
Sequential Design for Achieving Estimated Accuracy of Global

Sensitivities

John Guenther1, Herbert K. H. Lee1, and Genetha A. Gray2

1Department of Applied Mathematics and Statistics
University of California, Santa Cruz, CA 95064

2Quantitative Modeling and Analysis
Sandia National Laboratories, Livermore, CA 94551

(jguenthe@soe.ucsc.edu)

Abstract

Global sensitivity analysis provides information on the relative importance of the input variables

for simulator functions used in computer experiments. It is more conclusive than screening

methods for determining if a variable is influential, especially if a variable’s influence is derived

from its interactions with other variables. In this paper, we develop a method for providing global

sensitivities with estimated accuracy. A treed Gaussian process serves as a statistical emulator

of the black box function. A sequential experimental design makes effective and efficient use of

simulator evaluations by adaptively sampling points that are expected to provide the maximum

improvement to the emulator model. The method accounts for both sampling error and emulator

error.

KEY WORDS: Sensitivity analsyis, Uncertainty quantification, Treed Gaussian process, com-

puter model, emulator.

1 INTRODUCTION

Understanding the relative importance of variables and their contributions to the response is an

important part of many computer simulation experiments. Knowledge of variable influence can

provide feedback on the design of the simulator, and it can be used to winnow out the less important

variables when faced with a large number of potential inputs. When the simulator is costly to

run, such knowledge is ever more critical. Global sensitivity analysis is a variance-based method

that has been proven effective in determining the importance of the input variables for computer

1

experiments (Saltelli et al., 2010). Input variables that are determined to be not important by

global sensitivity analysis can be eliminated from the computer experiment by the method of

factor fixing discussed in Saltelli et al. (2008), saving processing time by reducing the dimension

of the simulator input space. Alternative frameworks include variable screening (Box et al., 2005)

and model order reduction (Schilders et al., 2008). Our approach represents a major advance in

uncertainty quantification of the sensitivity estimations, which can be carried out to almost any

desired degree of accuracy. We combine emulation and sequential experimental design to provide

efficient uncertainty quantification for global sensitivity analysis.

Global sensitivity for a given variable is a measure of how much of the variance of the simulator

output function, on average, is due to that variable. There are two main types of sensitivities for

a given variable: 1) The first order sensitivity represents the main (linear) effects contribution of

the variable to the variance of the simulator function; 2) The total sensitivity represents the total

contribution of the variable to the variance of the simulator function. Using the simulator function

directly to compute sensitivities would take considerable time and expense for most computer

experiments, since the simulator typically requires a significant amount of time to compute a value

for an input point. The alternative is to use an emulator to create a statistical model of the

simulator surface which then can be used to predict large samples of input points, making efficient

and effective use of the actual costly simulator evaluations. The traditional statistical model for

emulation is the Gaussian process, which provides a computationally accessible nonparametric

model that can accommodate a range of response functions (Santner et al., 2003). An improvement

in emulators, the treed Gaussian process (TGP) emulator, has the capability of modeling functions

with regions of different variability better than a traditional stationary Gaussian process, and we

use TGP throughout this work (Gramacy and Lee, 2008). The emulator predictions need to be a

relatively good match to the simulator evaluations if this procedure is to provide accurate results.

This problem can be solved by a sequential experimental design that adds training points where

most needed to enhance the emulator model accuracy. After accurate modeling of the simulator is

achieved, the sensitivity estimation provides quantifiable uncertainty with estimated accuracy.

Several alternatives exist in the literature for computing global sensitivities. Methods of com-

2

puting sensitivities and screening variables are discussed in Saltelli et al. (2004, 2008). Taddy et al.

(2009) made use of a TGP emulator and the Monte Carlo estimation formulas given in Saltelli

(2002) for the estimation of sensitivities. This is one of the first articles that used the predictions

of the emulator for sensitivity computation. Farah (2011) made use of a Gaussian process emulator

and formulas similar to those in Taddy et al. (2009) to estimate the sensitivities of the variables of

a Leaf-Canopy Model simulator. In a recent article, Saltelli et al. (2010) discussed several Monte

Carlo estimation formulas, demonstrating the total sensitivity formula developed by Jansen (1999)

to be more effective than other formulas. Thus we use the Jansen formula for this research. Another

important reason for this choice is that the sensitivity variances are unbiased (Jansen, 1999; Owen,

2013), in the sense that the values target the actual value of the variances instead of systematically

overestimating or underestimating them. The use of a dummy variable in sensitivity estimation

to distinguish influential variables from non-influential variables was demonstrated in Linkletter

et al. (2006), which inspired the use of a dummy variable for all computations in this document.

The standard deviation of the total sensitivity of the dummy variable is a key indicator for the

convergence of the sensitivities of other variables, as we know it should converge to zero, but as we

are proceeding it will take nonzero values because of the uncertainty in all of our estimations, so it

provides a clear benchmark for our progress.

The method of estimating global sensitivities accurately using emulator predictions is explained

in Section 2. An illustrative example is presented in Section 3. An automated stopping rule is

discussed in Section 4. In Section 5, the method is applied to a real world problem involving the

remediation of groundwater contamination site.

