
Crowdsourcing Quantitative Evaluation:
Algorithms and Empirical Results∗

Luca de Alfaro and Michael Shavlovsky
Computer Science Dept., University of California, Santa Cruz, CA 95064, USA

{luca, mshavlov}@ucsc.edu

Technical Report UCSC-SOE-14-03, School of Engineering, UC Santa Cruz

Abstract

We consider the problem of crowd-sourcing the quantitative
evaluation of the quality of a set of items. Each item is exam-
ined and assigned a numerical grade by a small number hu-
man evaluators. Evaluators are naturally affected by personal
biases, random mistakes, and unequal levels of dedication to
the task: our goal is to compute consensus grades that are as
precise and as free of biases as possible. We present two novel
algorithms for this problem: one, nicknamed VarianceProp-
agation, is related to belief propagation and maximum like-
lyhood; the other, nicknamed CostOfDisagreement, is based
on iterated convex optimization. Both algorithms implement
reputation systems that weigh more the input from more ac-
curate evaluators.
On synthetic data, both algorithms far outperform simple ag-
gregators such as average. To evaluate the performance of the
algorithms in the real world, we used a dataset from Crowd-
Grader, a web based peer-grading tool, consisting in 11645
evaluations of 1797 submissions, collected over 22 home-
work assignments. As this dataset lacks a ground truth, we
introduce and justify the use of stability under subsampling as
a measure of algorithm precision that can be used in absence
of a ground truth. On this real-world data, we identify a ver-
sion of VariancePropagation that has superior performance to
all other alternatives. We discuss the aspects and adaptations
of the algorithms that make them well-suited to real-world
use.

1 Introduction
Humans are the best judges of quality for many types of con-
tent. Examples are content produced via a creative or artistic
process, such as creative-writing essays, photographs, non-
trivial software applications, and content whose complexity
precludes an easy understanding by machines. To produce
quality estimates for large collections of such content, we
need to rely on crowdsourcing: asking human evaluators
to provide their judgement for individual items, and then
merging the judgements into consensus estimates of qual-
ity. In this paper, we consider the question of how to best
merge numerical quality estimates, such as grades, into reli-
able “consensus” estimates.

∗This work was supported in part by the Google Research
Award “Crowdsourced Ranking”. The authors are listed in alpha-
betical order.

We consider a setting consisting of a set of items whose
quality is to be evaluated, and a set of users that act as human
evaluators. Each item is evaluated by a small set of users,
which in our experiments numbers generally from 3-4 to a
dozen at most. We assume that the evaluations are done in
a non-anonymous fashion, so that we have stable identities
for the users, and we assume that users typically perform
more than one evaluation, making it possible to character-
ize their individual accuracy and error model. The goal is
to reconstruct the best possible estimates of the qualities of
the items. We introduce new algorithms for the computation
of consensus quality estimates, and we evaluate the perfor-
mance of these algorithms both on synthetic data, and on
real-world data obtained via CrowdGrader (de Alfaro and
Shavlovsky 2013), a web based peer-grading tool. As the
peer-grading data does not come with a ground truth, one of
the contributions of this paper will be to introduce accuracy
measures for the algorithms that can be used also absent a
ground truth. The crowdsourcing algorithms we introduce
in this paper are based on reputation systems that measure
the accuracy of each user, and that listen more to the input
from more precise users.

The first algorithm, nicknamed VariancePropagation, is
inspired by the algorithm of (Karger, Oh, and Shah 2011)
for the crowdsourcing of boolean evaluations (such as
spam/non-spam judgements), and is inspired also by ex-
pectation maximization techniques (Dempster et al. 1977;
Dawid and Skene 1979; Raykar et al. 2010). The algorithm
initially assumes that all users have the same a-priory accu-
racy, and then iteratively refines the estimates of item qual-
ity, and user accuracy. In each iteration, the algorithm com-
putes a consensus estimate of the grade of each item, weigh-
ing the input from each user in according to the estimated
accuracy of the user. The consensus estimats for the items
are then used to refine our estimates of the accuracy of indi-
vidual users.

Our second algorithm, nicknamed CostOfDisagreement,
is based on the iterative solution of convex-optimization
problems that aim at aligning the estimated grades to the
available user input. At each iteration, CostOfDisagreement
uses convex optimization to compute consensus grades for
the items that minimize the total cost of disagreement with
the users. The cost of disagreeing with a user is the product
of two factors, which measure the amount of disagreement

of a user, and the reputation of a user. Initially, users all have
the same reputation. After each iteration, once the convex-
optimization problem is solved, we update the estimates of
user reputation: users that have larger disagreement with the
consensus grades are assumed to be less accurate and receive
lower reputation, so that their input carries less weight in the
next iteration.

We describe several variants of each of these algorithms
that differ among other things in the details of how repu-
tation is assigned to users and in the details of the error
model adopted for users. We present an in-depth evalua-
tion of these algorithms both on synthetic data, and on real-
world data from peer-grading. On synthetic data, the algo-
rithms far outperform simpler algorithms not based on user
reptuation, such as average or median. Evaluating the per-
formance of the algorithms on the real-world peer-grading
data required overcoming one basic difficulty: we have no
ground truth for the quality of the submitted solutions. Ini-
tially, we hoped that grades assigned by TAs or instructors
could be used as ground truth. Aside from the relative spar-
sity of such data (people use peer grading to avoid grading
all assignments, after all), the problem is that such control
grades are often no more accurate than the grades crowd-
sourced from the students. We examined several computer
science coding assignments, on topics we can be considered
experts, and we noticed that often instructors and TAs, and
ourselves, missed flaws that are detected by at least some of
the student evaluators.

