)e−βA]
1

α−1

.

Taking the limit A→∞ on both sides gives us limA→∞ T0(A)−A = 0. Since A ≤ σp(A) ≤
T0(A) it follows that limA→∞ σp(A)−A = 0.

A.4 Proof of Lemma 4

That σb(T ) < T for T > 0 is apparent in the proof of Prop. 5. For property 2) choose
T > 0 and for any (a, t) ∈ R2 define

y(a, t) = G(a, t)− a.

Setting y(a, t) = 0 and applying the implicit function theorem gives us the existence of
a continuously differentiable function k(t) such that y(k(t), t) = 0 for all t in some open
neighborhood of T . By the strict quasi-concavity of U(A, T ) established in Prop. 5 we have
σb(T ) as the unique value satisfying y(σb(T ), T ) = 0 for any T > 0. Therefore k(T ) = σb(T )
for all T > 0 and σb(T ) is continuously differentiable for all T > 0.

Suppose 3) is false. In particular assume lim supT→∞ σb(T ) < ∞. Then there exists
some value L > 0 such that σb(T ) < L for all T . By the optimality of σb(T ) we should
have U(σb(T ), T ) ≥ U(A, T ) for all A, T . However, notice that

lim sup
T→∞

U(σb(T ), T ) = lim sup
T→∞

σb(T )h(σb(T ), T ) < Lh∞,

but for any ε > 0 we have

lim
T→∞

U(L+ ε, T ) = (L+ ε) lim
T→∞

h(L+ ε, T )

= (L+ ε)h∞ > Lh∞.

It follows that there exists some T0 such that U(σb(T0), T0) < U(L + ε, T0). This violates
the optimality of σb(T ), hence lim supT→∞ σb(T ) =∞. Now suppose

lim sup
T→∞

(T − σb(T )) = 0.
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Then lim supT→∞
T

σb(T ) = 1 which implies lim supT→∞
T−1
σb(T ) = 1. Again by the optimality

of σb(T ) we should have U(σb(T ),T )
U(A,T ) ≥ 1 for all A < T . But

lim sup
T→∞

U(σb(T ), T )

U(T − 1, T )
= lim sup

T→∞

U(σb(T ), T )

U(T − 1, T )

T − 1

σb(T )

= lim sup
T→∞

U(σb(T ),T )
σb(T )

U(T−1,T )
T−1

= lim sup
T→∞

h(σb(T ), T )

h(T − 1, T )
= 0,

where the last equality holds since lim supT→∞ h(σb(T ), T ) = 0 by our assumption that
lim supT→∞ T − σb(T ) = 0 while lim supT→∞ h(T − 1, T ) > 0. It follows that there exists

a T0 such that U(σb(T0),T0)
U(T0−1,T0) < 1 which violates the optimality of σb(T ).

Property 4) follows from Properties 1)-3).

A.5 Proof of Lemma 5

For each T > 0 the function σb(T ) is the unique solution in A to the equation

g(A)

g′(A)
=
FS(T −A)

fS(T −A)
θ(A, T ).

Define h̃, θ̃, G : R+ → R+ for x ∈ R+ as follows.

h̃(x) = FS(x)[1− (1− p)e−λqh̃(x)]

θ̃(x) = 1− FS(x)λq(1− p)e−λqh̃(x)

G(x) =
FS(x)

fS(x)
θ̃(x)

Then for any T > 0 the function σb(T ) satisfies the relation

g(σb(T ))

g′(σb(T ))
= G(T − σb(T )).

Setting u(T ) = T − σb(T ) and y(T ) = σb(T ) the chain rule gives us the following.

dσb
dT

=
dG
du

d
dy

[
g(y)
g′(y)

]
+ dG

du

From Prop. 6 we get dG
dx > −1 and d

dy [ g(y)
g′(y) ] ≥ 1 . It follows that dσb

dT < 1.
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For each A ≥ 0 the function σp(A) is defined as the unique solution T > A to the
equation

fS(T −A)

fS(T )
=

c

`(A)

(1− p)e−λqh(A,T )

1− (1− p)e−λqh(A,T )
.

Thus we have for each A ≥ 0 the relation

fS(σp(A)−A)

fS(σp(A))
=

c

`(A)

(1− p)e−λqh(A,σp(A))

1− (1− p)e−λqh(A,σp(A))
.

For notational convenience define the following function.

g(u) =
(1− p)e−λqh(A,u)

1− (1− p)e−λqh(A,u)

[
f ′S(u)

f − S(u−A)
−
fS(u)f ′S(u−A)

fS(u−A)2
− fS(u)

]
=

d

dx

[
fS(x)

fS(x−A)

(1− p)e−λqh(A,x)

1− (1− p)e−λqh(A,x)

]
x=u

From Lemma 10 (see Centralized Planner) g(u) < 0 for any u > A. In particular
g(σp(A)) < 0. By the implicit function theorem and chain rule we can write

dσp
dA

= 1 +
d`

dA

1

cg(σp(A))
−

f ′S(σp(A))

g(σp(A))fS(σp(A)−A)

(1− p)e−λqh(A,σp(A))

1− (1− p)e−λqh(A,σp(A))
(23)

By the properties of σp(A) from Lemma 4 there must exist a global minimum at some

point A0 such that
dσp
dA

∣∣∣
A=A0

= 0 and σp(A0) ≤ σp(A) for all A > 0. Whenever
dσp
dA = 0 we

have

f ′S(σp(A))

fS(σp(A)−A)

(1− p)e−λqh(A,σp(A))

1− (1− p)e−λqh(A,σp(A))
= g(σp(A)) +

d`

dA

1

c
.

Using the definition for g(σp(A)) this gives us the following.

d`

dA

1

c
=

(1− p)e−λqh(A,u)

1− (1− p)e−λqh(A,u)

[
−
fS(σp(A))f ′S(σp(A)−A)

fS(σp(A)−A)2
− fS(σp(A))

]
By assumption d`

dA ≥ 0, thus we must have f ′S(σp(A0)−A0) < 0. If S ∼ gamma(α, β) then
this implies f ′S(σp(A0)) < 0. Since fS(x) is either unimodal or monotonically decreasing
and σp(A0) ≤ σp(A) for all A > 0, then we must have f ′S(σp(A)) < 0 for all A > 0. It then

follows from (23) that
dσp
dA < 1. We immediately obtain the desired result, namely

d

dA
[σp(A)−A] < 0 <

d

dT
[T − σb(T )] .
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B A Centralized, Large-Population Botnet Game

B.1 Centralized Expected Cost and Best Response

Another approach to the large-population botnet game is to consider the effects of a cen-
tralized planner on the game. Suppose there is a single player P0 whose strategy space is
T and chooses a threshold T ∈ T for all agents to follow. For tractability we set k ≡ 0
and assume `(A) ≡ ` is constant. The results hold for non-constant ` while the case k > 0
is an open problem. Otherwise we keep the same expected cost function and best response
correspondence as for an individual agent.

