
UNIVERSITY OF CALIFORNIA

SANTA CRUZ

DISSERTATION PROPOSAL: EFFICIENT PERFORMANCE
GUARANTEES ON STORAGE NETWORKS

A dissertation proposal submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

COMPUTER SCIENCE

by

Andrew G. Shewmaker

June 2012

The Thesis of Andrew G. Shewmaker
is approved:

Professor Scott Brandt, Chair

Professor Carlos Maltzahn

Professor J.J. Garcia-Luna-Aceves

Dr. Scott Pakin

Lisa C. Sloan
Vice Provost and Dean of Graduate Studies

Copyright c© by

Andrew G. Shewmaker

2012

Table of Contents

List of Figures v

List of Tables vi

Abstract vii

Dedication viii

Acknowledgments ix

1 Introduction 1

2 Background 3
2.1 Classes of Storage Networks . 4
2.2 Unreliable Transport . 5
2.3 Reliable Transport . 9
2.4 Real-world Considerations . 10

3 Network Resource Measurements 15
3.1 Measurements in Synchronization Protocols 15
3.2 Measurement Tools and Standards . 18
3.3 Measurements in Congestion Control Protocols 20
3.4 Measurement Summary . 22

4 RAD on Networks (Radon) 24
4.1 Multiple Dispatchers in RAD . 25
4.2 Flexibility of RAD . 26
4.3 Detection of Congestion and its Severity 27
4.4 Response to Congestion . 27
4.5 Related Work . 31

iii

5 Evaluation of Radon 33
5.1 Setup . 34
5.2 Single Stream . 36
5.3 Single Stream Punctuated . 39
5.4 Six Fairshare Streams . 42
5.5 Six Unfair Streams . 45
5.6 Conclusion . 49

6 Proposed Research 50
6.1 Research Questions . 50
6.2 Contributions . 51
6.3 Research Plan . 52

6.3.1 Theory . 52
6.3.2 Simulation . 53
6.3.3 Implementation . 53
6.3.4 Experiments . 54

Bibliography 55

iv

List of Figures

2.1 Radon is a component of a larger Storage QoS project 4
2.2 Congestion in a simple switch model . 6
2.3 Time-series plot of a switch buffer with and without congestion 7
2.4 Canonical Fat-tree storage network . 14

3.1 Measuring delay using timestamps corresponding to Send, Receive, ACK,
and Completion events for (data, ack) packet pairs i and j. 16

4.1 Laxity . 28

5.1 Histograms comparing the quality of timestamp measurements 36
5.2 Comparison of queue modeling for a single network stream 37
5.3 Comparison of queue modeling for a single adaptive network stream . . 38
5.4 Comparison of queue modeling for a punctuated stream 39
5.5 Comparison of queue modeling for a punctuated adaptive stream 40
5.6 Comparison of queue modeling for six fairshare streams 43
5.7 Comparison of queue modeling for six fairshare adaptive streams 44
5.8 Comparison of queue modeling for six unfair streams 47
5.9 Comparison of queue modeling for six unfair adaptive streams 48

v

List of Tables

2.1 Scope of resource management problem for various types of networks. . 13

3.1 Summary of network resource measurements. 23

5.1 Summary of rates and losses for a punctuated stream. 41
5.2 Summary of rates and losses for a punctuated adaptive stream. 41
5.3 Summary of rates and losses for six fairshare clients. 42
5.4 Summary of rates and losses for six adaptive fairshare clients. 42
5.5 Inter-packet wait times and send rates in the unfair experiment. 45
5.6 Summary of rates and losses for six unfair streams. 46
5.7 Summary of rates and losses for six adaptive unfair streams. 46

vi

Abstract

Dissertation Proposal: Efficient Performance Guarantees on Storage Networks

by

Andrew G. Shewmaker

Current storage networks do not provide end-to-end Quality of Service (QoS).

The intention of this research is to produce both a formal theory and real-world im-

plementation of flexible, general, and fine-grained performance guarantees on standard

commodity network hardware. These guarantees will be composable with guarantees

made for CPU, disk, and memory resources such that end-to-end QoS on storage net-

works can be provided. Systems built using these methods will avoid over-provisioning,

virtualize the performance of remote storage access, and experience improved reliability

and administration over more traditional solutions.

“Those who do not understand TCP are destined to reimplement it.”

- Jon Postel

“It’s not a big truck. It’s a series of tubes.”

- from Senator Ted Stevens famous explanation of congestion on the Internet

viii

Acknowledgments

I would like to thank Scott Brandt, Carlos Maltzahn, Richard Golding, and

Theodore Wong for allowing me to join their research in Storage Quality of Service.

Thanks also to Tim Kaldewey, Anna Povzner, Roberto Pineiro and other students in

the Systems Research Laboratory.

This research integrates and extends work from two independent efforts at

the University of California Santa Cruz in the Systems Research Laboratory and the

Computer Communication Research Group led by J.J. Garcia-Luna-Aceves.

Thanks to Gary Grider and Carolyn Connor at Los Alamos National Labora-

tory for encouraging me to pursue graduate work and for their work establishing the

Institute for Scalable Scientific Data Management collaboration between LANL and

UCSC. All of my management at LANL have been extremely supportive of my contin-

uing education, and I am grateful they enabled me to come to Santa Cruz for an entire

school year while remaining an employee. Josip Loncaric, in addition to being both

my team leader and later group leader, provided me with valuable insight into clock

synchronization protocols.

ix

Chapter 1

Introduction

This paper proposes avenues of exploration leading to improved theory and so-

lutions to the problems involved in providing efficient real-time performance guarantees

on storage networks. The primary problem in standard commodity local area networks

is congestion, exhibited by increases in transmission delay and packet loss. In particular,

throughput collapse due to large numbers of simultaneous bursts is a common scenario

that has proven difficult to prevent in storage networks that require extreme throughput

rates.

The problem is complicated by the need to minimize overheads both on hosts

and the network itself. Radon, the name of the family of algorithms presented later, has

shown some promise in allowing multiple hosts to cooperatively respond to congestion

and enforce their collective guarantees using local knowledge.

However, the initial Radon work only dealt with Gigabit Ethernet and simple

network topologies. It requires additional theoretical work to prove that desired bounds

1

are not violated and that buffer requirements are minimized. Finally, the previous work

did not result in an implementation that could be used in real applications. This follow-

on work will remedy those deficiencies with additional theoretical work, simulation,

performance tests on both Ethernet and Infiniband networks, and the development of

Linux Kernel module implementations of Radon algorithms suitable for use in the real

world.

The rest of this proposal is organized as follows: Chapter 2 provides back-

ground on storage networks and networking technology in general. Chapter 3 describes

what can be measured on a network, since you cannot control what you cannot measure.

That is followed in chapters 4 and 5 by a discussion of the previous work performed

by the author in developing both new rate-based and window-based congestion control

algorithms, referred to collectively as Radon. The final chapter describes the new re-

search to be done in order to take the existing Radon algorithms from promising ideas

to a formally proven theory with a rigorously tested implementation.

2

Chapter 2

Background
Most storage networks are composed of best-effort devices that strive for good

performance while offering no guarantees. Network hardware with built-in Quality

of Service (QoS) features exists, but is relatively expensive and is usually limited to

static, priority-based configurations that distinguish between classes of traffic rather

than individual streams. Furthermore, network QoS has been treated independently

from other resources when there are, in fact, explicit relationships between the network

and other resources. As a part of a larger end-to-end storage QoS project shown in

Figure 2.1, this research focuses on a more general cooperative network protocol, Radon,

that does not rely on expensive specialized network hardware.

3

client

cache

network

transport

disk
storage

cache

network

transport

flow with
one client

selection
between
clients

IO selection
and head
scheduling

prefetch and
writeback
based on rates

app

app

I/O

scheduler

client

cache

network

transport

app

app

Figure 2.1: Radon is a component of a larger Storage QoS project

2.1 Classes of Storage Networks

Current storage networks vary in capability, from the cheap and unreliable to

the expensive and robust. All lack end-to-end QoS. Enterprise storage networks are

converging to technologies that provide reliable transport, but it is a slow process that

leaves some room for compromise in the definition of ‘reliable’.

The three major classes of storage networks are Network Attached Storage

(NAS), the Storage Area Network (SAN), and the distributed file system. NAS is

the most common and least expensive storage network, where one or more servers

individually provide a file system interface over a standard Ethernet network. More

expensive SANs are composed of storage arrays connected with a high performance

network such as Fibre Channel and appear as a local device to a host. Distributed

file systems come in Wide Area Network and Local Area Network (LAN) variants.

Wide area systems often serve large numbers of users, operate over a large variety of

technologies, and are generally grown rather than designed. In contrast, local area

systems are designed to provide a high performance parallel file system for a set of

4

well-defined users.

At the same time that the market is pressuring vendors to unify storage net-

work technology (e.g. Fibre Channel Over Ethernet and Converged Enhanced Ether-

net), none provide hard latency or throughput guarantees. Infiniband is an advanced

network architecture that provides a reliable transport using credit-based flow control

and levels of QoS. However, priority-based QoS is more appropriate for static network

flows than the dynamic flows seen in storage networks. This research focuses on provid-

ing flexible, general, and fine-grained performance guarantees on a local area distributed

file system.