To overcome this difficulty, we introduce as quality crite-
rion stability under subsampling, which measures how close
are the consensus grades computed by the algorithms in runs
in which some of the input data has been appropriately re-
moved. The closer the consensus grades computed on pairs
of independently subsampled input data, the greater the abil-
ity of the crowdsourcing algorithms to reconstruct accurate
consensus grades with limited input. We validate this in-
tuition both mathematically, and by showing that on syn-
thetic data (where the ground truth is known), algorithm ac-
curacy is very strongly related (ρ ≥ 0.9) with stability under
subsampling. Armed with this quality criterion, we present
detailed results of the accuracy of VariancePropagation and
CostOfDisagreement on our peer-grading dataset.

Our evaluation on real-world data is based on a peer-
grading dataset consisting of 1797 items, 973 users, and
11645 grades, collected over 22 assignments. On this data,
one variant of the VariancePropagation algorithm provides
the best results, leading to a reduction in root mean square
error of about 20% compared to simple average (which in
our experiments, proved superior to simple median). The
CostOfDisagreement algorithm, which performed almost as
well as VariancePropagation on synthetic data, yields infe-
rior results to our average-algorithm baseline on real data.
This provides an interesting cautionary example of the dif-
ference between evaluation on real-world and synthetic data.

We believe that the performance difference between syn-
thetic and real-world data is due to a combination of fac-
tors. In synthetic data, we can easily simulate the existence
of groups of students with widely different grading accu-
racy, such as students who are completely uninterested in the

class, or who exhibit borderline spammer behavior. The sit-
uation in our peer-grading data was quite different. Students
came from real classes taught at universities, and shared
somewhat similar background. CrowdGrader also provided
a strong incentive to behave as accurate graders, since a good
portion of a student’s overall grade was determined by their
grading accuracy. Thus, the students in our dataset may not
differ as markedly in their grading accuracy, reducing the
accuracy gains that can be obtained via a reputation system,
but increasing the accuracy of the resulting grades.

Overall, our results indicate how practical and efficient
crowdsourcing algorithms can lead to higher-accuracy con-
sensus grades in a wide range of real-world situations.

2 Related work
The work that is the most closely related to ours is the
work of (Piech et al. 2013) on crowdsourcing algorithms for
MOOC peer-grading. In that work, the authors construct
statistical models of submission quality, user bias, and user
precision, and use them in order to obtain more accurate es-
imates of submission quality. The algorithms are based on
Gibbs sampling to obtain the estimates. In order to evalu-
ate the results, the authors set aside a small fraction of sub-
missions to receive very many evaluations, on the order of
hundreds. Taking an average of this large number of submis-
sions provides the ground truth against which the algorithms
can be evaluated. This approach is feasible in MOOCs be-
cause a small fraction of the total number of submissions
can still contain enough submissions to be statistically sig-
nificant, and the large number of evaluations for this small
fraction of submissions represents a small portion of the total
evaluation work. We cannot follow this approach, as in our
classroom setting we would need to select a larger fraction
of submissions to have a sufficiently large sample size for
our ground truth, and asking for many evaluations for such
submissions would draw away too large a share of the total
reviewing work. We view the idea of using stability under
subsampling as evaluation metric as one of the contributions
of this work.

The authors of (Piech et al. 2013) report improvements of
about 30% compared to the use of the median of peer grades.
The results are difficult to compare with ours, due to the dif-
ferent nature of the datasets. In our peer evaluation dataset,
the users are university students enrolled in traditional (not
on-line) classes; as such, they are likely to be more uniform
in skills and in motivation than students of a MOOC class,
where different motivational levels (from mildly interested
or just browsing, to very determined), skills levels, and at-
titudes towards coursework are to be found. When plotting
the accuracy data for students in our peer-grading datasets,
over 70% of the students were reasonably precise, and fairly
undistinguishable in their grading performance. The best
comparison would be obtained by running the algorithms
on the same data.1 The algorithms of (Piech et al. 2013)
and those presented here are markedly different in structure:

1The code for the VariancePropagation algorithm is available at
https://github.com/lucadealfaro/vancouver .

2

https://github.com/lucadealfaro/vancouver

rather than Gibbs sampling, we use a relatively straightfor-
ward graph-based iteration to compute consensus grades.

The problem of computing reliable consensus grades in
peer grading has been considered in (Goldin and Asley
2011; Goldin 2012). As in our work, (Goldin and Asley
2011; Goldin 2012) model the bias of individual students,
even along the multiple-dimensions of a grading rubric
consisting of several categories. Differently from our ap-
proach, they do not model individual student accuracies;
careless students, or vandals, would be recognized only via
their overall bias, if any. The problem of combining input
from multiple raters is also considered in (Johnson 1996;
Rogers, Girolami, and Polajnar 2010); the work focuses on
raters who evaluate hundreds of submissions each, allowing
for the development of sophisticated error models for each
rater.

The structure of our VariancePropagation algorithm is re-
lated to the algorithm of (Karger, Oh, and Shah 2011) for
the crowdsourcing of binary labels; both algorithms are
in turn inspired by the belief-propagation approach (Pearl
1988). Indeed, we arrived at VariancePropagation by using
(Karger, Oh, and Shah 2011) as starting point, and asking the
question of how to best adapt the idea underlying the algo-
rithm to quantitative evaluations, rather than binary labels.
Our derivation of VariancePropagation is also informed by
the expectation-maximizaton technique (Dawid and Skene
1979).