2 METHOD

The method of computing global sensitivities is presented in two parts: the formulas for the

computation of the sensitivities, and the steps required to provide accuracy for the global sensitivity

computations.

3

2.1 Computation of Sensitivities

The sensitivities needed for optimization herein are the first order and total sensitivities. Denote

the input variables x = (x1, ..., xk) and the simulator function y = f(x1, ..., xk) where the xi are

independent. Define the matrices A and B as independent draws of random samples of size N from

the input space. If Latin hypercube samples (LHS’s) are used, they are scrambled by a random

permutation. (Some practitioners prefer quasi-random sequences.) Each row of these matrices

represents a point in input space. The evaluations of the matrix points are written as f(A) and

f(B). Define the matrices A
(i)
B by

A
(i)
B = [A[, 1], ...A[, i− 1], B[, i], A[, i + 1], ..., A[, k]].

where k is the number of independent variables xi, A[, j] with j = (1, ..., i−1, i+1, ..., k) represents

the jth column of matrix A, and B[, i] represents the ith column of matrix B. The evaluations of

their points are written as f(A(i)
B).

The first order sensitivity, Si, i ∈ {1, . . . , k}, represents the main effects contribution of input

variable xi to the variance of the output Y . The formula for the first order sensitivity (Jansen,

1999) is

Si = VXi(EX−i(Y |Xi))/V (Y) = 1− EXi(VX−i(Y |Xi))/V (Y)

≈ 1− [
1

2N

N∑
j=1

(f(B)j − f(A(i)
B)j)2]/V (Y). (1)

where EX−i(Y |Xi) is the expectation of the function, f(x) = Y , taken over all possible values

of all the other variables X−i = (x1, ..., xi−1, xi+1, ..., xk) while holding Xi = xi constant; and,

VXi(EX−i(Y |Xi)) is the variance of that expectation taken over all possible values of Xi = xi.

Likewise, VX−i(Y |Xi) is the variance of the function, f(x) = Y , taken over all possible values

of X−i = (x1, ..., xi−1, xi+1, ..., xk) while holding Xi = xi constant and EXi(VX−i(Y |Xi)) is the

expectation of that variance taken over all values of Xi = xi.

The total sensitivity, STi, represents the total contribution of variable xi, including all interac-

4

tions with other variables, to the variance of the output Y . The formula for the total sensitivity

(Jansen, 1999) is

STi = EX−i(VXi(Y |X−i))/V (Y)

≈ [
1

2N

N∑
j=1

(f(A)j − f(A(i)
B)j)2]/V (Y) (2)

where VXi(Y |X−i) is the variance of the function, f(x) = Y , taken over all values of Xi = xi

holding all other variables X−i = (x1, ..., xi−1, xi+1, ..., xk) constant; and, EX−i(VXi(Y |X−i)) is the

expectation of that variance taken over all values of X−i = (x1, ..., xi−1, xi+1, ..., xk).

An explanation of the relationship of the first order and total sensitivities can be made clear by

writing all sensitivity terms for three input variables.

∑3
1 Si +

∑3
i=1

∑3
j>i Sij + S123 = S1 + S2 + S3 + S12 + S13 + S23 + S123 = 1

Among these terms, the first order sensitivities are S1, S2, and S3. The other terms are the

interaction terms. Sij is the sensitivity due to the interaction of xi and xj . S123 is the interaction

of all three variables. The total sensitivities are written as:

ST1 = S1 + S12 + S13 + S123, ST2 = S2 + S12 + S23 + S123, ST3 = S3 + S13 + S23 + S123

Note that the total sensitivity of each variable includes its first order sensitivity and all interactions

that include the given variable.

Equations 1 and 2 are Monte Carlo approximations. For STi, the implied integral is simplified

to that of two variables x and z with the simulator function being f(x, z). Here z represents all

other variables. Also, for simplicity, let the interval be [0,1] for all variables. Then sum of the

differences squared is the Monte Carlo estimate of

1
2

∫ ∫ ∫
(f(x, z)− f(x′, z))2dxdx′dz = 1

2

∫ ∫ ∫
(f(x, z)2 − 2f(x, z)f(x′, z) + f(x′, z)2)dxdx′dz

Note that this leads to the simplification below since f(x, z) is free of x′ and vice versa.

1
2

∫ ∫ ∫
(f(x, z)− f(x′, z))2dxdx′dz =

∫ ∫
(f(x, z)2)dxdz −

∫ ∫ ∫
(f(x, z)f(x′, z))dxdx′dz

Then, by definition, we have that Y = f(x, z), z = X−i, and x = Xi. This means that

5

1
2

∫ ∫ ∫
(f(x, z)− f(x′, z))2dxdx′dz = EX−i(EXi(Y

2|X−i))− EX−i((EXi(Y |X−i)2) =

EX−i(VXi(Y |X−i))

Equation 1 for the first order sensitivity, Si, can be justified in a similar way.