2.2 Unreliable Transport

The most common storage area network implementations include some form

of Ethernet, with clients and servers communicating through TCP/IP sockets. Reliable

transport is provided by TCP/IP, an upper layer protocol implemented on the hosts of

the network rather than the network’s internal hardware (e.g. switches). Because the

congestion control is implemented at end points which have little or no knowledge of the

state of the shared resource between them, the harmful effects of congestion occur first

in the shared resource. On the positive side, Ethernet storage networks are inexpensive

and easy to implement, but they begin failing to perform at higher loads, suffering from

packet loss and high variation in packet delivery delays.

Figure 2.2 demonstrates congestion in a simple switch model. Packets con-

5

switch fabric

1 and 2
congest1

2

3

4
3 and 4
congest

2 and 4
congest

5

6

7

8

1 and 2
send to 5

3 and 4
send to 8

Figure 2.2: Congestion in a simple switch model

tending for the same destination port are queued. Continuous contention may cause

previously isolated streams to interfere with each other. In the worst case, the queue

will overflow and packets will be lost. Distributed file systems experience a particular

case of congestion called incast [31, 52] where a file spread among many servers is sent

in simultaneous bursts to a client, which can overflow a switch buffer with little or no

warning signs.

Figure 2.3a shows the worst-case behavior described by Figure 2.2 over three

periods. Assuming that each client is using half of the period to transmit, the switch

will never exceed four units of buffer space, and each packet will always be served within

the period of its arrival. On the other hand, Figure 2.3b shows the best-case behavior,

where the transmissions from each client interleave perfectly, the switch uses no buffer

6

Client 1 to 5

Client 2 to 5

Switch Buffer

Client 3 to 8

Client 4 to 8

p 2p

(a) Worst case

Client 1 to 5

Client 2 to 5

Switch Buffer

Client 3 to 8

Client 4 to 8

p 2p

(b) Best case

Figure 2.3: Time-series plot of a switch buffer with and without congestion

space at all, and the latency for individual packets is minimal.

Le Boudec’s and Thiran’s Network Calculus [34] thoroughly describes this

behavior using Min-plus algebra to reason about the equations representing arrival and

service curves. The analysis reveals that for feasible flows, a switch’s buffer requirement

is the sum of the burst sizes, regardless of any other parameter. They prove that bursts

must be paid only once in a switch fabric, which is obvious when one considers that

the traffic becomes serialized after the initial incast. Furthermore, greedy shapers keep

arrival constraints. In other words, they do not increase delay or buffer requirements,

and they conserve arrival constraints. Le Boudec’s Network Calculus puts traditional

traffic shaping as provided by Linux queueing disciplines or by an Internet Service

Provider’s DiffServ QoS on a firm theoretical foundation.

However, there are tradeoffs inherent in using these sorts of traffic shapers.

Fine-grained shaping reduces the amount of performance you can expect from a single

7

NIC and is expensive in CPU time. Enforcing a burst size of one means packets are

being sent one at a time, which would halve achieved throughput for individual flows.

Coarse-grained shaping increases switch buffer requirements. A 288-port switch would

require 912 MB of RAM if every connection is expected to handle 4 MB bursts. In

reality, large switches are created using many crossbar chips with a couple dozen ports.

So a 288-port switch made up of 36 24-port crossbar would only require 96 MB of

RAM if it was shared amongst all crossbars, or up to 3456 MB otherwise. This amount

of memory is feasible, but could get undesirable with more and larger bursts. That

is one reason why large-scale, reliable networks, such as Infiniband, implement robust

message-level and byte-level flow control using credits.

Ethernet switches may support a limited form of link-level flow control by

sending a PAUSE command to transmitting devices to indicate they should slow down

for a specified amount of time. This can help in some situations, but the current standard

is implemented using multicast packets and does not differentiate between senders.

It also ignores Ethernet priorities. Emerging Ethernet standards, collectively known

as either Data Center Ethernet or Converged Enhanced Ethernet, include Priority-

based Flow Control – addressing the flaws in the existing Ethernet PAUSE command,

Enhanced Transmission Selection – allowing different priorities to share each others

spare bandwidth, and Congestion Notification – providing upper layer protocols such as

TCP with information to help them set their transmission rates. Even with its upcoming

enhancements, Ethernet will probably not match the performance and reliability of the

technology described in the following section, though it will likely remain less expensive.

8

2.3 Reliable Transport

Enterprise storage networks are generally built with something like Fiber Chan-

nel or Infiniband. Reliable transport is provided by lower layer protocols implemented

in the host adapters as well as the switches. Because the congestion control is imple-

mented throughout the network, the harmful effects of congestion are pushed back to

the senders. On the positive side, enterprise storage networks perform well at high

loads, do not suffer from packet loss, and experience lower packet delivery delays, but

they are expensive and require more expert knowledge to implement.

Just as we see pressure on Ethernet to gain reliable transport features, we see

Infiniband hardware and software stacks possessing features that make it compatible to

one degree or another with Ethernet and IP protocols. The Linux Kernel developers

have added more pressure to converge by stating that they will only accept one RDMA

API. With Ethernet enhancements, it might appear that Infiniband will die out, but it

possesses a more aggressive roadmap than Ethernet for higher speed networks, is able to

use much larger packet sizes while achieving lower latencies with smaller packets, and

is generally implemented better feature-for-feature. Infiniband will probably always

have more reliable transport and faster speeds than Ethernet, as long as it continues to

market to High Performance Computing.

9

2.4 Real-world Considerations

Regardless of whether or not a transport is reliable, there are other real-world

considerations. The maximum transmit unit (MTU) and buffer sizes should increase

with speed of the network, otherwise the number of interrupts the hosts’ CPUs must

handle exceed its capabilities. The network adapter may offload some of the protocol

processing overhead from the CPU, but this does not always result in a positive result

for all workloads and it can complicate debugging problems in the network. In addition

to the capabilities of hardware, the topology of the network also has implications with

regard to making performance guarantees.

A Network Interface Controller (NIC) affects the performance that can be

achieved and the amount of overhead it imposes on a host computer. A large amount of

effort has gone into interrupt moderation techniques, where one interrupt is delivered for

a group of packets in order to reduce the amount of work required by the CPU. While

this can successfully increase throughput, it can also cause an undesirable increase in

latency variation. In Linux, drivers can be written to conform to either the softnet

or the “New API” [56]. NAPI solved several problems with softnet, including avoiding

interrupt livelock [41] and packet re-ordering, by switching between interrupt driven and

polling modes depending on the number of packets being received. The Linux kernel

is continuing to evolve, traditional interrupt handling with top and bottom halves will

likely be replaced by the real-time Linux tree’s threaded interrupt handlers. Also,

significant work has already been merged to allow hardware with multiple queues to

10

scale its processing over multiple cores.

While small packets can be transferred much faster than large packets, they

inefficiently use system resources. Overall performance can be maximized if the Max-

imum Transmission Unit (MTU) of the NIC is a multiple of the operating system’s

memory page size. This allows the PCI bus to use its maximum transfer size and not

requiring an extra transfer to handle the last part of a packet.

NICs have become able to offload various pieces of the work generally handled

by the operating system. A TCP Offload Engine (TOE) implements an entirely separate

TCP stack in hardware. Generic Segmentation Offload (GSO), refers to a NIC with the

ability to take a large buffer and split the data into packets on behalf of the operating

system. The complement of GSO is Generic Receive Offload (GRO), which merges

received packets. One of the primary benefits of both GRO and GSO is a reduction of

the load on the PCI bus. When segmenting or merging packets the hardware must also

support offloading the checksum operation, so the main CPU also does less work. There

are security and performance pitfalls with any of these advanced hardware features, so

many drivers allow them to be disabled. What may be beneficial on a multi-user system

may impede performance on a router or hinder packet filtering functionality. One of

the more useful features from a resource management standpoint is the availability of

hardware generated timestamps for each packet.

Network performance is largely determined by a protocol’s flow control, which

manages the rate at which a stream injects data into the network when there is no

congestion, and congestion control, which adapts the rate, burstiness, and timing of

11

packet transmissions when congestion is detected. TCP/IP is the most widely deployed

end-to-end network protocol, but its congestion control algorithms do not provide any

performance guarantees. It continuously tries to increase throughput at the sender

by increasing the window (burst) size and uses packet loss as a congestion signal to

throttle the sender drastically. Even for a single connection, this results in a sawtooth

pattern for throughput over time and a large variance in packet delays, as a switch’s

queue continually overflows and drains. Feng, et. al [9] show that the flaws in TCP’s

congestion control dramatically worsen as the number of streams scale up in local area

distributed system because the streams tend to respond to congestion in lock step.

Many researchers have sought to improve or replace TCP, but change has

proven to be difficult because TCP actually does a decent job in many situations, it

is fairly robust, the Internet community desires new protocols to be TCP-friendly, and

also because it is difficult to get buy-in for new ideas from a significant portion of the

Internet community. The current default variant used by the Linux kernel is called

CUBIC [17, 16] because of the function it uses to modify its window size. It is intended

mostly to enhance behavior on high bandwidth networks with large delays. A storage

network with high bandwidth and low delay may benefit more from tuning variables

in TCP stacks that are best left untouched for normal Internet usage. For instance,

researchers from CMU are investigating if it can recover from incast faster if it had a

much smaller Retry Time Out (RTO).