Other papers have proposed models for crowdsourcing
binary labels. Dawid and Skene (Dawid and Skene 1979)
developed an algorithm based on expectation maximization
(EM). The algorithm is based on a statistical model with
observable and hidden parameters. Observable parameters
model quantities of interests (true labels). Hidden parame-
ters model probabilities of user errors. The algorithm pro-
ceeds in iterations with two steps, Expectation and Maxi-
mization. In the Maximization step, estimates for observ-
able variables are obtained using the maximum likelihood
method. Then, in the Expectation step, hidden variables are
estimated as expected values. There are few drawback of al-
gorithms based on EM technique, as pointed out in (Karger,
Oh, and Shah 2011). First, the output of an algorithm de-
pends on the initial values of model parameters; and it can
vary from one algorithm run to another. Second, there is no
analysis to obtain performance guarantees. Later, Quang et
al. (Liu, Peng, and Ihler 2012) developed a belief propaga-
tion algorithm by considered the problem of crowdsourcing
binary labels as a standard inference problem in graphical
models; the work generalizes (Karger, Oh, and Shah 2011).
The problem of N -ary labels (or multiple-choice questions)
is considered in (Karger, Oh, and Shah 2013) and (Bachrach
et al. 2012).

3 Problem Setting
We consider the problem of crowdsourcing the evaluation of
the quality of a set of items. We assume that we have fixed
sets S of items andU of users. Each user is assigned a subset
of items to evaluate: we model the evaluation assignment via
a bipartite graph G = (T,E), where T = S ∪ U , and E ⊆
S×U , so that (s, u) ∈ E iff u evaluates s. For each (s, u) ∈

E, user u provides for item s a grade gs,u ∈ [0, Gmax] in
some fixed grade range [0, Gmax]. We denote by ∂u = {s ∈
S | (s, u) ∈ E} the set of items evaluated by user u ∈ U ,
and similarly, by ∂s = {u ∈ U | (s, u) ∈ E} the set of
users who evaluated item s ∈ S. Without loss of generality,
we assume that every item and every user participates in at
least one evaluation: that is, we assume that ∂s 6= ∅ and
∂u 6= ∅ for all s ∈ S and u ∈ U . Items and users that do not
participate in evaluations can simply be removed from the
input. The goal of the crowdsourcing algorithms consists in
computing consensus grades ĝs for each item s ∈ S that are
as close as possible to the true quality of the items.

In the peer-grading CrowdGrader dataset, the set S con-
sists of the solutions submitted to a homework assignment,
and the set U corresponds to the students in the class. In the
CrowdGrader datasets, we have |S| ≤ |U |; the size of S can
be smaller than that of U if some students fail to submit a
solution, or if students are allowed to work in groups on the
submissions. The graphs corresponding to CrowdGrader re-
view assignments are essentially random graphs where all
nodes in S have approximately the same degree, and all the
nodes in U have approximately the same degree.

4 Algorithms
The simplest algorithm for computing consensus grades
consists in averaging the grades each submission has re-
ceived; we refer to this algorithm as AVG. To improve on
AVG, we introduce two novel crowdsourcing algorithms for
the computation of consensus grades: VariancePropagation
and CostOfDisagreement.

4.1 The VariancePropagation algorithm
The VariancePropagation algorithm is based on the follow-
ing variance minimization principle.

Proposition 1 (minimum variance estimator) Suppose
we have available uncorrelated estimates X̂1, . . . , X̂n of a
quantify x of interest, where each X̂i is a random variable
with average x and variance vi, for 1 ≤ i ≤ n. We can
obtain an estimate of x that has minimum variance by av-
eraging X̂1, . . . , X̂n while giving each X̂i a weight propor-
tional to 1/vi, for 1 ≤ i ≤ n. That is, the minimum variance
estimator X̂ of x can be obtained as:

X̂ =

∑n
i=1 X̂i/vi∑n
i=1 1/vi

.

The variance of this estimator is var(X̂) =
(∑n

i=1
1
vi

)−1
.

Proof. Given two uncorrelated estimates X̂1, X̂2, with
variances v1, v2, consider their linear combination Y =
α1X̂1 + α2X̂2, with α1 + α2 = 1. By the Bienaymé for-
mula, the variance of Y is given by α2

1v1 + (1− α1)2v2. If
we take the derivative with respect to α1, and set it to 0, we
obtain α1v1 = α2v2, or α1 ∝ 1/v1 and α2 ∝ 1/v2. The
general case for n estimates follows similarly.

This observation suggests a crowdsourcing algorithm for
grades: if we could somehow measure the variance vi of

3

Algorithm 1 The VariancePropagation Algorithm.
Input: G = ((S ∪ U), E), {gs,u}(s,u)∈E , K > 0.
Output: Consensus grades gs for s ∈ S.

1: {Initialization}
2: for all u ∈ U do vu := 1; bu := 0
3: for iteration k = 1, 2, . . . ,K do
4: {Update item estimates}
5: for all s ∈ S do
6: gs := WAvg({(gs,u − bu, f(vu)) | u ∈ ∂s})
7: vs :=

[∑
u∈∂s 1/vu

]−1
8: end for
9: {Update user estimates}

10: for all u ∈ U do
11: vu := WAvg({((gs,u − gs)2, 1/vs) | s ∈ ∂u})
12: bu := Avg({(gs,u − gs) | s ∈ ∂u})
13: end for
14: end for

each student i, we could weigh the input provided by student
i in proportion to 1/vi. The VariancePropagation algorithm,
given as Algorithm 1, proceeds in iterative fashion, using
consensus grades to estimate the grading variance of each
user, and using the information on user variance to compute
more precise consensus grades according to the above min-
imum variance estimator principle. At each iteration, the
algorithm updates four families of estimates, for u ∈ U and
s ∈ S:

• estimates vu of the grading variance of user u;

• estimates bu of the grading bias of user u;

• estimates gs of the grade of item s;

• estimates vs of the variance with which gs is known.