2.2 Steps Required to Provide Estimated Accuracy

The unique and original design of our approach is embodied in the steps utilizing sequential experi-

mental design for sampling, combined with indicators that signal convergence to accurate sensitivi-

ties. The main consideration in using the predicted values from an emulator to compute sensitivities

is how well does the emulator surface match the simulator surface. If there is a mismatch in regions

of the input space, there will be an error induced in the sensitivity computations. If enough adap-

tively sampled points are added to the training point set to explore the input space adequately,

the emulator surface converges to the simulator surface with the desired degree of accuracy. The

number of sampled points needed is obviously dependent on the simulator function. Also, different

regions of the input space of the simulator function may vary more than others. More sampled

points are needed for a variable region than for a relatively flat region. Standard deviations for

predicted points provided by the treed Gaussian process can be used to guide the process of adding

points effectively. However, this brings up the following problem: Since the simulator surface is

unknown, how can one know when adequate matching occurs? This is determined by adding sam-

pled points in an efficient way to explore the whole input space and having indicators showing that

adequate matching has occurred.

The accuracy of the estimated sensitivities, which are functions of predicted point estimates, can

be obtained by summing two errors: the sampling error and the emulator error (Janon et al., 2013).

Sampling error is estimated by computing the sensitivities for several iterations. The iterates of the

sensitivities are then averaged to get the mean sensitivities along with their standard deviations.

Sampling error is twice the standard deviation divided by the square root of the number of iterations.

Emulator error is defined as the error due to the error in the predicted points. Emulator error has

been estimated by Janon et al. (2013) and Taddy et al. (2009) by two different methods. In Janon

et al. (2013), this is done by a numeric method for computing an upper and lower bound for

6

the sensitivity based on the model’s predicted points and their associated errors. In Taddy et al.

(2009), a Bayesian approach is used in which the sensitivities are recomputed for each iterate of

the Bayesian model. Here we approximate emulator error by a normal approximation which is

explained later in this section. The method of Taddy et al. (2009) and the method used herein

give emulator error estimations that are close in value for small standard deviations. However, the

method used herein has the advantage that it takes less computation time and requires much less

memory so it can be computed for large samples on a PC.

Exploring the simulator surface: As mentioned above, the emulator surface must match the

simulator surface to a certain degree before accurate computations of sensitivities can be obtained.

Exploring the simulator surface refers to the process of using the information obtained from the

emulator (predicted points and their standard deviations) to add adaptively sampled training points

to achieve effective matching. To start the process of exploring the simulator surface, data points

of a relatively small LHS are evaluated for the initial training data. (A larger LHS is desirable

if the simulator surface is expected to have variability throughout the input region.) Then the

exploration of the surface proceeds in steps.

Preceding the discussion of these steps, some explanation of sequential experimental design and

the choices made herein for exploring the simulator surface are needed. MacKay (1992) states that

the single point that gives the most information is the predicted point with the highest standard

deviation (ALM or Active-Learning MacKay). Cohn (1996) states that the single point that gives

the most information is the one which maximizes the expected reduction in the squared error over

the input space (ALC or Active-Learning Cohn). In practice, both approaches provide points

that are usually close, if not identical (Gramacy and Lee, 2009). However, finding the reduction

of the squared error for a sample of predicted points over the entire input space is much more

computationally expensive than using the returned value for the standard deviation. Therefore,

the standard deviation is the chosen criterion herein. The next choice to be made is how to select

multiple points. The general consensus for selecting multiple points is that they should be spaced

apart from other points (Sacks et al., 1989; Gramacy and Lee, 2009). Selecting single points would

be very time consuming, since a new model would need to be created at each step. In selecting a

7

small set of points, one needs to take into account their closeness. Selecting two points with large

standard deviations close together does not give as much information as selecting two points with

comparable standard deviations that are a distance apart. In Gramacy and Lee (2009), points

are selected from a large set of predicted points using a treed maximum entropy design. This

spaces the selected points apart from existing training points and themselves. Then this set of

points is ordered by decreasing criterion (ALC or ALM) and sent one at a time to the simulator

for evaluation. This process may not emphasize enough the importance of the variables in spacing

the points selected. They are treated equivalently, except for their different correlation distances.

The method explained next takes this into account.

Continuing with the approach used herein, at each step, the emulator (TGP) is called with

the current training points to build a model and predict a large (e.g., 1000 in small dimensional

spaces, more in higher dimensions) random sample of input points. Then these points are ordered

by decreasing standard deviation. From these ordered points, a set of points with largest standard

deviations is selected, we have found 100 to be a reasonable number. The point with the largest

standard deviation is added to the training points. The remaining points in this set are further

filtered by selecting a number (e.g., 25) of these which maximize their minimum distance to current

training points and themselves. This minimum distance is computed based on the current total

sensitivity of each variable in order to emphasize important coordinate differences. Finally, a small

number (4) of these points is selected, becoming the adaptively sampled points to be evaluated by

the simulator. This final selection is a random sampling based on point standard deviations. Points

with greater standard deviations have a higher probability to be chosen. So, while adding the point

that gives maximum improvement according to MacKay (1992), other adaptively sampled points

are added to effect additional learning. Since these other points are selected probabilistically based

on their standard deviation, points with lower standard deviation have a chance of being selected,

ensuring the whole input space is explored.