Table 2.4 summarizes the scope of the resource management problem for var-

ious topologies of both wired and wireless networks. The simplest case is one in which

12

Network Description Complexity
two linked hosts 2× host port
n chained hosts 2(n− 1)× host port
d dimensional P2P fabric 2dn× host port
switched 2× host port + switch port
hub or wireless 2× host port + collision domain
wireless P2P fabric dn× (2× host port + collision domain)

Table 2.1: Scope of resource management problem for various types of networks.

two hosts are directly connected to each other, and even then each host must schedule

use of its network interface between competing processes and threads. The resource

management problem quickly increases in difficulty as the topology of a network be-

comes more complex, but the distinguishing feature of network resource management is

its distributed nature. Scheduling decisions cannot rely on global knowledge without in-

curring prohibitive communication overhead, making statistical multiplexing generally

preferred over other strategies. Radon is initially intended for use on switched networks,

but will later be adapted for wired peer-to-peer networks such as a multidimensional

tori. As Radon is applied to more complex networks, admission control will need to be

combined with the routing algorithm in order to maximize utilization of the network.

Figure 2.4 depicts a canonical storage network–a closed, full bisection band-

width, Fat-Tree [35] network composed of standard Gigabit Ethernet switches. If the

network is segmented into equal parts, then the links connecting the switches allow all

pairs of hosts to communicate at their full link bandwidth.

Real-world enterprise storage networks may provide less than full bisection

bandwidth or redundant routes, but a basic Fat-Tree is a reasonable starting point for

13

4X Spine
Switch

1X

2X

Leaf
Switch

Client

Client

Leaf
Switch

Client

Client

1X

2X

Leaf
Switch

Server

Server

Leaf
Switch

Server

Server

4X

Figure 2.4: Canonical Fat-tree storage network

QoS research. For now, it is assumed that the storage network is tightly controlled, that

the only significant source of packet loss is due to a buffer overflow. After achieving

guaranteed performance at the single switch level, further research must explore the

affects of more complex fabrics. A good algorithm should be able to guarantee up to

the bisection bandwidth of a Fat-Tree network.

14

Chapter 3

Network Resource Measurements

In order to know what can be guaranteed on a network, it must be clearly

understood what can be measured given that there is no global clock. Time is the

fundamental characteristic of network measurements–barring packet loss, which must

be prevented. This chapter examines how various synchronization methods, congestion

control protocols, and tools measure different types of delay and how they handle noise

and measurement errors. Figure 3.1 depicts two packets and their corresponding ACKs

between two hosts with independent clocks, and is referenced throughout the chapter.

3.1 Measurements in Synchronization Protocols

Early work on logical clocks [33] gave a notion of a global ordering of events, and

later research eventually led to the creation of the widely used Network Time Protocol

(NTP) [40]. NTP calculates the RTT and clock offset between two hosts with one pair

of data and ACK packets (see Figure 3.1), such that RTT = (Ci − Si) − (Ai − Ri)

15

Clock 1
S

i

R
i

R
j

S
j

A
i

A
j

C
i

C
j

Clock 2

Figure 3.1: Measuring delay using timestamps corresponding to Send, Receive, ACK,

and Completion events for (data, ack) packet pairs i and j.

and offset =
(Ri − Si) + (Ai − Ci)

2
. Clients filter multiple independent master clock

sources, select the best sources, combine them, and remove noisy measurements using

a hybrid Phase Locked Loop (PLL) and Frequency Locked Loop (FLL). While the

methods of filtering measurements used in clock synchronization vary, the common idea

is to ignore network affects by only using the minima. This reduces the number of good

measurements, especially when a network is under load.

While NTP is commonly used throughout the Internet, both embedded and

high performance computing communities have found its approximately 1 ms synchro-

nization under optimum circumstances to be insufficient. IEEE 1588 defines the Preci-

sion Time Protocol (PTP) [1], and is primarily intended for LANs containing measure-

ment devices requiring tight coordination. It supports synchronization in the nanosec-

ond range when supported by hardware, or within 10 µs in a software implementation.

At a high level PTP is similar to NTP, measuring RTT and clock offsets the same way

and using the PLL/FLL implemented in most operating systems for use with NTP.

16

PTP [12] performs simpler filtering than NTP and the initial version is based

on multicast rather than unicast/broadcast–both implementation decisions appropriate

for embedded systems on a LAN. Also, because of NTP’s venerable age and broad porta-

bility, it has used standard gettimeofday() style calls for send and receive timestamps.

By the time PTP came on the scene, many operating systems had added a standard

socket option for receive timestamps–though the matching send timestamp option is

still missing. The most well know software implementation of PTP initially used a ker-

nel patch to get accurate send timestamps, but now uses a multicast loop back device

in combination with the receive timestamp socket option in order to ease installation

and aid in portability. If NTP were to take advantage of the “new” timestamp inter-

faces, then it would likely achieve synchronization as well as software PTP. However,

the second version of IEEE 1588 specifies how switches can add timing information to

PTP packets or even synchronize directly with hosts. At the same time, Linux kernel

developers in the employ of Intel are working on adding support for hardware [45] and

software send timestamps. These features have been demonstrated to provide clock

synchronization with ±20 ns accuracy.

BTime [39] has been developed for use with computational Linux clusters, and

is designed to keep tightly interconnected nodes synchronized with each other rather

than with national time standards as NTP does. It employs a more sophisticated

Kalman filter [28] than either NTP or PTP and uses heuristics that take advantage of

assumptions appropriate for high performance local networks. Computational clusters

are not entirely divorced from the outside world, so the master clock of a cluster is

17

still usually adjusted by NTP. These adjustments are nonlinear and can be large, from

BTime’s perspective, so it uses raw clock information from the Linux kernel to account

for NTP’s behavior and make its own smoother time adjustments.

It may be appropriate to synchronize some systems with widely available GPS

technology. While it can provide clock pulses with 100 ns accuracy, system noise gen-

erally limit the clock synchronization between hosts to around 10 µs. Additionally, this

style of synchronization operates with less administrator intervention. Unfortunately,

this technology requires roof access and is cost prohibitive.

Paxson [50] has shown that the adjustments made by NTP do not help systems

make accurate measurements of packet transfer times, and can in fact be detrimental.

In fact, [49, 51] find that clock rate stability is more important than synchronization,

and prefer using the CPU’s more stable Time Stamp Counter (TSC) to the system’s

real-time clock to measure time differences. Later research [59] focused on creating

an integrated solution that meets the need for absolute time provided by NTP and

accurately measuring time differences on small scales.

3.2 Measurement Tools and Standards

System administrators traditionally use ping [43] to measure RTT, and de-

scendants of ttcp [44] (nuttcp [15], netperf [27], iperf [2], etc.) to measure throughput

and jitter (delay variation). Tcpdump and libpcap are used when detailed packet cap-

ture and tracing is required, though packet capture at Gigabit and higher speeds starts

18

becoming impractical [57].

UDPmon [18] is well suited for measuring one way delays (OWDs) due to its

use of the CPU’s stable TSC, rather than the real-time system clock that most other

tools use. Its sister tool, ethmon, provides identical functionality implemented on raw

sockets. The benefit of using the ethmon tool is that the send and receive timestamps

should be more accurate since there is no system level queueing effects between the

driver and the application. In either case, the effects of interrupt throttling in driver

code is clearly seen as increased variation in OWDs.

Standards for network metrics have slowly taken shape. The Internet Engi-

neering Task Force (IETF) produced a definition for IP Packet Delay Variation (IPDV)

[13] in order to reduce the confusion caused by multiple meanings for the concept of

jitter. More recently, the IETF put out RFC4656, A One-way Active Measurement

Protocol (OWAMP) [58]. OWAMP assumes that clocks are synchronized with GPS or

NTP, and uses a schedule that both the sender and the receiver know to gather compre-

hensive measurements. The development is driven partly by abuse of the ping utility

by malicious entities, and the observed need for a more secure alternative.

Network researchers have developed many other methods and tools [21, 6,

30, 32, 14] focused on measuring capacity or available bandwidth that have not yet

become widespread. Many of these tools use deterministic models with filtering on

measurements taken with one, two, or more packets. Some of the tools are rendered

ineffective because they make assumptions concerning the behavior of queues or ACKs

that do not always hold, while others lose effectiveness in the presence of cross traffic.

19

The current state of the art, embodied by Pathload [24], is to use packet

trains to measure one way delay (OWD). This allows constantly changing available

bandwidth to be tracked and accurate knowledge of its variance to be developed [23, 25].

With regard to Figure 3.1, OWDi = Ri − Si. Pathload is unconcerned about clock

synchronization because it only cares about the differences between OWDs, so a constant

clock offset does not matter. Clock skew during a stream measurement is on the order of

nanoseconds during Pathload’s short streams, and should be negligible when compared

to the effects of queueing in the network. Pathload first partitions and then finds

medians for each partition. It then performs trend analysis on its OWD measurements

using both the Pairwise Comparison Test and the Pairwise Difference Test. Each test

detects different cases of increasing network queueing.