In the algorithm, we denote by Avg(X) the aver-
age of a set X of estimates, and given a set Z =
{(x1, w1), . . . , (xn, wn)} of pairs, we denote by WAvg(Z)
the weighed average of x1, . . . , xn computed according to
weights w1, . . . , wn, or

WAvg((x1, w1), . . . , (xn, wn)) =

∑n
i=1 xn wn∑n
i=1 wn

.

The algorithm not only uses the estimated variance of users
to compute better grade estimates, but it also uses the esti-
mated variance of consensus grades to compute more accu-
rate estimates of user variance (see line 11). This is novel,
with respect to expectation maximization algorithms: the in-
tuition is that, when computing the variance of a user, we
should not give much credence to consensus values that are
known only with considerable uncertainty.

Variants of VariancePropagation We consider variants
of the Algorithm 1, according to the following choices.

User weight regularization. Proposition 1 directly suggest
taking f(v) = 1/v in line 6; this is our PURE choice below.
An alternative choice consists in introducing a regularization
factor.

• PURE: f(v) = 1/v, as called for by Proposition 1;

• ATT: f(v) = 1/(v̄+v), where v̄ = 1
2 |U |

∑
u∈U vu is half

the average estimated variance of users.

When PURE is used, VariancePropagation can over-estimate
the accuracy of some users. This can feed a vicious circle,
where these users gain growing influence over the consen-
sus estimates, and are thus considered increasingly accurate.
In ATT, the regularization factor limits the weight given to
precise uses.

Debiasing. We consider versions of VariancePropagation
with and without the debiasing step:

• DEBIAS: the debiasing step 12 is performed;

• NODEB: the debiasing step 12 is not performed.

Debiasing user-provided grades is a seemingly obvious step
for obtaining more precise estimates of consensus grades.
Indeed, (Piech et al. 2013) attributes much of the increase in
precision in their computed consensus grades to debiasing,
while also stating that no usable variance estimates could be
obtained in their setting. In our evaluation over peer-grading
data, debiasing proves useful, but to a lesser extent, perhaps
because VariancePropagation already derives benefits from
the modeling of user variance, which is not considered in
(Piech et al. 2013).

Discarding extremal grades. We consider two choices for
the aggregation function WAvg in line 11. The first choice
consists in using weighted average as aggregator. The sec-
ond choice consists in using, in place of WAvg, a version
MWAvg of weighted average that discards the highest and
the lowest grade before computing the weighted average.
This is a common technique for outlier rejection, used e.g.
to score Olympic competitions. The drawback lies in the
fact that many items do not have outlier grades, and unnec-
essarily discarding some grades reduces the precision of the
resulting estimate.

4.2 The CostOfDisagreement Algorithm
The CostOfDisagreement algorithm is inspired by the em-
pirical observation that people are often better judges of rel-
ative quality than of absolute quality. Thus, the CostOfDis-
agreement algorithm pays attention not to the absolute
grades provided by the users, but to the grade differences
among items graded by the same user. The second idea used
in the CostOfDisagreement algorithm consists in keeping
track of the total cost of disagreement with each user, de-
fined below, and to give less weight to the opinion of users
who have a higher total disagreement with the consensus
grades, as these must be the less reliable users. More pre-
cisely, assume that a user u provides grades gs,u and gt,u for
two items s, t, with gs,u ≥ gs,t. The user u ∈ U is thus
indicating a perceived difference of δu:s,t = gs,u − gt,u ≥ 0
in the grades of s, t ∈ S. If the algorithm chooses the esti-
mated grades xs, xt for s and t, the user disagrees with the
algorithm by an amount

du:s,t(x) = (xs − xt)− δu:s,t = (xs − xt)− (gs,u − gt,u)
(1)

4

where x = [xs]s∈S is the vector of all grades. We trans-
late this disagreement into a cost of disagreement with user
u over s, t, given by g(du:s,t(x)), where g is a convex func-
tion. To compute the total cost of disagreement, we consider
the set of comparisons

C = {(u, s, t) | (s, u) ∈ E, (t, u) ∈ E, gs,u − gt,u > 0}
(2)

∪ {(u, s, t) | (s, u) ∈ E, (t, u) ∈ E, s ≺ t, gs,u = gt,u} ,

where ≺ is an arbitrary strict ordering over items. Thus,
in the definition of C, we orient the comparisons, so that
du:s,t ≥ 0 for all (u, s, t) ∈ C. This ensures that, for all
s, t ∈ S and u ∈ U , at most one of (u, s, t) or (u, t, s) is
included in C, so that each user comparison of two items
is counted once only. The orientation requiring δu:s,t ≥ 0
allows the use of cost functions g that are not symmetrical
with respect to 0. We also let Cu = {(u′, s, t) | (u′, s, t) ∈
C, u = u′} be the subset of comparisons involving user u.

The CostOfDisagreement algorithm, presented as Algo-
rithm 2, first assigns unit reputation to each user, that is,
ru = 1 for all u ∈ U . The algorithm then proceeds in a
series of iteration. At each iteration, the algorithm computes
via convex optimization the grade vector x that minimizes
the total cost of disagreement, weighed by user reputations,
given by:

∑
(u,t,s)∈C

ru g(du:s,t(x)) . (3)

The algorithm then updates the reputation ru of each user
u ∈ U via

ru :=
1

1 +
∑

(u,t,s)∈Cu g(du:s,t(x))

so that users with higher disagreement with the consensus
grades will receive lower reputation. Convergence is quite
fast: 20 iterations are sufficient in our experience. Since the
algorithm is based on grade differences, the estimated grades
computed are invariant with respect to translation. The al-
gorithm computes the consensus grades by optimally align-
ing via a linear transformation the estimated grades with the
grades provided by the users.