The data computed at each step includes:

1. The first order and total sensitivities for each variable for n iterations.

2. The mean of the first order and total sensitivities, their standard deviations, and emulator

8

errors.

3. The plots of each variable’s average sensitivity versus the number of training points for the

current and preceding steps. These plots also show concurrently the standard deviation for

each step, the average sensitivity plus and minus that standard deviation, and, the emulator

error using the predicted points for the last iteration for that step. Since the emulator error

is computed only once per step, it may display more variation initially than the standard

deviation.

4. The errors and standardized errors of the adaptively sampled points. (The errors are the point

evaluations minus their predicted values. The standardized errors are the errors divided by

the predicted standard deviations of the points.)

The data can now be evaluated to determine if another step is needed to accurately determine the

sensitivities. The six indicators for this evaluation are:

• Indicator 1: The values for each sensitivity should converge to a common value.

• Indicator 2: Consistent with indicator 2, the standard deviations from step to step should

begin to stabilize.

• Indicator 3: The dummy variable total sensitivity and standard deviation should converge

to zero.

• Indicator 4: The errors should decrease to relatively small values.

• Indicator 5: The standardized errors should be between -3 and 3 and normally distributed

about 0.

• Indicator 6: The emulator error for each sensitivity, though starting out large, should

become small, converging to zero. (See the paragraph below for a discussion of the emulator

error.)

As explained above, emulator error is a measure of the difference between the sensitivity esti-

mated by the emulator model and the sensitivity if it could be estimated by the simulator for the

9

same input points. Emulator error is based on the predicted point values and their standard devi-

ations for the current step’s last iteration. To compute emulator error, a Taylor series expansion is

done for the sensitivity formulas:

S(j) = S(ym) +
∑N

i=1 ∂S(y)/∂yi|ymε
(j)
i with ε

(j)
i drawn from N(0, σ2

i)

where S(j) is a linear approximation to the sensitivity at ym + ε(j) with ε(j) = (ε(j)1 , ..., ε
(j)
N), ym

is the vector of mean predicted values (ym = (ym1 , ..., ymN)), S(ym) is the mean sensitivity, ε
(j)
i

is a draw from the normal distribution with σi, the standard deviation of the point prediction

ymi . Note that this expansion represents a normal distribution centered at S(ym). This has a high

probability of including the simulator function value S(y0) where y0 = (y01 , ..., y0N) since the linear

approximation is a good approximation for small σi and |y0i − ymi | ≤ 2σi for almost all differences

between the predicted point values and the simulator point values. Twice the standard deviation

of this distribution is the estimated emulator error:

emulator error = 2
√∑N

i=1(∂S(y)/∂yi|ym)2σ2
i

This estimate usually overestimates the emulator error, so our convergence results are conservative.

As the standard deviations of the predicted points decrease, emulator error converges to zero.

Regarding the errors and standardized errors, there may be some standardized errors at the

beginning of the processing that have larger absolute values than 3. This is due to the model not

being adequate initially. These large values should go away as convergence is achieved. Compliance

for indicators 4 and 5 imply: 1) The emulator (treed Gaussian process) model is a good fit to the

simulator function (Jones et al., 1998; Bastos and O’Hagan, 2009); 2) The emulator error computed

from the predicted standard deviations is a good estimate. When all indicators signal convergence,

a credible interval for the sensitivities can be obtained from the sum of the sampling error plus

the emulator error. For the computations herein, the sensitivities are averaged over the converged

region to get even better accuracy.

3 ILLUSTRATIVE EXAMPLE

To illustrate the method, a synthetic example is presented. The test function is taken from

10

Gramacy and Lee (2009). The function shows great variability in one quadrant (see Figure 1).

There is no noise added to the function for this illustration. The treed Gaussian process is well

suited to model this function since it is designed to emulate functions with regions of different

variability. The equation of the function is

f(x1, x2, x3, x4) = (4x1 − 2) exp(−(4x1 − 2)2 − (4x2 − 2)2) (3)

where 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2, 0 ≤ x3 ≤ 2, 0 ≤ x4 ≤ 2

Figure 1: Test Function and Training Points for Global Sensitivity Method Illustration: The per-
spective of the test function given by Equation 3 on the left. It shows the variation of the function
in the input space of the important variables, x1 and x2. The variables, x3 and x4, are dummy
variables. Notice the function is quite variable in the lower left quadrant and flat elsewhere. This
type of variability is well handled by the treed Gaussian process which divides the input space into
regions based on differing variability. The graph on the right shows the training points used to
model the function. It can be seen that most of the adaptively sampled points are in the region
where the function has its greatest variability.

The variables with positive sensitivities are x1 and x2. The dummy variables x3 and x4 have

been added to show the role of dummy variables in determining when the sensitivity estimations

have converged to their actual values. The actual sensitivities are:

S1 = 0.31, ST1 = 1.00, S2 = 0.00, ST2 = 0.69,

S3 = 0.00, ST3 = 0.00, S4 = 0.00, ST4 = 0.00

The actual sensitivities were determined by 200 repetitions with random samples of size 10,000 for

11

the A, B, and A
(i)
B matrices using the actual function values and the formulas from Section 2.1.1.