3.3 Measurements in Congestion Control Protocols

TCP uses an estimate of the round-trip time (RTT) between two hosts to

decide if an acknowledgement (ACK) packet has been lost. Given a new measurement

RTT = Ci − Si (see Figure 3.1), a new RTT estimate is produced using an alpha beta

filter. This notion of RTT is less rigorous than that used by clock synchronization

protocols, since it does not take into account the delay on the receive side between Ri

and Ai, but TCP’s timestamps are more accurate than NTP’s because they occur in

kernel space. The TCP Extensions for High Performance [20] later added timestamps

to the header of data and ACK packets so that TCP gathers more RTT measurements

20

as its window size increases. This extension is critical for high bandwidth networks.

New extensions and complete replacements for TCP’s congestion control al-

gorithms are continually being created. Packet loss remains the primary signal of con-

gestion, partly due to difficulty experienced when attempting to correlate number of

packets in flight with round-trip time [5]. Proponents of delay-based congestion control

[48, 26, 4] must still work to address concerns about its effectiveness [54, 55]. It is likely

that any new variant will only become successful if it uses a more sophisticated Kalman

filter [22] so that its congestion response is not thrown off by noisy measurements.

TCP Santa Cruz [48] stands out from other delay based congestion control

protocols because it uses relative forward delay (RFD), the difference between the receive

and send times of two packets, rather than RTT. Referring to Figure 3.1, forward delay

is defined as Di,j = (Rj − Ri) − (Sj − Si), and it clearly indicates whether congestion

is increasing, decreasing, or static along the forward path. In fact, RFD is exactly the

same concept as Pathload’s use of the difference between OWDs, just defined several

years earlier. Whereas Pathload is rate based and uses its measurements to determine

the available bandwidth, TCP Santa Cruz is window based uses its measurements to

model the bottleneck switch’s queue depth.

The Probe Control Protocol (PCP) [3] uses short probes similar to Pathload

to detect the available network bandwidth. PCP uses a least squares fit to determine

whether a series of noisy delay measurements are increasing or decreasing. The prob-

ability distribution associated with the fit line is used when PCP randomly accept the

result of a probe. Send time stamps are improved (compared to Pathload’s) by using

21

the same packet capture library that is used by tcpdump.

Linux can switch between multiple TCP variants, and the latest default is

CUBIC [17], which focuses on addressing issues TCP has with effectively utilizing links

with large bandwidth-delay products. It also employs a hybrid slow start algorithm

which uses heuristics inspired by Pathload’s techniques for measuring available band-

width to find a safe exit point from slow start’s doubling of the congestion window.

Instead of using packet train probes, they use hints from ACK spacing and round-trip

delays. They do this because Pathload’s probing does not lend itself to incremental

deployment, and also because Linux does not provide high-resolution system clocks or

real-time interrupt handling.

3.4 Measurement Summary

Table 3.1 summarizes the different types of delay discussed in this chapter.

Round-trip times do not require clocks to be synchronized; but they neither separate

time due to network or system effects, nor do they differentiate between asymmetric

forward and reverse paths. Accurate one way delay measurements require clocks that are

synchronized with a stable rate, which are generally not available. RFD measurements

can be made with unsynchronized clocks, and are also best made using clocks with

stable rates. In all cases, it is best if timestamps can be generated as close to the actual

send and receive times as possible in order to differentiate between queueing effects on

the host and on the network. Measurements appear noisy because other effects, like

22

interrupt throttling are included. Packet trains are preferable to packet pairs because

they allow those effects to be mostly ignored using a filter and trend analysis.

Name Description
NTP Round-trip Time RTTi = (Ci − Si)− (Ai −Ri)
TCP Round-trip Time RTTi = Ci − Si

One Way Delay OWDi = Ri − Si

Relative Forward Delay RFDi,j = (Rj −Ri)− (Sj − Si)

Table 3.1: Summary of network resource measurements.

The most useful metric discovered for reasoning about network effects is RFD

between two packets. Changes in this delay indicate whether congestion is increasing or

decreasing and can be used to determine available bandwidth. Another possible use of

RFD would be to increase the number of measurements useful for time synchronization.

RFD measurements isolate network information from clock information. Sub-

tracting positive RFDs from OWDs should remove network queueing affects, at least

between the two OWDs. The absolute network queueing effect could possibly be elimi-

nated using a queue model as in TCP Santa Cruz. Improving clock synchronization is

beyond the scope of this Storage Network QoS project, but this line of reasoning does

warrant further investigation.

23

Chapter 4

RAD on Networks (Radon)

The Resource Allocation and Dispatching (RAD) scheduling model [7] has

proven to be an effective way to provide a range of performance guarantees [36], first for

CPU and later for disk [53] resources. Its success is due to the separation of Resource

Allocation, which answers the question “how much?”, from Dispatching, which answers

the question “when?” The Resource Allocation for a given task is specified using a

reservation of some fraction of the resource at some granularity period, or more concisely,

Rate. Dispatching schedules the work defined by the Rate such that it is finished by the

Deadline at the end of each period.

The intention of adapting RAD to the network resource is to provide flexible,

general, and fine-grained performance guarantees on standard commodity network hard-

ware similar to what CPU and disk resources enjoy under the same general model. One

important goal of applying the same scheduling model to every level of the operating

system is the desire to compose guarantees system-wide.

24

4.1 Multiple Dispatchers in RAD

RAD was originally developed for a single resource and single dispatcher. In

the case of switched networks, the RAD model must now take into account the existence

of multiple dispatchers per resource, where the resource is a transmit port on a switch.

The admission process on each receiving host ensures that the aggregate utilization of

each switch port is not greater than one. By using the information provided by the

resource allocation, dispatchers are able to cooperatively and precisely manage flow

control and congestion control for streams of packets in a network and minimize the use

of the queue on a switch. The standard definitions for the RAD model apply:

Resource Allocation A task Ti’s reservation (ui, pi), where ui is network time uti-

lization and pi is the length of the period for which ui is guaranteed.

Dispatching A task Ti has a budget ei = ui · pi, and is made up of a sequence of jobs

Ji,j , each possessing a release time ri,j and a deadline di,j = ri,j + pi.

The major challenge of guaranteeing network resources is to avoid dispatching

synchronized bursts of packets while minimizing communication and synchronization

overhead. Ideally this means that a host uses only its own information to determine

when to dispatch requests. Several variations of Radon will be discussed, but all will

focus on using relative forward delay (RFD) in some way to detect congestion, and

reservation information to determine the response to that signal.

25

4.2 Flexibility of RAD

One of the ways the RAD model is flexible is that it allows the reservation to

be specified in different types of units. Usually people prefer to specify I/O reservations

as the amount of data per period, but that may not be the best way to implement

the resource management. A data reservation is not appropriate if the usage pattern

of the reservation has a large effect on the rate achieved. For example, disk I/O is

greatly effected by sequentiality while network I/O is greatly effected by the size of the

individual jobs. If the achieved rates are dependent on the way in which the resource is

used, then it is better to implement resource management with time reservations.

Choosing RAD as a general model does not specify whether flow control is

implemented in terms of the space between packets or space between, and size of,

bursts of packets. From the perspective of the operating system, it would be nice if

there were fewer interrupts so that work could be done in batches. However, bursts

require larger buffers, introduce large amounts of variation in delay, and make accurate

timestamping difficult. Monopolizing an entire CPU’s time to handle network traffic

has not been considered practical, but many newer systems possess more processor

cores than they have work for. Also, new network interfaces are beginning to appear on

the market that will ease that load by including support for hardware timestamping.

Ideas for managing flow control in terms of windows will be discussed, but the initial

implementation of Radon will focus on manipulating the wait time between packets

rather than bursts.

26

4.3 Detection of Congestion and its Severity

TCP Santa Cruz [48] modeled queueing in a switch by summing the RFDs

over an interval and dividing that by the average packet service time during that same

interval. TCP Santa Cruz was implemented in the ns-2 network simulator, and so

did not have to contend with noisy delay measurements. Therefore Radon will detect

congestion and determine its severity by combining Pathload’s median filter and trend

analysis with the TCP Santa Cruz queue model.

Pathload was designed to perform short, active probes of the network, while

Radon is intended to measure delays continuously and passively. Where Pathload took

the median of several 100 packet trains and then performed its analysis, Radon will take

the median of every five delay measurements and perform a continual trend analysis.

This should allow rapid reactions to signs of congestion and only require short bursts

of computational overhead. In the future, it could be interesting to explore whether

inflection points in delay measurements could be determined and whether or not that

knowledge could eliminate some work for the trend analysis.

4.4 Response to Congestion

The response to congestion in TCP is a multiplicative decrease in window

size, but hard real-time performance guarantees require strictly bounded responses. A

congestion control algorithm should also explicitly deal with the incast problem, which

particularly afflicts storage networks. Therefore, Radon’s response is designed using the

27

RAD model and traditional real-time scheduling theory.

Scheduling algorithms like Earliest Deadline First (EDF) [37] would require all

dispatchers contending for the same resource to know the release times of all jobs so that

they can agree on the earliest deadline. Furthermore, the clocks of the dispatchers must

be synchronized at a granularity corresponding to the differences between deadlines, and

not just at the granularity of the periods. A different scheduling algorithm is clearly

needed when a resource is scheduled by multiple dispatchers.

now deadline
laxity

release

budget

Figure 4.1: Laxity

The Least Laxity First (LLF) [42] scheduling algorithm uses the notion of lax-

ity, depicted in Figure 4.1. The laxity of a job li,j is defined as the time remaining

before the job must be scheduled in order to meet its deadline, li,j = di,j − t− e′
i, where

t is the current time and e′
i is the budget remaining in the period. In contrast with

EDF, which schedules based on the deadline a job must be finished, LLF schedules

based on the deadline a job must be started. LLF is optimal for scheduling a single

resource in the same sense that EDF is, if a feasible schedule exists, then both will find

one. Implementing LLF across multiple dispatchers would require just as much commu-

nication and synchronization as EDF, but it lends itself to an approximation suitable

for distributed dispatchers because the measure of laxity is relative while deadlines are

absolute.