The objective function (3) is convex with respect to x
because we have ru > 0 for all u ∈ U , and g(du:s,t(x))
is convex as a composition of linear and convex functions.
Thus, we can perform Step 7 of Algorithm 2 via convex op-
timization methods. In our implementation, we use gradi-
ent descent using Newton’s method, which yields the global
minimum in very few iterations, typically 4 or 5. We have
experimented with several alternative cost-of-disagreement

Algorithm 2 CostOfDisagreement
Input: G = ((S ∪ U), E), {gs,u}(s,u)∈E , K > 0.
Output: Consensus grades gs for s ∈ S.

1: {Initialization}
2: Compute C according to (2)
3: for all u ∈ U do ru := 1
4: for all (u, s, t) ∈ C do δ(u : s, t) := gs,u − gt,u
5: {Computes estimated grades}
6: for iteration k = 1, 2, . . . ,K do
7: x := arg min

∑
(u,s,t)∈C rug(xs − xt − δu:s,t)

8: for all u ∈ U do
9: ru := [1 +

∑
(u,s,t)∈Cu g(xs − xt − δu:s,t)]

−1

10: end for
11: end for
12: {Optimally aligns estimated grades}
13: for all s ∈ S do ḡs := (

∑
u∈∂s gs,u)/|∂s|

14: a∗, b∗ = arg min(
∑

s∈S ax
K
s + b− ḡs)2

15: for all s ∈ S do gs = a∗xs + b∗

functions g, specifically:

g(x) = x2 (4)

g(x) =
x2

1 + |x|
(5)

g(x) =

{
x2

1+|x| if x ≥ 0

x2 if x < 0
(6)

g(x) =

{
x2 if x ≥ 0
x2

1+|x| if x < 0
(7)

Choice (4) yields aggregation by average. Choice (5) yields
an aggregation that behaves like average for close data, and
as median for far away data: essentially, this combines me-
dian’s ability to disregard outliers with average’s ability to
combine accurate data. Finally, choices (6) and (7) con-
stitute asymmetrical aggregators. Let s, t ∈ S be two
items evaluated by a user u ∈ U that preferred s to t, i.e.,
gs,u > gt,u. Choice (6) yields an aggregator where the cost
of believing that s is markedly better than u stated is low,
whereas the cost of believing that s is markedly worse than
stated is high. In particular, in this choice, believing that
user u has mis-ordered the items is high. Choice (7) yields
an aggregator where the cost of believing that s is markedly
even better than u stated is high, while the cost of believing
that s is markedly worse than stated by u, including worse
than t, is low. These asymmetrical aggregators are useful in
allowing different partial rankings being easily merged into
a single ranking.

5 Results on Synthetic Data
In our evaluation on synthetic data, we construct assign-
ments involving 50 users and 50 submissions, with each user
reviewing 6 items; these numbers are similar to those occur-
ring in the actual peer-grading assignments. The true qual-
ity qs of each item s we assumed was normal-distributed

5

CostOfDisagreement , g(x) equals
AVG x2 (5) (6) (7)

k = 1 0.285 0.066 0.047 0.062 0.048
k = 2 0.68 0.247 0.175 0.277 0.164
k = 3 1.145 0.536 0.46 0.582 0.404

VariancePropagation
NODEB DEBIAS

AVG PURE ATT PURE ATT
k = 1 0.285 0.018 0.108 0.022 0.147
k = 2 0.68 0.121 0.42 0.148 0.562
k = 3 1.145 0.432 0.717 0.548 0.785

Table 1: Root Mean Square Error of the AVG, CostOfDis-
agreement, and VariancePropagation algorithms on syn-
thetic data with unbiased users. Values are computed for
different shape factors k of the Gamma distribution which
governs the user error model.

with standard deviation 1; this assumption is non-critical,
as this parameter does not affect the evaluation per se. We
let the grade gs,u assigned by user u to item s be equal
to qs + ∆s,u, where qs is the true quality of s, and ∆s,u

is normally-distributed with mean bu and variance vu. We
assumed that the variances {vu}u∈U of the users were dis-
tributed according to a Gamma distribution with scale 0.4,
and shape factors k = 1, 2, 3. We considered two cases
of user bias bu. In the first case, every user is unbiased,
i.e. bu = 0 for u ∈ U . In the second case, every user
has bias distributed according to a normal distribution with
mean 0 and standard deviation 0.4. The code used for the
VariancePropagation algorithm can be found at https:
//github.com/lucadealfaro/vancouver.

The results are summarized in Tables 1, 2. For each shape
factor k, and each of the algorithm variants, we report the
Root Mean Squared Error between the ground truth qi and
the consensus grades gi. Each entry in the table is the av-
erage over 100 runs. Table 1 compares the algorithms per-
formance on simulated data with unbiased user. The Vari-
ancePropagation algorithm without the debias step (line 12
of Algorithms 1) and PURE option shows the smallest er-
ror; it reduces the the error by a factor of 15, 5 and 3 com-
pared with simple average AVG, according to the shape fac-
tors k = 1, 2, 3 of the Gamma distribution of user variance.
Table 2 compares the algorithm on simulated data with user
bias. The VariancePropagation algorithm with the debias
step has uniformly smaller error than the algorithm with-
out debiasing; a variant of VariancePropagation with PURE
choice of function f(·) has the smallest error for shape fac-
tors 1 and 2.

Figures 1a, 1b, and 1c illustrate the ability of the Variance-
Propagation and CostOfDisagreement algorithms to identify
the less precise users, and to listen less to their input.