C(A, T ) = c[1− FS(T )](1− p)e−λqh(A,T ) + `FS(T −A)[1− (1− p)e−λqh(A,T )]

σc(A) = arg min
T

{C(A, T )}

The difference is that now ∂h
∂T > 0. For ease of exposition we introduce the function ρ(A, T ).

ρ(A, T ) = (1− p)e−λqh(A,T )

With this new notation we can rewrite h(A, T ) and θ(A, T ).

h(A, T ) = 1− FS(T −A)ρ(A, T )

θ(A, T ) = 1− FS(T −A)λqρ(A, T )

In what follows we assume A is fixed and suppress the dependence on A and T in the
notation.

ρ = (1− p)e−λqh

h = 1− FS(T −A)ρ

θ = 1− FS(T −A)λqρ

Taking derivatives we obtain

∂ρ

∂T
= − ∂h

∂T
λqρ = −fS(T −A)λqρ(1− ρ)

θ
∂h

∂T
=
fS(T −A)(1− ρ)

θ
,

∂θ

∂T
= −fS(T −A)λqρ

θ
[1− FS(T −A)λq] .

Taking first derivatives of C(A, T ) we obtain

∂C

∂T
= −cfS(T )ρ−c[1− FS(T )]λqρ

fS(T −A)(1− ρ)

θ
+

`fS(T −A)(1− ρ) + `FS(T −A)λqρ
fS(T −A)(1− ρ)

θ
.
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Provided that fS(T −A)(1− ρ) > 0 it follows that

∂C

∂T

θ

`fS(T −A)(1− ρ)
= −c

`

fS(T )

fS(T −A)

ρ

1− ρ
θ − c

`
[1− FS(T )]λqρ+ θ + FS(T −A)λqρ.

But

θ + FS(T −A)λqρ = 1.

Thus

∂C

∂T

θ

`fS(T −A)(1− ρ)
= −c

`

fS(T )

fS(T −A)

ρ

1− ρ
θ − c

`
[1− FS(T )]λqρ+ 1.

Define the function

M(A, T ) = −c
`

fS(T )

fS(T −A)

ρ

1− ρ
θ − c

`
[1− FS(T )]λqρ+ 1.

Since θ
`fS(T−A)(1−ρ) > 0 it is clear that the sign of M(A, T ) is the same as the sign of ∂C

∂T .
Thus

∂C

∂T

<
>
= 0 ⇐⇒ M(A, T)

<
>
= 0.

Alternatively we can define the functions

R(A, T ) =
c

`

fS(T )

fS(T −A)

ρ

1− ρ
θ,

L(A, T ) = 1− c

`
[1− FS(T )]λqρ,

so that M(A, T ) = L(A, T )−R(A, T ) and

∂C

∂T

<
>
= 0 ⇐⇒ L(A, T)

<
>
= R(A, T ).

It is straight forward to show that L(A, T ) is increasing in T . It remains to be shown that
R(A, T ) is decreasing in T . To do so we will need the function

h∞(φ) = 1− (1− p)e−φh∞(φ)

as well as the following technical lemmas.

Lemma 6. Let h∞(φ) be defined as above. Then
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1. limφ→0 h∞(φ) = p

2. limφ→∞ h∞(φ) = 1

3. limφ→0 φe
−φh∞(φ) = 0

4. limφ→∞ φe
−φh∞(φ) = 0

Proof. The proofs follows directly from the definition of h∞(φ).

Lemma 7. For any φ ≥ 0, and p ∈ [0, 1] we have

φe−φh∞(φ)
<
>
=

1

2(1− p)
⇐⇒ φe−φ

<
>
=

e−
1
2

2(1− p)

Proof. Define the functions

f∞(φ) = 2(1− p)φe−φh∞(φ),

y(φ) = 2(1− p)φe−φ+ 1
2 .

To establish our result it suffices to prove that

f∞(φ)

<
>
= 1 ⇐⇒ y(φ)

<
>
= 1. (24)

By the implicit function theorem both f∞(φ) and y(φ) are differentiable in φ. It is then
straight forward to show that both f∞(φ) and y(φ) are strictly quasi-concave with unique
global maxima at φ = 1. Furthermore

f∞(φ) < y(φ) ⇐⇒ 2(1− p)φe−φh∞(φ) < 2(1− p)φe−φ+ 1
2 ⇐⇒

−φh∞(φ) < −φ+
1

2
⇐⇒ h∞(φ) > 1− 1

2φ
⇐⇒ f∞(φ) < 1.

Similarly

f∞(φ)

<
>
= y(φ) ⇐⇒ f∞(φ)

<
>
= 1. (25)

First consider the case p ≥ 1− 1
2e

1
2 . It follows that for all φ ≥ 0

y(φ) ≤ max
φ≥0

y(φ) = y(1) = 2(1− p)e−
1
2 ≤ 1,

with y(φ) = 1 if and only if p = 1 − 1
2e

1
2 and φ = 1. Suppose there exists a φ0 > 0 such

that f∞(φ0) > 1. By Lemma 6

lim
φ→0

f∞(φ) = lim
φ→0

2(1− p)φe−φh∞(φ) = 0.
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By the continuity of f∞(φ) there must exist a value φ1 ∈ (0, φ0) such that f∞(φ1) = 1. By
Eq. 25 this implies y(φ1) = 1. On the other hand, by Lemma 6

lim
φ→∞

f∞(φ) = lim
φ→∞

2(1− p)φe−φh∞(φ) = 0.

Again by the continuity of f∞(φ) there must exist a value φ2 > φ0 > φ1 such that f∞(φ2) =
1. By Eq. 25 this implies y(φ2) = 1. But by our assumption y(φ) = 1 if and only

if p = 1 − 1
2e

1
2 and φ = 1. This contradicts the result that y(φ1) = y(φ2) = 1 and

φ2 > φ1. Thus no such φ0 exists and we must have f∞(φ0) ≤ 1. It is no hard to see that

if p > 1 − 1
2e

1
2 then both y(φ) and f∞(φ) are strictly less than one and Eq. 24 holds.

SImilarly if p = 1− 1
2e

1
2 then y(φ) and f∞(φ) are strictly less than one if and only if φ 6= 1

and y(1) = f∞(1) = 1. Again Eq. 24 holds.