28

Two distributed approximations to LLF, referred to as Percent Budget and

Less Laxity More (LLM), are now presented. They were developed with window based

flow control in mind. While no congestion is detected, streams of packets are transmitted

as fast as possible up to the amount allowed by the budget. When congestion is detected,

each sender will use a normalized notion of laxity to determine its change in window size.

Let the %laxity of a job be defined as
li,j

di,j − t
, or the time until the job must start divided

by the time remaining until the deadline. Note that another way to think of the relative

urgency of a job is according to its %budget, which is in fact (1−%laxity) =
ei

d− t
.

Flow Control Budget (in packets) mi = ei/pktS, where pktS (s/packet) is the worst

case packet service time

Congestion Control Windows adjusted in size and dispatch time

Percent Budget Window Target wop = (1−%laxity) · wmax

Less Laxity More Window Target wop = min

(
mi, max

(
wmax

li,j + 1

)
, 2

)

Size Change wchange =
−|wi − wop|

2

Dispatch Offset woffset =
Nobs

pktS
· rand

Where wi is the current window size and Nobs is the depth of the bottleneck

switch’s queue modeled using observations of relative forward delay. The result-

ing window size is also obviously bound by the minimum window size and the

remaining budget.

29

Even if individual hosts do not know who among them has the least laxity,

they can cooperatively control congestion using the relative measure of their own laxity

or budget. Nothing has been formally proven concerning the guarantees made by LLM,

Percent Laxity, or Percent Budget.

Due to limitations of the available hardware and the decision to implement a

Radon prototype in userspace, the quality of transmission timestamps are problematic,

especially for window-based algorithms. On the other hand, a rate-based algorithm

provides a userspace program the opportunity to generate and use timestamps more

easily. For this research to become practical, either an entire processor must be free

to handle interrupts or the NIC must provide support for timestamping. Also, Radon

should be moved down in the software stack, most likely into the network subsystem’s

queueing discipline code. Here follows the above congestion control ideas adapted to a

rate-based approach.

Flow Control Budget (in packets) mi = ei/pktS, where pktS (s/packet) is the worst

case packet service time

Congestion Control Rate adjusted by changing wait time between packets

Percent Budget Packet Wait Time wop =
waitmin

%budget

Size Change wchange =
−|wi − wop|

2

New Packet Wait Time waitnew = min (waitmax, max (waitmin, wchange))

Where wi is the current packet wait time.

30

4.5 Related Work

Radon’s approach belongs to the family of cooperative end-to-end protocols

rather than methods that require router involvement [11, 29]. TCP/IP is the most

widely deployed end-to-end network protocol, but its congestion control algorithms [19]

cannot provide any (real-time) guarantees. Its use of packet loss as a congestion signal

results in oscillating throughput and a large variance in packet delay. Instead, real-time

audio and video network applications have built their protocols on top of the basic

datagrams provided by IP or UDP [10], but their protocols are unaware of congestion

and unsuitable for storage.

A simple cooperative traffic shaping [38] approach limits the size of the queue

used in an Ethernet switch, and subsequently provides real-time guarantees. However,

this technique fails to utilize more than half of the theoretical capacity of Gigabit Eth-

ernet and requires hosts to know the size of the switch buffer.

Some variants of TCP [48, 26] use delay measurements to control congestion

and can successfully limit the number of packets in a bottleneck queue. TCP Santa

Cruz [48] can differentiate between congestion on the forward and reverse paths, while

FAST TCP [26] can achieve weighted proportional fairness.

PCP [3] uses probe packets to detect if the network can currently support a

specific load and converges to a desired throughput using short, paced, high-rate bursts.

PCP is shown to outperform traditional TCP in various ways including response time

and loss rate, and recovers from incast after some packet loss. Despite all of those

31

positive features, PCP is still a best-effort protocol.

In addition to scheduling a switch’s transmit ports, it is clear that the both

the sending and receiving hosts must schedule the use of their NICs by various processes

on the system. VRE-NET [8] and Netnice [46] deal with the local resource manage-

ment problem. Eventually, a hierarchical scheduler must solve the local and distributed

network resource management problems together.

32

Chapter 5

Evaluation of Radon

The following experiments evaluate a prototype of a rate-based Radon algo-

rithm on older, less capable hardware than is now available. While these results have

been superseded by experiments on later hardware, they do illustrate the promise of the

Radon algorithms better than experiments done on newer hardware. This is because

the older hardware was more resource constrained, so Radon had more opportunity to

show improvement. Later experiments done on systems with 64-bit CPUs, more capable

NICs, faster and wider pathways to the NIC and memory, and more mature switching

technology easily handled the experimental workloads both with and without conges-

tion control. On reflection, it seems appropriate that Gigabit Ethernet technology would

finally become reliable when 10 Gigabit products begin to enter the mainstream.

33

5.1 Setup

The experiments were performed on a cluster of seven nodes, each node possess-

ing an Intel R© Celeron R© CPU 2.53 GHz processor and an 82541PI Gigabit adapter.

The cluster’s primary network used an Extreme R© Summit 400-24t switch, with all

management traffic confined to a separate switch. The Gigabit adapter’s interrupt

throttling was disabled, and the number of descriptors used for receiving and trans-

mitting packets was set to 4096 and 80 entries, respectively. The number of descriptor

entries were set this way in order to minimize the amount of queueing of packets on

the card while enabling full link utilization. The Summit 400-24t supports a 9216 Byte

maximum packet size (Jumbo Frame), policing or rate limiting on ingress, 802.1q tag-

ging and DiffServ marking, and shaping on egress with eight QoS queues per port. None

of the QoS features of the switch were used.

UDPmon [18] was chosen as a basis for the following experiments partly be-

cause its code is easy to understand and modify compared to other well known network

measurement tools, partly because it uses the stable time stamp counter (TSC) rather

than the system’s real-time clock, and partly because its sister tool, ethmon, duplicates

UDPmon’s functionality over raw ethernet sockets. While UDP sockets are easier to use,

raw Ethernet sockets bypass abstraction layers and operating system buffers, providing

the best opportunity possible for accurate timestamps in a userspace application. UDP-

mon was modified to call sched yield() immediately after sendto() in order to make

its send timestamps as accurate as possible. It was also modified to use the timestamp

34

data to model the switch queue depth, and then to increase or decrease the wait time

between packets according to the apparent congestion. The packet buffers were kept as

small as possible. Unfortunately, 1000 Mbps requires a large receive buffer. This affects

TSC timestamps, but not the system’s socket timestamps. The socket timestamp is

close to actual arrival time, but is based on the system’s unstable real-time clock rather

than the TSC. In an attempt to get a good comparison of TSC and system timestamps,

NTP was turned off in order to increase system clock stability. The system clocks were

synchronized at the beginning of each experiment.

Modern operating systems generally throttle the rate at which the network

generates interrupts in order to preserve CPU resources. Fortunately, some network

drivers allow interrupt throttling to be explicitly set. In this case, the Intel E1000

driver was forced to generate an interrupt for every packet. Jumbo packets were used

in order to match filesystem block size. An individual 4KB packet can be sent faster

than an 8KB packet, but two cannot, and the system can only approach gigabit speeds

by using the larger packet size. It requires half as many interrupts. Although packets

can be made as large as 9KB, that can turn out to be a poor choice due to memory

page size and limitations of the experiment system’s older 66 MHz PCI bus.

35

5.2 Single Stream

tcpdump send delays (microseconds)

D
en

si
ty

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

application send delays (microseconds)

D
en

si
ty

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

tcpdump receive delays (microseconds)

D
en

si
ty

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

application receive delays (microseconds)

D
en

si
ty

0 50 100 150
0.

0
0.

2
0.

4
0.

6
0.

8

system receive delays (microseconds)

D
en

si
ty

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 5.1: Histograms comparing the quality of timestamp measurements

Figure 5.1 shows the difference in the quality of timestamps taken by the

tcpdump program, by the application itself, and by the operating system’s socket time-

stamping mechanism. The distributions of the measured delays between two packets

is most similar between tcpdump and the socket timestamp because the packets are

36

time stamped at a similar point close to the hardware. The application’s send delay

distribution is one-sided because the application never sends a packet until it has waited

the amount of time specified on its command line. Its receive delay distribution is broad

because it is measuring operating system queuing effects on both the client and the

server.

 0

 5

 10

 15

 20

 25

 30

 35

 0 5000 10000 15000 20000 25000

Q
ue

ue
 D

ep
th

 (
pa

ck
et

s)

Packet Sequence Number

basic model
median-filter model

pathload model

Figure 5.2: Comparison of queue modeling for a single network stream

Figure 5.2 shows a best case stream between a client and a server with a rate

of 765 Mbps, or 84 µs between packets. A single stream cannot cause collisions, so the

switch queue does not fill, and the models reflect the the variation in inter-packet delay

due to the operating systems of the client and server. Both the basic and Pathload

models show a consistently small queue depth, while the median-filter model has an

unreasonable, ever-increasing trend.