6 Results on Peer-Grading Data
The chief difficulty in evaluating the performance of algo-
rithms for crowd-sourcing evaluations on real-world data

CostOfDisagreement , g(x) equals
AVG x2 (5) (6) (7)

k = 1 0.337 0.072 0.052 0.067 0.052
k = 2 0.695 0.239 0.168 0.233 0.163
k = 3 1.261 0.577 0.474 0.643 0.417

VariancePropagation
NODEB DEBIAS

AVG PURE ATT PURE ATT
k = 1 0.337 0.133 0.198 0.024 0.177
k = 2 0.695 0.285 0.248 0.153 0.216
k = 3 1.261 0.606 0.793 0.581 0.854

Table 2: Root Mean Square Error of the AVG, CostOfDis-
agreement, and VariancePropagation algorithms on syn-
thetic data with user bias. Values are computed for different
shape factors k of the Gamma distribution which governs the
user error model.

consists in the lack of ground truth, and this applies to the
peer grading data we have available. Initially, we thought we
could construct a sufficient ground truth by manually grad-
ing a fraction of the the assignments. This approach was
not practical for two reasons. First, we were able to grade
only the few assignments that fell in our domain of exper-
tise. Second, upon comparing our grades with the grades
assigned by students participating in the peer grading, we
realized that our grades were generally no more precise than
those of the students, as we often missed flaws that some of
the students spotted.

In the MOOCs considered in (Piech et al. 2013), a rea-
sonable approximation of a ground truth was constructed by
selecting a small fraction of the submissions, having them
evaluated by hundreds of users, and using the average evalu-
ations obtained as ground truth. While this approach is fea-
sible in MOOCs involving many thousands of submissions
and participants, it was not feasible in our setting, where
the class size varied from 50 to 300 students. Singling out
even only a dozen submissions to receive 20 reviews each
would have called for 240 reviews, or almost 50% of the
reviewing effort in a class with 100 submissions and 5 re-
views per submission (typical values for our peer-grading
dataset). Using 50% of the reviewing effort purely for re-
search reasons would not have been acceptable to the users
of CrowdGrader.

To enable a meaningful study of algorithm accuracy, we
introduce the notion of the stability under subsampling of al-
gorithms, and we provide theoretical and experimental jus-
tifications for its use as an estimator of algorithm accuracy.

6.1 Stability under subsampling
The intuition behind stability under subsampling as a crite-
rion for algorithm precision is as follows. If we had a very
large number of grades for each item, the use of sophisti-
cated crowdsourcing algorithms would be unnecessary: tak-
ing the average of the grades received by each item would
suffice. The goal of the crowdsourcing algorithms consid-

6

https://github.com/lucadealfaro/vancouver
https://github.com/lucadealfaro/vancouver

10−1 100

True user stdev

10−2

10−1

100

101
E

st
im

at
ed

us
er

st
de

v

(a) Estimated vs. actual user standard
deviation according to VarianceProp-
agation with NODEB, PURE.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
True user stdev

0.00

0.01

0.02

0.03

0.04

U
se

rw
ei

gh
t

(b) User weight f(vu) vs. actual user
standard deviation according to Vari-
ancePropagation with NODEB, PURE.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
True user stdev

0.0

0.2

0.4

0.6

0.8

1.0

U
se

rr
ep

ut
at

io
n

(c) User reputation vs. actual user
standard deviation according to
CostOfDisagreement with loss
function (7).

Figure 1: Ability of VariancePropagation and CostOfDisagreement algorithms to characterize user precision, and give less
weight to the input from less precise users. In all figures, the shape factor is k = 2, and users have zero bias.

ered in this paper is to provide precise estimates even when
the number of grades per item is modest. Thus, a reasonable
approach to estimate the quality of a crowdsourcing algo-
rithm consists in asking: If we delete some information, how
closely do the estimates obtained approximate the estimates
obtained under full information?

To describe formally our notion of stability under subsam-
pling, we denote by h an algorithm for computing consensus
grades. The input of h is the graph G = (S ∪ U,E) of re-
views, where each (s, u) ∈ E is labeled with the grade gs,u
assigned by u to s. The output of h is a vector of grades
x = h(G), where x = [xs]s∈S and xs is a consensus grade
for item s. The process for computing the stability under
subsampling of algorithm h is given in Algorithm 3. The
process computes the average stability, measured over K it-
erations of a subsampling procedure. In each iteration, we
randomly select a subset S′ ⊂ S consisting of α · |S| items.
We then construct two graphs G1 and G2 from G: each of
these graphs is obtained by deleting one review, selected at
random, among the reviews of items in S′.

Once the graphs G1 and G2 have been obtained, we com-
pute the grades x(1) = h(G1) and x(2) = h(G2), and we
compute the average square difference δk between grades
[x

(1)
s]s∈S′ and [x

(2)
s]s∈S′ (line 5). The stability of the algo-

rithm is the square root of the average δk over all iterations
k = 1, . . . ,K. We perform the subsampling only at a sub-
set S′ ⊂ S of items, rather than for all items, so that the
algorithms can use the full information at the items S \ S′
to infer the accuracy of the users, and use that information
for computing optimal consensus values for the items in S′.
Subsampling from all items would reduce the ability of the
algorithms to infer user precision, yielding a less precise es-
timate of their true precision. We sub-sample by removing
just one of the reviews, in order to alter as little as possi-
ble the original graph, as crowd-sourcing algorithm perfor-
mance is sensitive to node degree distribution. We provide
the following justification for the connection between sta-
bility under subsampling, and algorithm error. For an algo-
rithm h and a graph G, indicate by hs(G) the grade for item
s in a graph G, and let gs be the true grade of s, as usual.