The training points accumulated for the run are shown in Figure 1. One can see that, although

training points have been added to the regions outside the variable region, most of the added

training points are in the variable region. The graphs in Figure 2 show the sensitivities computed

after each step of processing. For each step, 25 iterations of the sensitivities are computed. These

are then averaged and their standard deviation is computed. In the graphs, the sensitivity values

for each step are shown as the S’s, the red (dark) line is the standard deviation, and the dashed

lines are mean sensitivity value plus and minus the standard deviation. The green (light gray) line

is the emulator error computed after each step. The black line is the actual sensitivity as shown

above. The total number of steps is 35. The first step was an LHS of 50 training points. For each

successive step, 5 training points were added, one with the highest standard deviation, and 4 by

probability sampling based on their standard deviations from a set of 25 filtered points as explained

above. The indicators show the following:

• Indicator 1: As seen in Figure 2, the sensitivity values (S’s) converge to a common value in

that they fall along the black horizontal line which is the actual sensitivity.

• Indicator 2: The standard deviations from step to step have stabilized. They are the

irregular black (red) solid lines near the bottom of the graphs of Figure 2. In all the graphs

above, the standard deviations have stabilized.

• Indicator 3: The dummy variable (x3 and x4) total sensitivities and standard deviations

converge to zero as seen in the plots of ST3 and ST4 that are to the extreme right of Figure

2. Other sensitivities appear to have converged at about the same training set size.

• Indicator 4: A review of the errors in the added points at each step show that they are

decreasing and relatively small for the last several steps.

• Indicator 5: A review of the standardized errors show they are normally distributed between

-3 and 3.

• Indicator 6: The emulator error has dropped below the standard deviation for each variable,

12

Figure 2: Graphs Showing Convergence of Global Sensitivities: The x-axis is the training point
size. The y-axis is the sensitivity. The sensitivities are S1, ST1, S2, ST2, S3, ST3, S4, ST4

where the Si are the first order sensitivities for variable i, STi are the total sensitivities of variable
i, the ‘S’s are the mean sensitivity estimates at each processing step converging to the straight
horizontal black line which is the actual sensitivity, the dark irregular (red) lines near the bottom
of the graphs are the standard deviations which stabilize as the training point size increases, the
light gray (green) lines near the bottom of each graph are the emulator errors which decrease as
the training point size increases, and the dashed black lines are the sensitivities plus and minus the
standard deviation.

except for the dummy variable total sensitivities. For the dummy variables, both emulator

error and standard deviations are very small, showing the variables to be insignificant.

Table 1 summarizes the data for the steps with training set sizes from 175 to 225. This is clearly

a conservative choice. Actual convergence appears to have occurred by training set size of about

150. Si is the average of the sensitivities for the steps after convergence. The quantity ∆e is the

combined error obtained by adding the quantity 2se(Si), twice the average standard error (or twice

the standard deviation divided by the square root of the number of iterations), and ee, the average

emulator error. The upper and lower interval limits are obtained by adding and subtracting ∆e

from the average sensitivity. The interval covers the actual sensitivity in all cases. The actual

errors in the sensitivity values are all below 0.016. More accuracy could be obtained with more

iterations per step, larger sample sizes, and more processing steps. Note that x2, while having zero

first order sensitivity, is influential through its interaction terms.

13

Table 1: Sensitivities after Convergence: The sensitivity corresponding to each row entry is shown
in the first column (Row Label). Note here that Si is the first order sensitivity of variable i and
STi is the total sensitivity of variable i. The second column is the lower bound for the mean
sensitivity, SL

i = Si −∆e. The third column is the mean sensitivity, Si, averaged over 5 processing
steps. The fourth column is the upper bound for the mean sensitivity, SU

i = Si + ∆e. The fifth
column is the total error, ∆e = ee + 2se(Si). The sixth column is twice the standard error for
the sensitivity, 2se(Si). The seventh column is the emulator error, ee, for the sensitivity. The last
column is the actual sensitivity, Sact.

Row Label SL
i Si SL

i ∆e 2se(Si) ee Sact
i

S1 0.2672 0.3252 0.3832 0.0580 0.0358 0.0222 0.31
ST1 0.9395 1.0137 1.0880 0.0743 0.0552 0.0191 1.00
S2 -0.0877 -0.0066 0.0745 0.0811 0.0626 0.0185 0.00
ST2 0.6415 0.6964 0.7512 0.0548 0.0334 0.0215 0.69
S3 -0.0457 -0.0034 0.0388 0.0422 0.0173 0.0249 0.00
ST3 -0.0044 0.0005 0.0055 0.0049 0.0004 0.0045 0.00
S4 -0.0451 -0.0036 0.0379 0.0415 0.0176 0.0239 0.00
ST4 -0.0044 0.0007 0.0059 0.0052 0.0006 0.0046 0.00

4 AUTOMATIC STOPPING

In discussing global sensitivity estimation, convergence is determined by indicators, plots, errors

and standardized errors for adaptively sampled points. We implement automatic stopping for our

global sensitivity analysis to provide a more efficient estimation of sensitivities that does not depend

on viewing graphs and reviewing data files. This automatic stopping is achieved by user controlled

parameters for which default values are provided. The user need only input those control parameters

that he/she wishes to change for the given application.