Now consider the case p < 1− 1
2e

1
2 . In this case there exist two values φ1 and φ2 with

0 < φ1 < 1 < φ2 that are solutions to y(φ) = 1. Furthermore by the continuity and strict
quasi-concavity of y(φ) we must have

y(φ) > 1 ⇐⇒ φ ∈ (φ1, φ2),

y(φ) < 1 ⇐⇒ φ /∈ [φ1, φ2],

y(φ) = 1 ⇐⇒ φ ∈ {φ1, φ2}.

For φ /∈ (φ1, φ2) the same contradiction arguments used in the case p ≤ 1 − 1
2e

1
2 can be

used to establish condition (24). Thus we need only establish the result for φ ∈ (φ1, φ2).
Let φ ∈ (φ1, φ2). Then it must be that y(φ) > 1. Recall that both y(φ) and f∞(φ) take

their maximum values at φ = 1. We claim that for p < 1 − 1
2e

1
2 we have f∞(1) > y(1).

Let p̃ = 1 − 1
2e

1
2 . By the implicit function theorem h∞(1) and y(1) are differentiable

functions in p. It is not hard to show that h∞(1) is monotonically increasing in p and
limp→0 h∞(1) = 0. By the continuity and monotonicity of h∞(1) in p there exists some
value p0 ∈ [0, 1] such that h∞(1) = 1

2 when p = p0, h∞(1) < 1
2 when p < p0 and h∞(1) > 1

2
when p > p0. It is straight forward to also show that

f∞(1)

>
<
= y(1) ⇐⇒ h∞

<
>
=

1

2
.

Suppose p0 > p̃. Then for p = p0 we would have f∞(1) = y(1). By (25) this implies
f∞(1) = y(1) = 1, but this contradicts the fact that y(φ) < 1 for all p > p̃. Suppose on
the other hand that p0 < p̃. Then at p = p0 we would have f∞(1) = y(1). By (25) this
implies f∞(1) = y(1) = 1, but this contradicts the fact that y(φ) > 1 for all φ ∈ (φ1, φ2)
when p < p̃. It follows that p0 = p̃ and f∞(1) > y(1) for all p < p̃.

Now suppose there exists a value φ0 ∈ (φ1, 1) such that f∞(φ0) < y(φ0). Since f∞(φ) <
y(φ) for φ < φ1 the continuity of f∞(φ) and y(φ) imply the existence of a point φ3 > φ0 such
that f∞(φ3) = y(φ3). Again by (25) this implies f∞(φ3) = y(φ3) = 1. This contradicts the
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fact that y(φ) > 1 for all φ ∈ (φ1, φ2). A similar arguments shows there is no such point in
(1, φ2). It follows that f∞(φ) > y(φ) for all φ ∈ (φ1, φ2). Since y(φ) > 1 for all φ ∈ (φ1, φ2)
we have f∞(φ) > 1. Thus y(φ) > 1 =⇒ f∞(φ) > 1. The other direction is trivial since
y(φ) > 1 for all φ ∈ (φ1, φ2).

Lemma 8. For any φ ≥ 0, and p ∈ [0, 1] we have

1− 2(1− p)φe−φh∞(φ) + (1− p)e−φh∞(φ) ≥ 0.

Proof. It follows from Lemma 7 that

1− 2(1− p)φe−φh∞(φ) > 0 ⇐⇒ 1− 2φe−φ+ 1
2 > 0.

Thus if p ≥ 1− 1
2e

1
2 then 1−2(1−p)φe−φh∞(φ) +(1−p)e−φh∞(φ) > 0 and we are done. Now

let p < 1− 1
2e

1
2 . Again let φ1 and φ2 be solutions to 2φe−φ+ 1

2 = 1 with 0 < φ1 < 1 < φ2.

By Lemma 7 if φ /∈ (φ1, φ2) then 1−2(1−p)φe−φh∞(φ) > 0 again giving us the result. Now
let φ ∈ (φ1, φ2). Then 1− 2(1− p)φe−φh∞(φ) < 0.

Suppose φ ∈ (φ1, 1]. It follows that (1 − p)e−φh∞(φ) − (1 − p)φe−φh∞(φ) ≥ 0. At the
same time 1− (1− p)φe−φh∞(φ) > 0. Combining these inequalities we arrive at 1− 2(1−
p)φe−φh∞(φ) + (1− p)e−φh∞(φ) > 0. Now suppose φ ∈ (1, φ2). Define the function

u(φ) = (2φ− 1)(1− p)e−φh∞(φ),

which is clearly differentiable in φ. It suffices to show that u(φ) ≤ 1 for φ ∈ (1, φ2). Notice
that u(1) = (1 − p)e−h∞(1) < 1. Suppose there exists a value φ0 such that u(φ0) > 1. By
continuity there must exist a value φc ∈ (1, φ0) such that u(φc) = 1. We then have

(2φc − 1)(1− p)e−φch∞(φc) = 1,

from which it follows that

h∞(φc) = 1− 1

2φc − 1
.

Plugging this into the definition of h∞(φ) gives

1 = (2φc − 1)(1− p)e−φc+
φc

2φc−1 .

Define the function

k(φ) = (2φ− 1)(1− p)e−φ+ φ
2φ−1 .
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Differentiating we obtain

∂k

∂φ
= −4

(1− p)e−φ+ φ
2φ−1

2φ− 1
(φ− 1)2.

Notice that for φ > 1 we have ∂k
∂φ < 0. Thus maxφ∈(1,φ2) k(φ) = k(1) = (1 − p)e−1+ 1

2−1 =
1 − p < 1. But this contradicts our assumption that k(φc) = 1. Thus there is no such φ0

and we must have u(φ) ≤ 1. This establishes our result.

Lemma 9. For any T ≥ A, λq > 0 and p ∈ [0, 1], if fS(T−A)
fS(T ) is non-decreasing in T then

1− 2FS(T −A)λqρ(A, T ) + ρ(A, T ) ≥ 0.

Proof. Define the function

g(A, T ) = 1− 2FS(T −A)λqρ(A, T ) + ρ(A, T ).

First note that g(A,A) = 1 + ρ(A,A) = p > 0. Furthermore

∂g

∂T
= −λqfS(T −A)

ρ

θ
(2(1− λqFS(T −A)) + (1− ρ)) .

Notice that ∂g
∂T = 0 if and only if 2(1− λqFS(T −A)) + (1− ρ) = 0, or equivalently if and

only if ρ(3− ρ) = 2λqFS(T −A)ρ. Suppose ∂g
∂T = 0 at some point T0. Then

g(A, T0) = 1− 2FS(T0 −A)λqρ(A, T0) + ρ(A, T0)

= (1− ρ(A, T0))2 ≥ 0.