Algorithm 3 Instability under subsampling.
Input: G = ((S ∪ U), E), {gs,u}(s,u)∈E , and algorithm h
for computing consensus grades, a subsampling method R,
a number of iterations K > 0, and a subsampling fraction
0 < α < 1.
Output: instability under subsampling of algorithm h.

1: for k = 1, 2, . . . ,K do
2: Randomly choose S′ with |S′| = bα · |S|c items.
3: Construct G1 and G2 from G by independently

choosing, and removing, one review for each item in
S

4: x(1) := h(G1), x(2) := h(G2)

5: δk =

√(∑
s∈S′(x

(1)
s − x

(2)
s)2

)
/|S′|

6: end for
7: Output

∑
k δk/K

Proposition 2 Consider the case where the number of
users U and reviews E in graph G is large enough that vec-
tors h(G1) and h(G2) can be assumed to be independent
random vectors. If algorithm h computes unbiased grades,
i.e., if E [hs(G)− gs]2 = 0, then the instability under sub-
sampling is proportional to algorithm error in the subsam-
pled graphs.

Proof. We have

E
[
(hs(G1)− hs(G2))

2
]

= E
[
(hs(G1)− gs + gs − hs(G2))

2
]

= E
[
(hs(G1)− gs)2 + (hs(G2)− gs)2

− 2 (hs(G1)− gs) (h(G2)− gs)]
= 2E[(hs(G1)− gs)2]− 2 (E [hs(G1)]− gs)2 .

Thus, if squared bias is zero, we have that the con-
tribution of s to the instability under subsampling
E[(hs(G1)− hs(G2))

2
] is proportional to the mean square

error at s.

7

Gamma shape factor Correlation
k = 1 0.99
k = 2 0.91
k = 3 0.9

Table 3: Correlation between instability under subsampling
[δh]h∈A and error [eh]h∈A.

Algorithm Code
AVG 0
CostOfDisagreement g(x) = x2 1
CostOfDisagreement g(x) as in (5) 2
CostOfDisagreement g(x) as in (6) 3
CostOfDisagreement g(x) as in (7) 4
VariancePropagation NODEB WAvg 5
VariancePropagation NODEB MWAvg 6
VariancePropagation DEBIAS WAvg 7
VariancePropagation DEBIAS MWAvg 8

Table 4: Algorithm codes used as captions in Figure 2.

The connection between stability under subsampling and
algorithm precision can also be verified experimentally un-
der synthetic data. In Table 3 we give the correlation be-
tween the measured instability under subsampling [δh]h∈A,
and the error [eh]h∈A, for the algorithms belonging to the set
A of algorithms considered in this paper (AVG, and the var-
ious versions of VariancePropagation and CostOfDisagree-
ment). The synthetic assignment model is as described in
Section 5, and we averaged results on 11 synthetically gener-
ated assignments without user bias. The correlation is not 1
chiefly because the error in the subsampled graphs is greater
(due to less data being available) than the error in the com-
plete graph.

6.2 Results

In order to make data comparable across assignments, we
normalized the grading scale of all assignments to [0, 10].
The results are reported in Table 5, where we give the in-
stability of the algorithms relative to the AVG baseline. The
table presents the data by grouping assignments into bins,
according to the average number of reviews per item. We
combine the values for different assignments in the same bin
via geometric average. The data is presented graphically for
the best-performing subset of the algorithms in Figure 2.

The VariancePropagation algorithm with DEBIAS, WAvg
and ATT options performs best. In particular, debiasing user
input seems to be important, a finding that confirms the
results of (Piech et al. 2013). While multiple versions of
VariancePropagation improve on the AVG baseline, we also
note how CostOfDisagreement fares generally worse than
the baseline. Given how superior CostOfDisagreement is to
AVG on synthetic data (see Section 5), this offers a caution-
ary example of the dangers of relying too much on synthetic
evaluations, where the user models may not be a good match
for the actual behavior of students using a peer-grading tool.

4-5 5-6 6-7 7-8 9-10 13-15
Average number of reviews per item (bins)

0.6

0.8

1.0

1.2

In
st

ab
ili

ty

solid lines - VariancePropagation

dashed lines - CostOfDisagreement

0
1
2
3
4
5
6
7
8

Figure 2: Instability under subsampling of crowdsourcing
algorithms, relative to AVG.

Assignments statistics
Bins: Number of

average number assign- submis-
of reviews per item ments sions users

[4, 5) 4 219 207
[5, 6) 6 650 681
[6, 7) 4 373 473
[7, 8) 3 374 504
[9, 10) 2 103 190
[13, 15) 3 78 284
[4, 15) 22 1797 2339

Table 6: Statistics for the assignments used in Table 5.

0 5 10 15 20 25
Variance

0

20

40

60

80

100

120

140

160

180

N
um

be
ro

fs
tu

de
nt

s

Figure 3: Histogram of reviewer variance in an assignment
with grade range [0, 10].

8

Bins: CostOfDisagreement , g(x) equals VariancePropagation with ATT option
average number NODEB DEBIAS

of reviews per item AVG x2 (5) (6) (7) WAvg MWAvg WAvg MWAvg
[4, 5) 1 1.096 1.089 1.142 1.028 0.971 1.092 0.935 1.136
[5, 6) 1 1.041 1.074 1.076 1.033 0.869 0.987 0.836 1.009
[6, 7) 1 1.125 1.197 1.202 1.136 0.976 1.127 0.935 1.072
[7, 8) 1 1.138 1.213 1.119 1.224 0.851 0.993 0.79 0.865
[9, 10) 1 1.075 1.074 1.199 1.003 0.915 0.998 0.838 0.978
[13, 15) 1 0.958 0.886 0.832 0.925 1.201 0.918 0.549 0.698
[4, 15) 1 1.07 1.088 1.088 1.056 0.948 1.021 0.816 0.968

Table 5: Instability under subsampling of algorithms, relative to the instability of AVG as baseline. Each row is obtained by
computing the geometric average of the results for assignments with average number of reviews per item as indicated in the
bins. Statistics for the assignments are provided in Table 6.