For sensitivity estimation, the user wants to know how accurately the sensitivities have been

estimated and whether the statistical model has validity. The estimation of the accuracy of sensi-

tivities is reliably provided if convergence of the estimates has occurred and the model fit to the

simulator function has been established. These concerns are satisfied by testing certain indicators

during the processing steps of the estimation procedure. Some indicators required more than one

test, and some tests apply to more than one indicator. The indicators and the tests for them are

explained below. When the tests are satisfied, processing is complete with provision of the sensi-

tivity accuracy and credibility of the model fit. There are a number of control parameters that can

14

be adjusted in these tests, and we specify our default values and provide some guidance on those

that might sometimes require additional tuning.

One can ask: Why not just estimate sensitivity accuracy by summing the emulator error and the

sampling error? When the model provides the desired accuracy, processing is complete. Possibly,

this may be the case, but consider this: The model is transitioning as adaptively sampled points are

added towards a more accurate representation of the simulator function. A small sampling error

only means the sensitivities accurately reflect the model’s actual sensitivities, not the simulator

function sensitivities. Also, even if the emulator error is small, this does not necessarily indicate

that the model fits the simulator function. As the model transitions to a more and more accurate

representation of the simulator function through the addition of adaptively sampled points, the six

criteria from the previous section are met. A statistical analysis can automatically verify all these

occurrences in a more complete and comprehensive manner than one that focuses on just a few

key statistics. Also, it does not take much more processing time since the bulk of the processing is

done by the treed Gaussian process in model fitting and prediction of samples of input points. The

following sections explain the tests for the indicators, processing considerations to obtain estimated

accuracy, and test cases which demonstrate their use.

4.1 Indicator 1, Convergence to a Common Value

There are two tests to determine that sensitivities have converged to a common value. The first test

has to do with the sensitivity variability. If variability is controlled, it confirms that convergence

is occurring. In all of these tests, a fixed number of previous steps and the current step mean

sensitivities and standard deviations are used, with a default of 5 steps of data. This test compares

the differences between the mean sensitivities over this last set of steps and the average of the mean

sensitivities to a multiple (default of 3) of the averaged standard error. If any of these differences

exceed that multiple of the standard error, the test fails for that sensitivity. A schematic of this is

shown below. This shows a circumstance where the test has failed. The mean sensitivities (small

circles) for the previous and current five steps are not all within three average standard errors (red

dashed lines) of the average mean sensitivity (green solid line). What this means is that either the

model is still varying from step to step or that the sample size does not provide sufficient coverage

15

Figure 3: Indicator 1 - Test for Sensitivity Variability: The x-axis is the processing step number.
The y-axis is the mean sensitivity. The mean sensitivities are shown as ‘o’s at each processing step.
The gray (green) line is the average of the mean sensitivities over 5 steps. The black (red) dashed
lines are the averaged sensitivity plus and minus three times the averaged standard error. The
mean sensitivities outside the red lines indicate the variability test has failed.

of the input space. This latter is the case only if the test continues to fail with additional processing

steps.

The second test is perhaps more intuitive. This tests for trending of the sensitivity. Trending

occurs when the sensitivity is adjusting as the model accuracy is being improved by adaptively

sampled points. Trending is occurring if a linear regression yields a slope coefficient that has an

absolute value greater than a given tolerance slope level, with a default of 0.003. This tolerance

slope level is chosen based on the number of steps averaged. On convergence, the slope should not

show a change of more than say, 0.01, over five steps. This is another control parameter which

can be changed by the user. The schematic on the next page shows a circumstance where this test

has failed. The green (solid) line is an acceptable slope that increases by about 0.01 in five steps.

The red (dashed) line is the fitted regression line that has a slope showing an increase in the mean

sensitivity about 0.04 in the five steps.

For more robustness, especially useful for smaller sample sizes, the trend slope is computed for

16

Figure 4: Indicator 1 - Test for Sensitivity Trending: The x-axis is the processing step number.
The y-axis is the mean sensitivity. The mean sensitivities are shown as ‘o’s at each processing step.
The red dashed line is the regression line for the mean sensitivities. A slope equivalent to the green
(solid) line or below indicates no trending for the mean sensitivities. In this example, the trend
test has failed since there is a positive trend to the sensitivity.

the sensitivity data collected over two times the averaged number of steps, usually 10 steps, when

the number of processing steps is more than twice the number of averaged steps. This is done so

that cyclical variations in sensitivity that occur with processing steps are factored out of the trend

slope.

4.2 Indicator 2, Stabilization of Sensitivity Standard Deviations

There is one test to determine that sensitivity standard deviations have stabilized. This test also

utilizes the data from the previous steps and the current step. It is expected that as the model

improves the standard deviations for the sensitivities should stabilize. The previous models should

be similar to the current model so the average mean standard deviation should be at least equal

to or greater than three times (this multiple could be adjusted if needed) the standard deviation

of the standard deviations.