37

 0

 2

 4

 6

 8

 10

 12

 14

 0 5000 10000 15000 20000 25000

Q
ue

ue
 D

ep
th

 (
pa

ck
et

s)

Packet Sequence Number

basic model
median-filter model

pathload model

Figure 5.3: Comparison of queue modeling for a single adaptive network stream

Figure 5.3 shows the same best case stream as above, but it changes the wait

time between packets according to the modeled depth of the median-filter queue model.

The result was an average rate of 739 Mbps and 87 µs between packets. All of the models

show a smaller queue depth, and the median-filter model no longer has an unreasonable

increasing trend.

38

5.3 Single Stream Punctuated

In Figures 5.4 and 5.5, there is one longer running stream punctuated by five

other short streams throughout its lifetime. The first stream attempts to send packets

with a 86 µs inter-packet wait time, or 749 Mbps, and the others attempt to use the

theoretically remaining bandwidth at different times with a packet wait time of 257 µs.

A user might expect this load to show some queue buildup on the switch and rarely

drop packets since the total offered load never exceeds the capacity.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5000 10000 15000 20000 25000

Q
ue

ue
 D

ep
th

 (
pa

ck
et

s)

Packet Sequence Number

basic model
median-filter model

pathload model
lost packets

Figure 5.4: Comparison of queue modeling for a punctuated stream

The lost packets clearly mark the duration of each short stream in Figure 5.4.

The primary stream lost 24% of its packets and the each of the others lost approximately

4% of theirs. The streams in Figure 5.5 adapt their inter-packet wait time according to

39

the median-filter queue depth model, achieving good results with regard to preventing

most packet loss. Tables 5.3 and 5.3 show that primary stream lost only 2.5% of packets

and the others each lost one out of 500. On one hand, it is unfortunate that the

congestion control favored the primary stream over the streams with less demanding

reservations. On the other hand, this indicates that a reservation with a very short

inter-packet latency requires a significant amount of overhead, about 20% of the link

capacity in this case. This observation fits well with the experience of the other RAD-

based schedulers.

 0

 50

 100

 150

 200

 250

 0 5000 10000 15000 20000 25000

Q
ue

ue
 D

ep
th

 (
pa

ck
et

s)

Packet Sequence Number

basic model
median-filter model

pathload model
lost packets

Figure 5.5: Comparison of queue modeling for a punctuated adaptive stream

It is interesting to note that the Pathload queue model shows an always in-

creasing trend in figure 5.4 due to its need to analyze timestamps in groups of 100. The

median-filter model only looks at 5 timestamps at a time, so it reflects the filling and

40

Node send rate num num %lost recv rate recv wire rate
(Mbps) recv lost (Mbps) (Mbps)

1 747.117 17571 5652 24.0 565.489 570.131
2 250.080 481 19 3.8 245.459 247.474
3 250.107 478 22 4.4 244.248 246.253
4 250.128 477 23 4.6 244.240 246.245
5 250.109 478 22 4.4 240.838 242.816
6 250.159 481 19 3.8 238.908 240.870

Table 5.1: Summary of rates and losses for a punctuated stream.

Node send rate num num %lost recv rate recv wire rate
(Mbps) recv lost (Mbps) (Mbps)

1 743.848 22666 589 2.5 725.206 731.159
2 1.476 499 1 0.2 1.478 1.490
3 1.476 499 1 0.2 1.478 1.490
4 1.476 499 1 0.2 1.478 1.490
5 1.476 499 1 0.2 1.478 1.490
6 1.476 499 1 0.2 1.478 1.490

Table 5.2: Summary of rates and losses for a punctuated adaptive stream.

draining of the queue more quickly. The basic model stays close to zero. It does not

filter out any noisy measurements, and does not appear to give strong indications of

congestion.

The statistics available on the switch were useless with regard to verifying the

accuracy of the different models. It did not appear to count the number of packets

dropped for each transmit port, since the tool always reported zero even when a port

was deliberately offered a load that exceeded its capability.

41

Node send rate num num %lost recv rate recv wire rate
(Mbps) recv lost (Mbps) (Mbps)

1 163.197 4925 151 3.000 158.403 159.703
2 163.153 5056 20 0.390 162.574 163.909
3 163.181 5071 5 0.099 163.077 164.416
4 163.189 5073 3 0.059 163.159 164.498
5 163.115 5072 4 0.079 163.063 164.401
6 163.167 5074 2 0.039 163.133 164.473

Table 5.3: Summary of rates and losses for six fairshare clients.

Node send rate num num %lost recv rate recv wire rate
(Mbps) recv lost (Mbps) (Mbps)

1 163.127 5035 41 0.810 161.836 163.165
2 163.216 5058 18 0.350 162.705 164.041
3 163.017 5074 2 0.039 163.019 164.357
4 163.130 5072 4 0.079 163.063 164.402
5 163.135 5073 3 0.059 163.136 164.475
6 163.078 5073 3 0.059 163.017 164.355

Table 5.4: Summary of rates and losses for six adaptive fairshare clients.

5.4 Six Fairshare Streams

Figures 5.6 and 5.7 show six clients sending data to the same server at a rate of

166 Mbps and 394 µs wait times between packet transmissions. Tables 5.4 and 5.4 show

that the adaptive steams experience a reduction in the amount of packet loss as in the

previous experiments. After an initial loss of packets in primarily the first and second

streams, both the adaptive and non-adaptive streams rarely lose packets. With packets

spaced apart as far as they are, it is obvious there is simply little chance of congestion

causing packet loss. In fact, almost all clients detect a stabilized queue depth after

approximately 4000 packets.

42

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 1000 2000 3000 4000 5000

Q
ue

ue
 D

ep
th

 (
pk

ts
)

Node 1’s Packet Sequence Number

basic model
median-filter model

pathload model
lost packets

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 1000 2000 3000 4000 5000

Q
ue

ue
 D

ep
th

 (
pk

ts
)

Node 2’s Packet Sequence Number

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 1000 2000 3000 4000 5000

Q
ue

ue
 D

ep
th

 (
pk

ts
)

Node 3’s Packet Sequence Number

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 1000 2000 3000 4000 5000

Q
ue

ue
 D

ep
th

 (
pk

ts
)

Node 4’s Packet Sequence Number

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 1000 2000 3000 4000 5000

Q
ue

ue
 D

ep
th

 (
pk

ts
)

Node 5’s Packet Sequence Number

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 1000 2000 3000 4000 5000

Q
ue

ue
 D

ep
th

 (
pk

ts
)

Node 6’s Packet Sequence Number

Figure 5.6: Comparison of queue modeling for six fairshare streams

43

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 1000 2000 3000 4000 5000

Q
ue

ue
 D

ep
th

 (
pk

ts
)

Node 1’s Packet Sequence Number

basic model
median-filter model

pathload model
lost packets

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 1000 2000 3000 4000 5000

Q
ue

ue
 D

ep
th

 (
pk

ts
)

Node 2’s Packet Sequence Number

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 1000 2000 3000 4000 5000

Q
ue

ue
 D

ep
th

 (
pk

ts
)

Node 3’s Packet Sequence Number

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 1000 2000 3000 4000 5000

Q
ue

ue
 D

ep
th

 (
pk

ts
)

Node 4’s Packet Sequence Number

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 1000 2000 3000 4000 5000

Q
ue

ue
 D

ep
th

 (
pk

ts
)

Node 5’s Packet Sequence Number

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 1000 2000 3000 4000 5000

Q
ue

ue
 D

ep
th

 (
pk

ts
)

Node 6’s Packet Sequence Number

Figure 5.7: Comparison of queue modeling for six fairshare adaptive streams

44

5.5 Six Unfair Streams

The previous experiments explore the effectiveness of Radon when there is one

primary stream, or where all streams are of equal importance. This final experiment,

whose streams are described in Table 5.5, tests Radon with a mixed workload. Together,

the sum of the lesser streams’ reservations equal the primary stream’s reservation. Also,

only the two smallest streams share the same rate.

Node Inter-packet Send Rate
Wait Time (µs) (Mbps)

1 131 500.00
2 262 250.00
3 524 125.00
4 1048 62.5
5 2097 31.25
6 2097 31.25

Table 5.5: Inter-packet wait times and send rates in the unfair experiment.

In this experiment, the adaptive streams did not fair much better than the non-

adaptive streams. Tables 5.5 and 5.5 show a slight reduction in packet loss was observed,

but Radon was unable to avoid 35% packet loss in the primary stream. This could be

due to the fact that none of the link capacity was set aside for overhead. Another

possible reason for the poor results could be related to incast since the inter-packet wait

times were multiples of each other.

Other than slightly fewer lost packets, Figures 5.8 and 5.9 are remarkably

similar. Note that although the X axes show a different number of packets for each

stream, those packets were all transmitted over approximately the same two second

45

Node send rate num num %lost recv rate recv wire rate
(Mbps) recv lost (Mbps) (Mbps)

1 490.617 9507 5759 38.0 305.618 308.127
2 245.311 7454 179 2.3 239.648 241.615
3 122.704 3813 3 0.1 122.675 123.682
4 61.358 1906 2 0.1 61.358 61.861
5 30.672 953 0 0.0 30.728 30.980
6 30.663 951 2 0.2 30.637 30.888

Table 5.6: Summary of rates and losses for six unfair streams.