7 Conclusions
We introduced two alternative algorithms for crowdsourc-
ing estimates of item quality, VariancePropagation and
CostOfDisagreement. On synthetic data, both algorithms
perform better than the Avg aggregator, cutting the average
error by factors of 3 or more, depending on the user model
chosen. On real-world data obtained from classroom peer-
grading, both algorithms perform better than the Avg aggre-
gator. The edge goes to a version of VariancePropagation
that characterizes users both in terms of their grading vari-
ance, and in terms of their overall positive or negative bias.

On peer-grading data, the average reduction in error, com-
pared to Avg, is about 20%. This reduction is lower than
that observed in the MOOC experiment of (Piech et al.
2013). We believe that this can be explained at least in part
by considering the different natures of the datasets. Our
peer-grading data consisted of students enrolled in univer-
sity classes that were taught in-person by instructors. In
such classes, students have more uniform skills and back-
ground than in MOOCs, which mix very proficient and mo-
tivated students with students that are just superficially curi-
ous about the subject. Furthermore, CrowdGrader provided
a strong incentive to students to provide precise evaluations,
as part of the overall grade of each student was tied to the
student’s precision as grader. These factors likely made the
students involved in our peer-grading datasets more uniform
in accuracy than the users in the MOOC datasets of (Piech et
al. 2013). The accuracy distribution for students of one class
is given in Figure 3; this (typical) distribution confirms the
underlying precision of the students, and the relative rarity
of wholly imprecise users. Crowdsourcing algorithms based
on reputation systems leverage the non-uniform accuracy of
reviewers: after all, if all students were equally accurate,
then Avg would be the optimal aggregator. The more uni-
form accuracy of the students involved in peer grading may
have meant less scope for improvement for reputation-based
algorithms.

Acknowledgments
References

[Bachrach et al. 2012] Bachrach, T.; Minka, J.; Guiver, J.;
and Graepel, T. 2012. How to grade a test without know-

ing the answers — A bayesian graphical model for adaptive
crowdsourcing and aptitude testing. In 29th Annual Interna-
tional Conference on Machine Learning (ICML 2012).

[Dawid and Skene 1979] Dawid, A. P., and Skene, A. M.
1979. Maximum likelihood estimation of observer error-
rates using the em algorithm. Applied statistics 20–28.

[de Alfaro and Shavlovsky 2013] de Alfaro, L., and
Shavlovsky, M. 2013. Crowdgrader: A tool for crowd-
sourcing the evaluation of homework assignments. SIGCSE
2013.

[Dempster et al. 1977] Dempster, A. P.; Laird, N. M.; Rubin,
D. B.; et al. 1977. Maximum likelihood from incomplete
data via the em algorithm. Journal of the Royal statistical
Society 39(1):1–38.

[Goldin and Asley 2011] Goldin, I. M., and Asley, K. D.
2011. Peering inside peer review with bayesian models. In
Proceedings of the 15th International Conference on Artifi-
cial Intelligence in Education, AIED 2011, 90–97. Springer-
Verlag.

[Goldin 2012] Goldin, I. M. 2012. Accounting for peer re-
viewer bias with bayesian models. In Proceedings of the
Workshop on Intelligent Support for Learning Groups at the
11th International Conference on Intelligent Tutoring Sys-
tems.

[Johnson 1996] Johnson, V. E. 1996. On bayesian analysis
of multi-rater ordinal data: An application to automated es-
say grading. Journal of the Americal Statistical Association
91:42–51.

[Karger, Oh, and Shah 2011] Karger, D. R.; Oh, S.; and
Shah, D. 2011. Iterative learning for reliable crowdsourcing
systems. In NIPS, 1953–1961.

[Karger, Oh, and Shah 2013] Karger, D. R.; Oh, S.; and
Shah, D. 2013. Efficient crowdsourcing for multi-
class labeling. In Proceedings of the ACM SIGMET-
RICS/international conference on Measurement and model-
ing of computer systems, 81–92. ACM.

[Liu, Peng, and Ihler 2012] Liu, Q.; Peng, J.; and Ihler, A. T.
2012. Variational inference for crowdsourcing. In NIPS,
701–709.

[Pearl 1988] Pearl, J. 1988. Probabilistic reasoning in in-

9

telligent systems: networks of plausible inference. Morgan
Kaufmann.

[Piech et al. 2013] Piech, C.; Huang, J.; Chen, Z.; Do, C.;
Ng, A.; and Koller, D. 2013. Tuned models of peer assess-
ment in moocs. arXiv preprint arXiv:1307.2579.

[Raykar et al. 2010] Raykar, V. C.; Yu, S.; Zhao, L. H.;
Valadez, G. H.; Florin, C.; Bogoni, L.; and Moy, L. 2010.
Learning from crowds. The Journal of Machine Learning
Research 11:1297–1322.

[Rogers, Girolami, and Polajnar 2010] Rogers, S.; Girolami,
M.; and Polajnar, T. 2010. Semi-parametric analysis of
multi-rater data. Statistics and Computing 20(3):317–334.

10

	Introduction
	Related work
	Problem Setting
	Algorithms
	The VariancePropagation algorithm
	The CostOfDisagreement Algorithm

	Results on Synthetic Data
	Results on Peer-Grading Data
	Stability under subsampling
	Results

	Conclusions