It follows that if g(T ) < 0 for some value T ′ then g(T ) < 0 for all T > T ′. Otherwise by

the mean value theorem there would exist a value Tc such that g(Tc) < 0 and ∂g
∂T

∣∣∣
T=Tc

= 0

which is a contradiction. Specifically if there exists a T ′ such that g(T ′) < 0 then it must
be that limT→∞ g(T ) < 0. We will show that this is not possible.

Recall that h∞ is defined by the fixed point equation

h∞ = 1− (1− p)e−λqh∞ .

Similarly we introduce the notation ρ∞ = (1 − p)e−λqh∞ = 1 − h∞. Defining g∞ ≡
limT→∞ g(T ) we have

g∞ = lim
T→∞

[1− 2FS(T −A)λqρ(A, T ) + ρ(A, T )]

= 1− 2λqρ∞ + ρ∞

It suffices to show that g∞ ≥ 0. But this is exactly the result in Lemma 8, giving us our
result.
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We are finally ready to establish the final Lemma.

Lemma 10. For any T ≥ A, λq > 0 and p ∈ [0, 1], if fS(T−A)
fS(T ) is non-decreasing in T then

the function R(A, T ) is non-increasing in T .

Proof. Differentiating R(A, T ) we obtain

∂R

∂T
=

∂

∂T

[
c

`

fS(T )

fS(T −A)

ρ

1− ρ
θ

]
=
c

`

(
∂

∂T

[
fS(T )

fS(T −A)

]
ρ

1− ρ
θ +

fS(T )

fS(T −A)

∂

∂T

[
ρ

1− ρ
θ

])
.

Since fS(T−A)
fS(T ) is non-decreasing in T and ρ

1−ρθ > 0, it follows that ∂
∂T

[
fS(T )

fS(T−A)

]
ρ

1−ρθ ≤ 0.

It suffices to show that ∂
∂T

[
ρ

1−ρθ
]
≤ 0. Differentiating this terms gives us

∂

∂T

[
ρ

1− ρ
θ

]
=

∂

∂T

[
ρ

1− ρ

]
θ +

ρ

1− ρ
∂θ

∂T
.

Furthermore

∂

∂T

[
ρ

1− ρ

]
= −fS(T −A)λqρ

θ(1− ρ)
, (26)

and

∂θ

∂T
= −λqfS(T −A)ρ

θ
(1− FS(T −A)λq) . (27)

Combining (26) and (27) we have

∂

∂T

[
ρ

1− ρ
θ

]
= −fS(T −A)λqρ

θ(1− ρ)
(1− 2FS(T −A)λqρ+ ρ) .

From Lemma 9 we have 1− 2FS(T −A)λqρ+ ρ ≥ 0. The result follows.

We are now ready to prove the strict quasi-concavity of the Centralized Planner’s
expected cost function.

Proposition 7. Fix A > 0, λq > 0 and p ∈ [0, 1]. If fS(T−A)
fS(T ) is non-decreasing in T , then

the Central Planner’s expected cost is strictly quasi-convex in T .

Proof. By Lemma 10 the function R(A, T ) is non-increasing in T . Furthermore it is easy
to show that the function L(A, T ) is monotonically increasing in T . It follows that the
function M(A, T ) is either strictly positive, strictly negative or there exists a unique vale
T0 such that M(A, T ) < 0 for T < T0, M(A, T0) = 0 and M(A, T ) > 0 for T > T0. Since
M(A, T ) has the same sign as ∂C

∂T the result follows.
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B.2 Centralized Nash Equilibrium

We are now ready to characterize the pure Nash equilibrium for the centralized botnet game
on T (λ). As we have seen the functions L(A, T ) and R(A, T ) were crucial in determining the
responses for the central planner. In the proceeding analysis we will need the limiting values
of these functions. First note the asymptotic behavior of the functions ρ(A, T ), V (A, T )
and θ(A, T ) as T ↓ A.

lim
T↓A

ρ(A, T ) = 1− p,

lim
T↓A

V (A, T ) =
c

`

1− p
p

,

lim
T↓A

θ(A, T ) = 1.

For ease of exposition we define the following values from the asymptotic behavior of
ρ(A, T ), V (A, T ) and θ(A, T ) as T →∞.

ρ∞ ≡ lim
T→∞

ρ(A, T ) = (1− p)eλqh∞ ,

V∞ ≡ lim
T→∞

c

`

ρ(A, T )

1− ρ(A, T )
=
c

`

ρ∞
1− ρ∞

,

θ∞ ≡ lim
T→∞

θ(A, T ) = 1− (1− p)λqe−λqh∞ .

Then for S ∼ gamma(α, β) with α ≥ 1 we have the following.

lim
T↓A

R(A, T ) =

{
exp−βA c

`
1−p
p if α = 1

+∞ if α > 1

lim
T↓A

L(A, T ) = 1− c

`
(1− FS(A))λq(1− p)

lim
T→∞

R(A, T ) = e−βAV∞θ∞,

lim
T→∞

L(A, T ) = 1.

To establish our result we will need the following lemmas which give us important
properties of the best response correspondences σb(T ) and σc(A).

Lemma 11. The following properties of σb(T ) are true.

1. For T > 0, 0 < σb(T ) < T .

2. For T > 0, σb(T ) is continuously differentiable.
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3. lim supT→∞ σb(T ) =∞ with
lim supT→∞ (T − σb(T )) > 0.

4. For all A ∈ (0,∞) there exists a finite T̃ > 0 such that σb(T̃ ) = A.

Proof. The proof is unchanged from the decentralized case, as σb(T ) is independent of
σc(A).

Lemma 12. The following properties of σc(A) hold.

1. For A ≥ 0, σc(A) ≥ A.

2. For 0 ≤ A ≤ 1
β log V∞θ∞, σc(A) =∞.

3. For A > 1
β log V∞θ∞, σc(A) is continuously differentiable with limA↓ 1

β
log V∞θ∞

σc(A) =
∞.

4. Let A ≥ 1
β log

(
c
` (1− p)(

1
p + λq)

)
. Then for α = 1 we have σc(A) = A, and for

α > 1 we have σc(A) > A with limA→∞ σc(A)−A = 0.

Proof. Property 1) follows from the fact that ∂C
∂T < 0 for T < A. Let A ≤ 1

β log V∞θ∞.

Then limT→∞R(A, T ) = c
`e
−βA ρ∞

1−ρ∞ θ∞ ≤ 1 = L∞ < L(A, T ) for all T ∈ [A,∞). Thus
∂C
∂T ≤ 0 which implies φp(A) =∞, establishing property 2).