Node send rate num num %lost recv rate recv wire rate
(Mbps) recv lost (Mbps) (Mbps)

1 489.946 9928 5333 35 318.661 321.277
2 245.215 7477 156 2 240.278 242.250
3 122.693 3816 0 0 122.823 123.831
4 61.352 1908 0 0 61.398 61.902
5 30.661 953 0 0 30.734 30.986
6 30.672 953 0 0 30.707 30.959

Table 5.7: Summary of rates and losses for six adaptive unfair streams.

interval. The timelines are proportionally correct, but should not be interpreted to be

precise in relation to each other.

46

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 2000 4000 6000 8000 10000 12000 14000

Q
ue

ue
 D

ep
th

 (
pk

ts
)

Node 1’s Packet Sequence Number

basic model
median-filter model

pathload model
lost packets

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 1000 2000 3000 4000 5000 6000 7000

Q
ue

ue
 D

ep
th

 (
pk

ts
)

Node 2’s Packet Sequence Number

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 500 1000 1500 2000 2500 3000 3500

Q
ue

ue
 D

ep
th

 (
pk

ts
)

Node 3’s Packet Sequence Number

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 200 400 600 800 1000 1200 1400 1600 1800

Q
ue

ue
 D

ep
th

 (
pk

ts
)

Node 4’s Packet Sequence Number

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 100 200 300 400 500 600 700 800 900

Q
ue

ue
 D

ep
th

 (
pk

ts
)

Node 5’s Packet Sequence Number

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 100 200 300 400 500 600 700 800 900

Q
ue

ue
 D

ep
th

 (
pk

ts
)

Node 6’s Packet Sequence Number

Figure 5.8: Comparison of queue modeling for six unfair streams

47

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 2000 4000 6000 8000 10000 12000 14000

Q
ue

ue
 D

ep
th

 (
pk

ts
)

Node 1’s Packet Sequence Number

basic model
median-filter model

pathload model
lost packets

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 1000 2000 3000 4000 5000 6000 7000

Q
ue

ue
 D

ep
th

 (
pk

ts
)

Node 2’s Packet Sequence Number

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 500 1000 1500 2000 2500 3000 3500

Q
ue

ue
 D

ep
th

 (
pk

ts
)

Node 3’s Packet Sequence Number

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 200 400 600 800 1000 1200 1400 1600 1800

Q
ue

ue
 D

ep
th

 (
pk

ts
)

Node 4’s Packet Sequence Number

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 100 200 300 400 500 600 700 800 900

Q
ue

ue
 D

ep
th

 (
pk

ts
)

Node 5’s Packet Sequence Number

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 100 200 300 400 500 600 700 800 900

Q
ue

ue
 D

ep
th

 (
pk

ts
)

Node 6’s Packet Sequence Number

Figure 5.9: Comparison of queue modeling for six unfair adaptive streams

48

5.6 Conclusion

The initial prototype of a rate-based Radon algorithm demonstrates that a

host can detect congestion by measuring changes in relative forward delay and respond

in such a way to avoid a large amount of packet loss. While TCP responds to congestion

with a multiplicative decrease in window size, Radon responds according to a definition

of urgency derived from real-time scheduling theory. Radon’s window-based variant is

yet to be prototyped successfully due to the difficulty of attaining accurate transmission

timestamps from userspace. When it is implemented, it will be an improvement over

the rate-based variant because it should make more efficient use of the hardware and it

explicitly deals with incast by offsetting the dispatch time of the next window.

49

Chapter 6

Proposed Research

This paper proposes that RAD real-time scheduling theory can be applied to

network resource management in a way that will be a significant improvement over the

state of the art.

Current storage networks do not provide end-to-end Quality of Service (QoS).

The intention of this research is to produce both a formal theory and real-world im-

plementation of flexible, general, and fine-grained performance guarantees on standard

commodity network hardware. These guarantees will be composable with guarantees

made for CPU, disk, and memory resources such that end-to-end QoS on storage net-

works can be provided.

6.1 Research Questions

There are two main questions that need to be answered about Radon, and

they can expanded into many individual questions.

50

1. What can be proven about Radon?

(a) Can it be proven that buffer bounds are not violated?

(b) Can it be proven that buffer requirements on bottleneck links are minimized?

(c) Can it be proven that Radon is able to be used to provide guarantees on top

of credit-based flow control?

2. Is Radon practical in the real world?

(a) Can flexible RAD-based scheduling algorithms improve upon conventional

priority-based scheduling on networks?

(b) What are the CPU requirements of Radon?

(c) Do RAD reservations lead to any promising new routing algorithms in com-

plex network topologies?

(d) Can Radon be composed with RAD-based schedulers for other resources to

provide end-to-end QoS?

6.2 Contributions

Expected contributions from this work are as follows:

1. A proven theory of efficient, real-time network performance management for both

reliable and unreliable transports

2. An accurate network simulation of the theory

51

3. An implementation of the theory that is useable by real-world applications

Furthermore, systems built using these methods will avoid over-provisioning,

virtualize the performance of remote storage access, and experience improved reliability

and administration over more traditional solutions.

6.3 Research Plan

Network Calculus combined with real-time scheduling theory and simulation

will be used to address the first set of research questions asking what can be proven

about Radon. Then questions about the practicality of Radon will be answered with

a real-world implementation and thorough experimentation. Theory and practice will

be tied together by running the same experiments in both simulation and on actual

hardware. An estimated six months of effort in theory and simulation should yield

answers to the first set of research questions, with another nine months required to

both develop a real-world implementation and compare it to the simulation results.

6.3.1 Theory

Le Boudec’s Network Calculus [34] can be used to formally prove the buffer

bounds of the Radon algorithms. Informally, Radon limits the amount of data it trans-

mits during a period so the worst case switch buffer requirement is the sum of the burst

sizes from all streams. It will be more difficult to prove whether or not Radon mini-

mizes the buffer size. It would also be interesting to attempt use model checking and

52

automated theorem proving tools.

6.3.2 Simulation

Accurate switch models will be developed for use with the NS-3 simulator.

Earlier research into Radon attempted to create multiple implementations for

both simulators and real world systems. On the one hand, a simulator promises the

ability to inspect all levels of the system and allows complex systems to be investigated

inexpensively. On the other hand, simulators may not be realistic enough. The simu-

lators investigated so far possess extremely limited switch models, so accurate modules

for switches and reliable transports must be developed first. Granted, TCP Santa Cruz

utilized the NS-2 simulator to simulate the depth of the switch’s queue depth, however

it is not currently well regarded, and is being superseded by NS-3.

6.3.3 Implementation

It is critical to replicate simulation results with a real-world implementation.

Previous work attempted to produce a userspace Radon and achieve limited success.

More work was done in attempt to create a Linux Kernel queueing discipline (qdisc).

However, the qdisc infrastructure is intended for self-contained traffic shaping strategies

whereas Radon requires external feedback. So, the next attempt to create a real-world

implementation should be as a congestion control plugin, either for the Datagram Con-

gestion Control Protocol (DCCP), TCP, or possibly something implemented in the

Infiniband software stack.

53

6.3.4 Experiments

The simulated and real-world experiments comparing Radon to kernel-based

IP traffic shaping and Infiniband QoS will require additional thought. Certainly, exper-

iments similar to those performed earlier will be repeated. However, a more portable

and powerful testing framework is necessary in order to make the comparisons valid.

Pakin’s coNCePTuaL [47] appears to be a framework that will effectively allow different

software and hardware stacks to be compared, once additional plugins are developed.

54

Bibliography

[1] Precision time protocol, IEEE standard 1588, 2002.

[2] Iperf the tcp/udp bandwidth measurement tool, 2003.

[3] Thomas Anderson, Andrew Collins, Arvind Krishnamurthy, and John Zahorjan.
PCP: efficient endpoint congestion control. In nsdi06, pages 15–15, Berkeley, CA,
USA, 2006. USENIX Association.

[4] Sumitha Bhandarkar, A. L. Narasimha Reddy, Yueping Zhang, and Dimitri Logu-
inov. Emulating aqm from end hosts. In SIGCOMM ’07: Proceedings of the 2007
conference on Applications, technologies, architectures, and protocols for computer
communications, pages 349–360, New York, NY, USA, 2007. ACM.

[5] Saad Biaz and Nitin H. Vaidya. Is the round-trip time correlated with the number of
packets in flight? In IMC ’03: Proceedings of the 3rd ACM SIGCOMM conference
on Internet measurement, pages 273–278, New York, NY, USA, 2003. ACM.

[6] J. Bolot. Characterizing end-to-end packet delay and loss in the internet, 1993.

[7] Scott A. Brandt, Scott Banachowski, Caixue Lin, and Timothy Bisson. Dynamic
integrated scheduling of hard real-time, soft real-time and non-real-time processes.
In Proceedings of the 24th IEEE Real-Time Systems Symposium (RTSS 2003),
pages 396–407, December 2003.

[8] Hui Cheng and Steve Goddard. Vre-net: A qos-supported network subsystem
for multimedia applications. In AINA ’06: Proceedings of the 20th International
Conference on Advanced Information Networking and Applications - Volume 1
(AINA’06), page 113, Washington, DC, USA, 2006. IEEE Computer Society.