Figure 5 shows an example where the test has been passed. The circles are the standard

deviations for the different steps. The green (solid) line is the average mean standard deviation

of the sensitivity. The orange dotted lines are the average standard deviation plus and minus two

17

Figure 5: Indicator 2 - Sensitivity Standard Deviation Stability Test: The x-axis is the processing
step number. The y-axis is the mean sensitivity standard deviation. The mean sensitivity standard
deviations are as ‘o’s at each processing step. The green (solid) line is the average standard
deviation. The orange dotted lines are the average standard deviation plus and minus two times
the standard deviation of the mean sensitivity standard deviations, s(s). The red dashed line is the
average standard deviation minus 3s(s). This test passed here, with the average standard deviation
is greater than 3s(s).

times its standard deviation, s(s). The red dashed line is the mean standard deviation minus

three times its standard deviation. It is just above zero indicating the average standard deviation

is greater than three times s(s). If this tolerance is not met, the sample size of the predicted

points can be increased. Although this means more processing time, more accurate values can be

obtained for the sensitivities since the increased sample size reduces sampling error. This test is

not done if the average standard deviation falls below 0.01, as small standard deviations indicate

that total the sampling error is small. The default of the factor of three was determined from a

series of simulations that found stability in the limit for the ratio s/sd(s), with its value primarily

depending upon the number of iterations used for estimating sensitivities.

For fewer iterations, this ratio goes down in value. Simulations were run for 2, 4, 8, 12, 16,

20, and 24 iterations. It was found that the ratio, s/sd(s), varied only slightly for different σ and

µ but that it varied significantly for the number of iterations. In cases where it is impractical to

18

run 25 iterations, the ratio must be set lower. Figure 6 shows the ratio to be used for the range of

iterations from 2 to 24.

Figure 6: Ratios s/sd(s) versus Number of Iterations: The x-axis is the number of iterations for
estimating sensitivities. The y-axis is the ratio, s/s(s), that is to be used for the indicator 2 test.
This multiple goes down as the number of iterations is decreased since the standard deviation varies
more for fewer iterations.

4.3 Indicator 3, Dummy Variable Total Sensitivity

There is a double purpose for having a dummy variable. Another variable that behaves like a

dummy variable can be considered non-influential. As a convergence criterion, the dummy variable

is an indicator that the statistical model distinguishes that the variable has no importance which

means it is more accurately modeling the simulator surface. The test is very simple. When the

dummy variable average total sensitivity falls below a specified tolerance level (default of 0.005,

which represents a minimal contribution to the response), a degree of convergence has been attained

by the statistical model. The total sensitivity from the previous and current steps are used to find

this average as in all other tests described herein.

4.4 Indicator 4, Mean Absolute Value of Adaptively Sampled Point Errors

The errors of adaptively sampled points are polled at each step of processing to determine if their

mean absolute value is small enough to indicate the function is being accurately represented. The

19

user can specify an error tolerance or can set a limit based on the variability of the simulator

function, which defaults to one twentieth of the simulator function observed output range. Errors

should become progressively smaller as adaptively sampled points are added to the training points.

However, discontinuous functions present a problem in that the discontinuities may cause large

errors when sampling takes place near a discontinuity. In general, discontinuous functions require

more adaptively sampled points to reduce the mean absolute value of the errors to the desired level.

Initially, the mean absolute error of all adaptively sampled points are computed and compared to

the error tolerance. When the error count exceeds the number associated with the number of steps

over which data is averaged, say 25 (5 sampled points for each of 5 steps), the test compares only

the last 25 errors until the error count exceeds 50 (twice the sampled points over which the steps

are averaged). Then it compares the mean absolute value of the last half of the errors to the error

tolerance. The plot in Figure 7 represents 100 adaptively sampled points. The last 50 absolute

errors are compared to the error tolerance. The absolute errors are the little circles. The vertical

blue dashed line is at the 50 error count and the vertical red solid line is at the 100 error count.

The horizontal orange dashed line is the tolerance value and the horizontal green (solid) line is the

mean absolute value for the errors between the vertical blue dashed line and vertical red solid line.

The horizontal black line is at zero. The comparison shows this test has passed since the green

(gray solid) line lies under the orange dashed line.

4.5 Indicator 5, Standardized Errors within [−3, 3]

In order for standard deviations of predicted points to be good estimates of the errors for points,

the standardized errors of predicted points should be in the interval [-3,3]. These limits have been

advocated by Jones et al. (1998) and Bastos and O’Hagan (2009). Initially, standardized errors

may fall outside this interval since the emulator model may not be very accurate. However, as more

adaptively sampled points are added to the training points, accuracy should improve. So the initial

standardized errors are not as important as the more recent standardized errors. Therefore, the

polling of standardized errors is done similarly to the polling for the errors. After enough adaptively

sampled points are added, only the last half of the standardized errors are tested to determine if

20

Figure 7: Indicator 4 - Absolute Value of Mean Errors Test: The x-axis is the point count for
the sampled points. The y-axis is the absolute value of the “simulated” error for these points.
The vertical blue dashed line at 50 is the lower bound for testing the mean absolute error and the
vertical red (solid) line is the upper bound or last error. The horizontal orange dashed line is the
error limit. The horizontal green (gray solid) line is the actual mean of the errors between the two
bounds. In this illustration the test for mean errors has passed.

they are within the desired interval. This test fails if more than 1.5% of the absolute standardized

errors are greater than 3.