Now let A > 1
β log V∞θ∞. That σc(A) is single-valued follows from the strict quasi-

concavity of C(A, T ) in T . For any (a, t) ∈ R2 define

g(a, t) = R(a, t)− L(a, t).

Setting g(a, t) = 0 and applying the implicit function theorem gives us the existence of a
continuously differentiable function v(a) such that g(a, v(a)) = 0 for all a in some open
neighborhood of A. Since σp(A) is the unique value satisfying g(A, σp(A)) = 0 for all
A > 1

β log V∞, we must have v(A) = σp(A) for all A > 1
β log V∞. Thus σp(A) is continuously

differentiable for all A > 1
β log V∞.

Denote A∞ = 1
β log V∞θ∞. To show limA↓A∞ σc(A) =∞ it suffices to show that for any

M ∈ R+ there exists an ε > 0 such that σc(A∞+ ε) > M . By monotonicity and continuity
of R(A, T ) and L(A, T ) in T , it suffices to show that for any M ∈ R+ there exists an
ε > 0 and δ > 0 (which may depend on ε) such that R(A∞ + ε,M) > L(A∞ + ε,M) and
R(A∞ + ε,M + δ) < L(A∞ + ε,M + δ).

Fix M > A∞ and choose ε < min

{
M −A∞, 1

β log

((
M

M−A∞

)α−1
V (A∞,M)θ(A∞,M)

V∞θ∞

)}
.

By Lemma 10 fS(T )
fS(T−A∞)V (A∞, T )θ(A∞, T ) is non-increasing in T . This gives

R(A∞,M)

limT→∞R(A∞, T )
> 1.
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But limT→∞R(A∞, T ) = 1 which implies V (A∞,M)θ(A∞,M)
V∞θ∞

> 1. Notice this guarantees
ε > 0. Furthermore since V (A, T ), θ(A, T ) and ρ(A, T ) depend on A and T only through
the difference T −A we have

V (A∞ + ε,M) = V (A∞,M − ε)
θ(A∞ + ε,M) = θ(A∞,M − ε)
ρ(A∞ + ε,M) = ρ(A∞,M − ε).

We now have

L(A∞ + ε,M) ≤ 1 < e−βε
(

M

M −A∞

)α−1 V (A∞,M)θ(A∞,M)

V∞θ∞

= e−βεe−βA∞
(

M

M −A∞

)α−1

V (A∞,M)θ(A∞,M)

≤ e−β(A∞+ε)

(
M

M − ε−A∞

)α−1

V (A∞,M − ε)θ(A∞,M − ε)

= e−β(A∞+ε)

(
M

M − (A∞ + ε)

)α−1

V (A∞ + ε,M)θ(A∞ + ε,M)

= R(A∞ + ε,M).

Now choose δ1 > 0 such that(
M + δ1

M + δ1 − ε−A∞

)α−1

V (A∞,M + δ1 − ε)θ(A∞,M + δ1 − ε) < eβεV∞θ∞

and δ2 > 0 such that

e−β(M+δ2) <
`

cλq(1− p)

(
1− e−βε

(
M + δ1

M + δ1 − ε−A∞

)α−1 V (A∞,M + δ1 − ε)θ(A∞,M + δ1 − ε)
V∞θ∞

)
.

Both δ1 and δ2 are guaranteed to exist by the continuity and monotonicity of R(A, T ) and
ρ(A, T ) in T . Setting δ = max {δ1, δ2} we have

e−βε
(

M + δ

M + δ − ε−A∞

)α−1 V (A∞,M + δ − ε)θ(A∞,M + δ − ε)
V∞θ∞

+
c

`
e−β(M+δ)λqρ(A∞,M + δ − ε) < 1,

which is equivalent to R(A∞ + ε,M + δ) < L(A∞ + ε,M + δ).

Now suppose A ≥ 1
β log

(
c
` (1− p)(

1
p + λq)

)
. For α = 1 it follows that e−βA c`

1−p
p ≤

1− c
`e
−βAλq(1− p), i.e.

lim
T↓A

L(A, T ) ≥ lim
T↓A

R(A, T ).
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By monotonicity L(A, T ) ≥ R(A, T ) and hence ∂C
∂T ≥ 0 for all T ≥ A. It follows that

σc(A) = A.
For α > 1 we need to show limA→∞ σc(A)−A = 0. Definem = maxA,T∈R+ {V (A, T )θ(A, T )}.

We are guaranteed 0 < m < ∞ by the boundedness of V (A, T ) and θ(A, T ). Fix ε > 0.
Since

lim
A→∞

A

[m−1eβA(1− c
` (1− FS(A))λq(1− p))]

1
α−1 − 1

= +∞

we can find an A0 such that

A0

[m−1eβA0(1− c
` (1− FS(A0))λq(1− p))]

1
α−1 − 1

< ε.

It follows that(
A0

ε
+ 1

)α−1

V (A0, A0 + ε)θ(A0, A0 + ε) ≤
(
A0

ε
+ 1

)α−1

m < eβA0

(
1− c

`
(1− FS(A0))λq(1− p)

)
.

This gives(
A0 + ε

A0 + ε−A0

)α−1

e−βA0V (A0, A0 + ε)θ(A0, A0 + ε) < 1− c

`
(1− FS(A0))λqρ(A0, A0),

i.e. for all T ≥ A0

L(A0, T ) ≥ L(A0, A0) > R(A0, A0 + ε).

Note that as limε↓0R(A0, A0 + ε) = +∞, thus there exists an ε1 < ε such that R(A0, A0 +
ε1) > 1 ≥ L(A0, T ) for all T ≥ A0. By the continuity of R and L there exists an ε2 ∈ (ε1, ε)
such that L(A0, A0 + ε2) = R(A0, A0 + ε2). It follows that σc(A0) = A0 + ε2. Hence

0 < σ(A0)−A0 = ε2 < ε.

Taking ε→ 0 gives us the result.

Using the previous technical lemmas we can establish the following lemma which will
help us prove the existence and uniqueness of a Nash equilibrium.

Lemma 13. For any (A, T ) ∈ R2 with 1
β log V∞θ∞ < A < T we have

d

dA
[σc(A)−A] < 0 <

d

dT
[T − σb(T )] .