[9] Wu chun Feng and Peerapol Tinnakornsrisuphap. The adverse impact of the TCP
congestion-control mechanism in heterogeneous computing systems. In Interna-
tional Conference on Parallel Processing, pages 299–306, 2000.

[10] David D. Clark. The design philosophy of the darpa internet protocols. pages
54–62, 1992.

55

[11] David D. Clark, Scott Shenker, and Lixia Zhang. Supporting real-time applications
in an integrated services packet network: Architecture and mechanism. In sigcomm,
pages 14–26, 1992.

[12] Kendall Correll, Nick Barendt, and Michael Branicky. Servo design considerations
for software-only implementations of the ieee 1588 precision time protocol. In
Proceedings of Conference on IEEE-1588 Standard for a Precision Clock Synchro-
nization Protocol for Networked Measurement and Control Systems, 2005.

[13] C. Demichelis and P. Chimento. Ip packet delay variation metric for ip performance
metrics (ippm), 2002.

[14] Constantinos Dovrolis, Parameswaran Ramanathan, and David Moore. Packet-
dispersion techniques and a capacity-estimation methodology. IEEE/ACM Trans.
Netw., 12(6):963–977, 2004.

[15] Bill Fink. Nuttcp tcp/udp measurement tool, 2007.

[16] Sangtae Ha and Injong Rhee. Hybrid slow start for high-bandwidth and long-
distance networks. PFLDnet, 2008.

[17] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a new tcp-friendly high-speed
tcp variant. SIGOPS Oper. Syst. Rev., 42(5):64–74, 2008.

[18] Richard Hughes-Jones, Peter Clarke, and Steven Dallison. Performance of 1 and 10
gigabit ethernet cards with server quality motherboards. Future Gener. Comput.
Syst., 21(4):469–488, 2005.

[19] V. Jacobson. Congestion avoidance and control. In SIGCOMM ’88: Symposium
proceedings on Communications architectures and protocols, pages 314–329, New
York, NY, USA, 1988. ACM.

[20] V. Jacobson, R. Braden, and D. Borman. Tcp extensions for high performance,
1992.

[21] Van Jacobson. pathchar—a tool to infer characteristics of internet paths, 1997.

[22] Krister Jacobsson, Hkan Hjalmarsson, Niels Mller, and Karl Henrik Johansson. Es-
timation of rtt and bandwidth for congestion control applications in communication
networks. In 43rd IEEE Conference on Decision and Control (CDC04), 2004.

[23] M. Jain and C. Dovrolis. End-to-end available bandwidth: measurement method-
ology, dynamics, and relation with tcp throughput, 2002.

[24] M. Jain and C. Dovrolis. Pathload: A measurement tool for end-to-end available
bandwidth, 2002.

56

[25] Manish Jain and Constantinos Dovrolis. Ten fallacies and pitfalls on end-to-end
available bandwidth estimation. In IMC ’04: Proceedings of the 4th ACM SIG-
COMM conference on Internet measurement, pages 272–277, New York, NY, USA,
2004. ACM.

[26] C. Jin, D. Wei, and S. Low. Fast tcp: Motivation, architecture, algorithms, perfor-
mance, 2004.

[27] Rick Jones. Netperf tcp/udp measurement tool, 2005.

[28] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems.
Transactions of the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960.

[29] Dina Katabi, Mark Handley, and Charlie Rohrs. Congestion control for high
bandwidth-delay product networks. In SIGCOMM ’02: Proceedings of the 2002
conference on Applications,technologies, architectures, and protocols for computer
communications, pages 89–102, New York, NY, USA, 2002. ACM.

[30] Srinivasan Keshav. Packet-pair flow control. Technical report, Murray Hill, New
Jersey, 1994.

[31] Elie Krevat, Vijay Vasudevan, Amar Phanishayee, David G. Andersen, Gregory R.
Ganger, Garth A. Gibson, and Srinivasan Seshan. On application-level approaches
to avoiding TCP throughput collapse in cluster-based storage systems. In Proc.
Petascale Data Storage Workshop at Supercomputing’07, November 2007.

[32] Kevin Lai and Mary Baker. Measuring link bandwidths using a deterministic model
of packet delay. SIGCOMM Comput. Commun. Rev., 30(4):283–294, 2000.

[33] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, July 1978.

[34] Jean-Yves Le Boudec and Patrick Thiran. Network calculus: a theory of determin-
istic queuing systems for the internet. Springer-Verlag, Berlin, Heidelberg, 2001.

[35] Charles E. Leiserson. Fat-trees: universal networks for hardware-efficient super-
computing. IEEE Trans. Comput., 34(10):892–901, 1985.

[36] Caixue Lin, Tim Kaldewey, Anna Povzner, and Scott A. Brandt. Diverse soft real-
time processing in an integrated system. In Proceedings of the 27th IEEE Real-Time
Systems Symposium (RTSS 2006), pages 369–378, Rio de Janeiro, Brazil, December
2006.

[37] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in
a hard-real-time environment. Journal of the ACM, 20(1):46–61, January 1973.

[38] J. Loeser and H. Haertig. Low-latency hard real-time communication over switched
ethernet, 2004.

57

[39] Josip Loncaric. Btime cluster-wide clock synchronization, 2005.

[40] Dave L. Mills. Network time protocol (version 3) specification and implementation.
Network Working Group Request for Comments: 1305, March 1992.

[41] Jeffrey C. Mogul and K. K. Ramakrishnan. Eliminating receive livelock in an
interrupt-driven kernel. ACM Transactions on Computer Systems, 15:217–252,
1997.

[42] Aloysius K. Mok. Fundamental Design Problems of Distributed Systems for Hard
Real-time Environment. PhD thesis, Massachusetts Institute of Technology, May
1986.

[43] Mike Muus. Ping, 1983.

[44] Mike Muus. Ttcp: Tcp test, 1984.

[45] P. Ohly, D. Lombard, and K. Stanton. Hardware assisted precision time protocol.
design and case study., 2008.

[46] T. Okumura, M. Moir, and D. Mosse. netnice: nice is not only for cpus-a sim-
ple subnetwork bandwidth management scheme. Computer Communications and
Networks, 2000. Proceedings. Ninth International Conference on, pages 388–395,
2000.

[47] Scott Pakin. The design and implementation of a domain-specific language for
network performance testing. IEEE Trans. Parallel Distrib. Syst., 18:1436–1449,
October 2007.

[48] Christina Parsa and J. J. Garcia-Luna-Aceves. Improving TCP congestion control
over internets with heterogeneous transmission media. In Proceedings of the 7th
IEEE International Conference on Network Protocols (ICNP). IEEE, 1999.

[49] Attila Pásztor and Darryl Veitch. Pc based precision timing without gps. SIG-
METRICS Perform. Eval. Rev., 30(1):1–10, 2002.

[50] Vern Paxson. On calibrating measurements of packet transit times. SIGMETRICS
Perform. Eval. Rev., 26(1):11–21, 1998.

[51] Vern Paxson. Strategies for sound internet measurement. In IMC ’04: Proceedings
of the 4th ACM SIGCOMM conference on Internet measurement, pages 263–271,
New York, NY, USA, 2004. ACM.

[52] Amar Phanishayee, Elie Krevat, Vijay Vasudevan, David G. Andersen, Gregory R.
Ganger, Garth A. Gibson, and Srinivasan Seshan. Measurement and analysis of
tcp throughput collapse in cluster-based storage systems. In FAST’08: Proceed-
ings of the 6th USENIX Conference on File and Storage Technologies, pages 1–14,
Berkeley, CA, USA, 2008. USENIX Association.

58

[53] Anna Povzner, Tim Kaldewey, Scott Brandt, Richard Golding, Theodore M. Wong,
and Carlos Maltzahn. Efficient guaranteed disk request scheduling with fahrrad. In
Eurosys ’08: Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference
on Computer Systems 2008, pages 13–25, New York, NY, USA, 2008. ACM.

[54] R S Prasad, M Jain, and C Dovrolis. On the effectiveness of delay-based congestion
avoidance. In In Proceedings of Second International Workshop on Protocols for
Fast Long-Distance Networks, pages 3–4, 2004.

[55] S Rewaskar, J Kaur, and D Smith. Why dont delay-based congestion estimators
work in the real-world. Technical report, Department of Computer Science, UNC
Chapel Hill, 2005.

[56] Jamal Hadi Salim, Robert Olsson, and Alexey Kuznetsov. Beyond softnet. In ALS
’01: Proceedings of the 5th annual Linux Showcase & Conference, pages 18–18,
Berkeley, CA, USA, 2001. USENIX Association.

[57] Fabian Schneider, Jrg Wallerich, and Anja Feldmann. Packet capture in 10-gigabit
ethernet environments using contemporary commodity hardware. In In Proceedings
of the 8th International Conference on Passive and Active Network Measurement,
pages 207–217, New York, NY, USA, April 2007. Springer-Verlag Berlin Heidelberg.

[58] S. Shalunov, B. Teitelbaum, A. Karp, J. Boote, and M. Zekauskas. A one-way
active measurement protocol (OWAMP), 2006.

[59] Darryl Veitch, Julien Ridoux, and Satish Babu. Robust synchronization of absolute
and difference clocks over networks. Accepted for publication, IEEE/ACM Trans.
on Networking, to appear June, 2009.

59