Or equivalently

dσc
dA

< 1,

dσb
dT

< 1.
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Proof. The proof that 0 < d
dT [T − σb(T )] is exactly as in the decentralized case. The proof

for σc(A) is analogous to the decentralized case.
Recall the definitions for R(A, T ) and L(A, T ). For each A > 1

β log V∞θ∞ the function
σc(A) is defined as the unique solution T > A to the equation

L(A, T ) = R(A, T )

Thus we have for each A > 1
β log V∞θ∞ the relation

L(A, σc(A)) = R(A, σc(A))

For ease of exposition define the following functions.

m(A) = λ2q2[1− FS(σc(A))]
fS(σc(A)−A)ρ(σc(A)−A)(1− ρ(σc(A)−A))

θ(σc(A)−A)

w(A) =
d

dx

[
fS(x)

fS(x−A)

ρ(x−A)

1− ρ(x−A)
θ(x−A)

]
x=σc(A)

For finite A > 1
β log V∞θ∞ we have m(A) > 0 and from Lemma 10 we have w(A) ≤ 0.

Thus m(A)−w(A) > 0. By the implicit function theorem and chain rule we can then write

dσc
dA

= 1 +
fS(σp(A)−A)f ′S(σp(A))

[m(A)− w(A)]fS(σp(A)−A)2
. (28)

Clearly
dσp
dA < 1 if and only if f ′S(σp(A)) < 0. If S ∼ gamma(α, β) then this is equivalent

to
dσp
dA < 1 if and only if σp(A) > α−1

β . For α = 1 we are done. Consider the case

α > 1. Suppose there exists an Ã such that σp(A) ≤ α−1
β . By the properties of σp(A) from

Lemma 4 there must exist a global minimum at some point A0 such that
dσp
dA

∣∣∣
A=A0

= 0 and

σp(A0) ≤ σp(Ã). Thus σp(A0) ≤ α−1
β which implies

dσp
dA

∣∣∣
A=A0

≥ 1 which is a contradiction.

It follows that σp(A) > α−1
β from which we obtain

dσp
dA < 1.

We immediately obtain the desired result, namely

d

dA
[σc(A)−A] < 0 <

d

dT
[T − σb(T )] .

We are now ready to prove the existence and uniqueness of a pure Nash equilibrium in
the centralized botnet game.
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Theorem 2. Let S ∼ Gamma(α, β) with α ≥ 1, β > 0 in the centrally planned, infinite-
population, botnet game on T (λ) with homogeneous agents. Then there exists a unique,
pure, symmetric Nash equilibrium in which all agents play the same strategy, i.e. there
exists a unique point (A∗, T ∗) ∈ R2 such that

σb(T
∗) = A∗

σc(A
∗) = T ∗.

Proof. Given Lemma’s 11, 12 and 13 the proof is analogous to the decentralized case.

Again we can obtain bounds on the equilibrium.

Corollary 5. Let (A∗, T ∗) be the unique, pure Nash equilibrium in Theorem 2. Then we

have T ∗ ≥ max {A∗, α−1
β } and A∗ ≥ max

{
0, 1

β log (V∞θ∞)
}

. In the special case α = 1,

i.e. Si ∼ exp(β), we have

max

{
0,

1

β
log (V∞θ∞)

}
≤ A∗ ≤ max

{
0,

1

β
log

(
c

`
(1− p)

(
1

p
+ λq

))}
,

A∗ ≤ T ∗ < inf

{
T : σb(T ) =

c

`
(1− p)

(
1

p
+ λq

)}

C Extension of Equilibrium Results to G(n, λ/n)

C.1 Convergence Results for the Centralized Botnet Game

The preceding analysis is applicable to the limiting object of a sequence of random rooted
Poisson Branching Process Tn(λ)→ T (λ). In this section we show that Nash equilibria on
T (λ) are also Nash equilibria in the same game played on the limiting graph of a sequence
of Erdos-Renyi random graphs G(n, λ/n), which we denote by G∞(λ). The proof relies on
the objective method [2] and follows the proof in [11].

Notice that for a given A and T an agent’s cost and the botmaster’s utility are random

variables. Fixing A ∈ A and T ∈ T let C
(n)
i (A, T ) be the random cost of agent i, (i =

1, 2, ..., n) and U
(n)
b (A, T ) the random utility of the bot master onG(n, λ/n). LetX

(n)
i (A, T )

be the indicator random variable for a false alarm and Y
(n)
i (A, T ) be the indicator random

variable for a missed detection for agent i on G(n, λ/n). Furthermore let W
(n)
i (A, T ) be

the indicator random variable for infection of agent i on G(n, λ/n) and let D
(n)
i (A, T ) be

the indicator random variable for a detection event by agent i on G(n, λ/n). If agent i
and agent j are neighbors in G(n, λ/n) then we write i ∼ j. We will suppress the A, T
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dependence notation from here on. With the above notation we have the following relations.

W
(n)
i = 1− (1− χ(n)

i )
∏
i∼j

(1−B(n)
ki Y

(n)
i ) (29)

D
(n)
i = 1{T<W (n)

i +S
(n)
i A} (30)

X
(n)
i = (1−W (n)

i )D
(n)
i (31)

Y
(n)
i = W

(n)
i (1−D(n)

i ) (32)

Let

C
(n)
i = cX

(n)
i + `Y

(n)
i ,

C(n) =
1

n

n∑
i=1

C
(n)
i = c

1

n

n∑
i=1

X
(n)
i + `

1

n

n∑
i=1

Y
(n)
i

U
(n)
b = A

1

n

n∑
i=1

Y
(n)
i .

The expected cost and utilities are then

E[C
(n)
i ] = cE[X

(n)
i ] + `E[Y

(n)
i ],

E[C(n)] = c
1

n

n∑
i=1

E[X
(n)
i ] + `

1

n

n∑
i=1

E[Y
(n)
i ]

E[U
(n)
b ] = A

1

n

n∑
i=1

E[Y
(n)
i ].

Because the underlying graph G(n, λ/n) is random the labeling of nodes is interchangeable
and by exchangeability we have for all i 6= j

E[X
(n)
i ] = E[X

(n)
j ],

E[Y
(n)
i ] = E[Y

(n)
j ].

In particular the root node of G(n, λ/n), say node i = 0 is chosen uniformly at random,
thus we have for all i = 0, 1, 2, 3..., n− 1

E[C
(n)
i ] = cE[X

(n)
0 ] + `E[Y

(n)
0 ], (33)

E[C(n)] = c
1

n

n∑
i=1

E[X
(n)
0 ] + `

1

n

n∑
i=1

E[Y
(n)

0 ] = cE[X
(n)
0 ] + `E[Y

(n)
0 ] (34)

E[U
(n)
b ] = A

1

n

n∑
i=1

E[Y
(n)

0 ] = AE[Y
(n)

0 ]. (35)
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Proposition 8. For any (A, T ) ∈ A×T if the processes
{
X

(n)
i (A, T )

}n−1

i=0
and

{
Y

(n)
i (A, T )

}n−1

i=0
satisfy (29) - (32) on G(n, λ/n), then

lim
n→∞

E
[
X

(n)
i (A, T )

]
= [1− FS(T )](1− p)e−λqh(A,T )

lim
n→∞

E
[
Y

(n)
i (A, T )

]
= h(A, T ).

Proof. For d > 0 let Nd(1, G(n, λ/n)) be a neighborhood of radius d about the root node

i = 1 of G(n, λ/n). For fixed d we have G(n, λ/n)
D→ T (λ, d) as n→∞. By the Skorohod

Representation Theorem we can consider the two random graphs to be defined on the same
probability space and with probability one, there is a finite random variable N such that
Nd(0, G(n, λ/n)) = T (λ, d) for all n ≥ N . Fix d > 0 and denote the leaves of T (λ, d)

by ∂T (λ, d). We now construct two depth-d recursive tree processes, L
(d)
i and U

(d)
i . For

i ∈ ∂T (λ, d) let

L
(d)
i = χi1(T ≤ Si + χiA)

U
(d)
i = 1.

For any recursive tree process (RTP) Ri defined for each i ∈ T (λ) define the functionals
W (·) and D(·) as follows.

W (Ri) = 1− (1− χi)
∏
j→i

(
1−BjiRj

)
D (Ri) = 1{T<Si+W(Ri)A}

Thus the functional W (·) and D(·) are actually functionals of all children of the argument
Ri. For all i /∈ ∂T (λ, d) we define

L
(d)
i = W

(
L

(n)
i

)
D
(
L

(n)
i

)
U

(d)
i = W

(
U

(n)
i

)
D
(
U

(n)
i

)
.

For n > N we can consider Nd(0, G(n, λ/n)) = T (λ). We can then define the corresponding

RTP
{
Ỹ

(n)
i (A, T )

}n−1

i=0
for n > N by

Ỹ
(n)
i (A, T ) =

{
Y

(n)
i (A, T ) if i ∈ ∂T (λ, d)

W
(
Ỹ

(n)
i (A, T )

)
D
(
Ỹ

(n)
i (A, T )

)
if i /∈ ∂T (λ, d).
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Observe that for n > N we have E[Y
(n)

0 ] = E[Ỹ
(n)

0 ]. This is not necessarily true for i 6= 0,
but we are only concerned about the root here.

First observe that for all n ≥ N and for all i ∈ ∂T (λ, d) we have L
(d)
i ≤ Ỹ

(n)
i ≤ U

(d)
i .

We will show that in fact L
(d)
i ≤ Ỹ

(n)
i ≤ U

(d)
i holds for all i of equal depth in the tree, in

particular

L
(d)
ø ≤ Ỹ (n)

0 ≤ U (d)
ø . (36)

We prove (36) by showing that the functionals W (·) and D(·) are monotonic, i.e. for
any indicator random variables Qi, Ri defined for each i ∈ T (λ), if Qj ≤ Rj for each
j such that j → i, then W (Qi) ≤ W (Ri) and D(Qi) ≤ D(Ri). To prove this we con-
sider the different cases. First note that if χi = 1 then W (Qi) = W (Ri) = 1. Suppose
χi = 0. If

∏
j→i (1−BjiQj) =

∏
j→i (1−BjiRj) then W (Qi) = W (Ri) = 1. Suppose∏

j→i (1−BjiQj) 6=
∏
j→i (1−BjiRj). Then there are two possibilities. Either

0 =
∏
j→i

(1−BjiQj) <
∏
j→i

(1−BjiRj) = 1 (37)

or

1 =
∏
j→i

(1−BjiQj) >
∏
j→i

(1−BjiRj) = 0. (38)

Suppose (37) is true. Then BjiRj = 0 for all j such that (i, j) ∈ E while at the same
time BjiQj = 1 for some j such that (i, j) ∈ E. Let j∗ be such that Bj∗iQj∗ = 1.
Then we must have Bj∗i = Qj∗ = 1. But then Rj∗ = 0 giving us Rj∗ < Qj∗ . This
contradicts our assumption that Qj ≤ Rj . It follows that (38) must hold, which implies
0 = W (Qj) < W (Rj) = 1. This exhausts all possibilities.

The proof for the monotonicity of the functional D(·) follows directly from the mono-
tonicity of W (·). Specifically if W (Qi) ≤W (Ri) then we need only consider the two cases.
If W (Qi) = W (Ri) then D(Qi) = D(Ri). If W (Qi) 6= W (Ri) then we have W (Qi) = 0
and W (Ri) = 1, in which case D(Qi) = 1{Ti<Si} and D(Ri) = 1{Ti<Si+A}. If Ti < Si
then D(Qi) = D(Ri) = 1. If Si ≤ Ti < Si + A then 0 = D(Qi) < D(Ri) = 1. Finally if
Ti ≥ Si +A then D(Qi) = D(Ri) = 0. Hence D(Qi) ≤ D(Ri).

By the monotonicity of both W (·) and D(·) we have the monotonicity of W (·)D(·).
Thus for all i at depth d− 1 from the root we must have L

(d)
i ≤ Ỹ

(n)
i ≤ U

(d)
i . If d = 1 we

then have (36) trivially. By induction on d we obtain the result for any finite d.
We now have

E[L
(d)
ø ] ≤ E[Ỹ

(n)
0 ] = E[Y

(n)
0 ] ≤ E[U

(d)
ø ]. (39)

In order to finish the proof we show that L
(d)
ø and U

(d)
ø both converge in distribution

to Bernoulli random variables with parameter h(A, T ) as d→∞.
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Define h
(d)
i = P

(
L

(d)
i = 1

)
. For d = 1 we have

L
(1)
ø = 1−max

{
1−W

(
L

(1)
ø

)
,1{Tø ≤ Sø +W

(
L

(1)
ø

)
A}
}
,

W
(
L

(1)
ø

)
= 1− (1− χi)

∏
j→i

(
1−BjiL(1)

j

)
.

By definition for j ∈ ∂T (λ, 1)

h
(1)
j = P

(
L

(1)
j = 1

)
= P (χj = 1, Tj > Sj + χjA)

= FS(Tj −A)p.

It is then possible to show by a similar derivation as we did to get h(A, T ) that

h
(1)
ø = FS(Tø −A)[1− (1− p)e−λqh

(1)
1 ],

= FS(Tø −A)[1− (1− p)e−λqFS(Tø−A)p].

Define the function g(x,A, T ) = FS(T − A)[1 − (1 − p)e−λqx]. The above gives h
(1)
ø =

g(h
(1)
1 , A, T ). By induction on d it is straight forward to show that h

(d+1)
ø = g(h

(d+1)
1 , A, T ) =

gd(FS(T − A)p,A, T ) where superscript d represents composition in x. Thus as d → ∞
repeated composition of the function g(·, A, T ) will converge to the unique fixed point

solution h(A, T ). The proof for U
(d)
ø is analogous.

With the above we have limd→∞E[L
(d)
ø ] = h(A, T ) and limd→∞E[U

(d)
ø ] = h(A, T ).

Then in the limit as d → ∞ we must have E[Y
(n)

0 ] = h(A, T ) for n ≥ N . With these
results a similar argument shows that in the limit as d→∞ for n ≥ N we must have

E[X
(n)
0 ] = [1− FS(Tø)](1− p)e−λqh(A,T ).

Applying the above proposition to (34) and (35) we get the following corollary.

Corollary 6. For any (A, T ) ∈ A × T and corresponding processes {X(n)
i (A, T )}n−1

i=0 and

{Y (n)
i (A, T )}n−1

i=0 satisfying (29) - (32) on G(n, λ/n) we have

lim
n→∞

E[C(n)(A, T )] = c[1− FS(T )](1− p)e−λqh(A,T ) + `h(A, T ) = C(A, T ),

lim
n→∞

E[U
(n)
b (A, T )] = Ah(A, T ) = U(A, T ).

Given the above proposition and corollary we have the following.

Proposition 9. Any pure, symmetric Nash equilibrium (A∗, T ∗) in the centralized botnet
game on T (λ) is a pure, symmetric Nash equilibrium in the centralized botnet game on
G∞(λ).
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C.2 Convergence Results for the Decentralized Botnet Game

Now consider the case for the decentralized game. We still work in the same probability
space but our strategy space is now A× T × T .

As before for a given (A, T, Tø) ∈ A × T × T a root agent’s cost and the botmaster’s

utility are random variables. Let C
(n)
0 (A, T, Tø) be the random cost of a root agent and

U
(n)
b (A, T ) the random utility of the bot master on G(n, λ/n). As before let X

(n)
i (A, T )

be the indicator random variable for a false alarm and Y
(n)
i (A, T ) be the indicator random

variable for a missed detection for agent i > 0 on G(n, λ/n) and denote by X
(n)
0 (A, T, Tø)

and Y
(n)

0 (A, T, Tø) the indicator random variables for false alarm and missed detection,
respectively, for a root agent. The defining relations analogous to (29)-(32) are as follows.

W
(n)
i = 1− (1− χ(n)

i )
∏
i∼j

(1−B(n)
ki Y

(n)
i ) (40)

D
(n)
i =

1{Tø<W
(n)
0 +S

(n)
i A} if i = 0

1{T<W (n)
i +S

(n)
i A} if i > 0

(41)

X
(n)
i = (1−W (n)

i )D
(n)
i (42)

Y
(n)
i = W

(n)
i (1−D(n)

i ) (43)

The random cost to the root agent and the random utility to the bot master are then

C
(n)
0 (A, T, Tø) = cX

(n)
0 (A, T, Tø) + `Y

(n)
0 (A, T, Tø),

U
(n)
b (A, T, Tø) = A

1

n

n−1∑
i=0

Y
(n)
i = A

1

n
Y

(n)
0 (A, T, Tø) +A

1

n

n−1∑
i=1

Y
(n)
i (A, T ).

The expected cost and utilities become

E[C
(n)
0 (A, T, Tø)] = cE[X

(n)
0 (A, T, Tø)] + `E[Y

(n)
0 (A, T, Tø)], (44)

E[U
(n)
b (A, T, Tø)] = A

1

n
E[Y

(n)
0 (A, T, Tø)] +A

1

n

n−1∑
i=1

E[Y
(n)
i (A, T )]. (45)

Since a root node is chosen uniformly at random we have by exchangeability for all i, j 6= 0

E[X
(n)
i ] = E[X

(n)
j ],

E[Y
(n)
i ] = E[Y

(n)
j ].

Thus we can write E[U
(n)
b (A, T, Tø)] = A 1

nE[Y
(n)

0 (A, T, Tø)] + An−1
n E[Y

(n)
1 (A, T )]. Then

limn→∞E[U
(n)
b (A, T, Tø)] = limn→∞AE[Y

(n)
1 (A, T )] provided this limit exists. Thus we
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can consider the limiting expected utility of the bot master as a function of A and T

only. In addition if we can show that limn→∞E[C
(n)
0 (A, T, Tø)] = Cø(A, T, Tø), then by

our previous equilibrium results there will exist an optimal population strategy T ∗(A). In
this case all agents will play the same strategy, i.e. T = Tø = T ∗(A) and by exchangeability
we will have for all i 6= j

E[X
(n)
i ] = E[X

(n)
j ],

E[Y
(n)
i ] = E[Y

(n)
j ].

In particular we have

E[U
(n)
b (A, T )] = A

1

n

n−1∑
i=0

E[Y
(n)

0 ] = AE[Y
(n)

0 ].

Thus it suffices to prove the that

lim
n→∞

E[X
(n)
0 (A, T, Tø)] = E[Xø(A, T, Tø)],

lim
n→∞

E[Y
(n)

0 (A, T, Tø)] = E[Yø(A, T, Tø)].

The proof of this convergence is exactly as in the centralized case. Thus we state the
corresponding propositions for the decentralized game without proof.

Proposition 10. For any (A, T, Tø) ∈ A×T ×T if the processes
{
X

(n)
i

}n−1

i=0
and

{
Y

(n)
i

}n−1

i=0
satisfy (40) - (43) on G(n, λ/n), then

lim
n→∞

E
[
X

(n)
0

]
= [1− FS(Tø)](1− p)e−λqh(A,T ),

lim
n→∞

E
[
Y

(n)
0

]
= FS(Tø −A)[1− (1− p)e−λqh(A,T )].

Applying the above proposition to (44) and (45) we get the following corollary.

Corollary 7. For any (A, T, Tø) ∈ A×T ×T and corresponding processes {X(n)
i (A, T )}n−1

i=0

and {Y (n)
i (A, T )}n−1

i=0 satisfying (40) - (43) on G(n, λ/n) we have

lim
n→∞

E[C(n)(A, T )] = c[1− FS(T )](1− p)e−λqh(A,T ) + `FS(Tø −A)[1− (1− p)e−λqh(A,T )]

= Cø(A, T, Tø),

lim
n→∞

E[U
(n)
b (A, T )] = Ah(A, T )

= U(A, T ).
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Given the above proposition and corollary we have the following.

Proposition 11. Any pure, symmetric Nash equilibrium (A∗, T ∗) in the decentralized bot-
net game on T (λ) is a pure, symmetric Nash equilibrium in the decentralized botnet game
on G∞(λ).
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