For discontinuous functions, this threshold should be set to a higher percentage since adaptively

sampled points near discontinuities can fall outside this interval. In this case, what is important is

that other indicators show convergence. If the discontinuities are few, they represent a very small

region of the simulator function input space. The region of the input space where the simulator

function is continuous is dominant. It is in the continuous region that the emulator models the

simulator function accurately. Convergence can be determined by the sensitivities, their standard

deviations, the dummy variable total sensitivity, and the mean absolute value of the errors of

adaptively sampled points. In other words, if indicators 1, 2, 3, and 4 over the number of processing

steps averaged to get the sensitivities are free of errors, then the sensitivities have converged to an

estimated accuracy equal to the sum of the sampling error plus the emulator error. In the case of

a continuous function, this test tends to provide the same convergence information as the previous

four indicators, so it may be more computationally efficient to skip this test.

21

The plot in Figure 8 below illustrates the testing for standardized errors for a continuous test

function after 100 adaptively sampled points. A count is made of the number of absolute values

of standardized errors exceeding 3 from the vertical blue dashed line at 50 to the red line at 100.

Here the count of absolute values of standardized errors greater than 3 is just 1, which is within

the limit of 1.5.

Figure 8: Test for Standardized Errors: The x-axis is the point count for the sampled points. The
y-axis is the standardized error (error/SD) of these points. The vertical blue dashed line at 50 is
the lower bound for testing the standardized errors and the vertical red line is the upper bound.
Only one value is outside the interval [−3, 3] between these lines. The standard error interval is
represented by the two black horizontal lines. In this illustration, one point is within the accepted
number of standardized errors outside this interval (1.5%), so the test for standardized errors has
passed.

4.6 Indicator 6, Emulator Error within Tolerance Limit

As the emulator model becomes more accurate, the standard deviations of the predicted points

get progressively smaller. These standard deviations are used to estimate the emulator error: the

difference between the sensitivity as estimated by the emulator model and the sensitivity that would

be estimated by the simulator function if it could be used to evaluate the same sample of points

used for estimating the sensitivity. Since the emulator error and the sampling error make up the

22

total error in the sensitivities, reducing the emulator error below a user controlled tolerance level

is important for achieving accuracy in the estimated sensitivity. For continuous functions, this

test generally matches the previous ones, and it can be skipped. For discontinuous functions, this

test provides an important additional check. The tolerance level can be set based on the expected

number and size of discontinuities.

4.7 Attaining a Specific Desired Accuracy for Sensitivities

The ultimate accuracy is mainly dependent on the sample size used to estimate the sensitivities.

The sampling error stabilizes with increasing processing steps but it has a base value dependent

on the sample size and the number of iterations that does not change. Although the number of

iterations could be increased, the more efficient way to proceed is to increase the sample size after

all the above tests have passed if the desired accuracy has not yet been attained. Increasing the

sample size reduces the sampling error considerably. However, it does increase computation time.

So, it may be better to have an effective but smaller sample size initially and then to increase the

sample size once this is needed to reduce sampling error. Also, this first process run controls the

emulator error.

The user can proceed as follows: Let the sensitivity function run to completion for an effective

sample size. If the accuracy is sufficient, the task is done. If not, run the application using the

training points from the first run with a larger sample size, such as a 50% increase, which should

be chosen based on how much further one wants to reduce the sampling error. Run the application

for five steps. If the results are still not adequate, increase the sample size and run it again.

4.8 Example with Automatic Stopping

We return to the test function of Section 3. Recall that x1 and x2 are the important variables

while variables x3 and x4 are dummy variables. All the variability is in the lower left quadrant.

For this example, the initial training point set is an LHS of 100 points. To improve accuracy,

we use 1500 model-predicted points in each sensitivity matrix, compared to only 1000 points in

Section 3. Indicators 1, 2, 3, and 4 are very effective in obtaining convergence with the resulting

23

emulator errors being within 0.019. Twenty four processing steps were required. Table 2 shows

the sensitivities obtained. Compare this table of sensitivities with that of Table 1. They are very

similar except that the sampling errors and emulator errors are lower. This is due mainly to the

larger sample size used for this processing.

Table 2: Sensitivities for Example 1 after Convergence with Automatic Stopping: The sensitivity
corresponding to each row entry is shown in the first column (Row Label). Note here that Si is
the first order sensitivity of variable i and STi is the total sensitivity of variable i. The second
column is the lower bound for the mean sensitivity, SL

i = Si −∆e. The third column is the mean
sensitivity, Si, averaged over 5 processing steps. The fourth column is the upper bound for the
mean sensitivity, SU

i = Si + ∆e. The fifth column is the total error, ∆e = ee + 2se(Si). The sixth
column is twice the standard error for the sensitivity, 2se(Si). The seventh column is the emulator
error, ee, for the sensitivity. The last column is the true sensitivity, Sact.

Row Label SL
i Si SL

i ∆e 2se(Si) ee Sact
i

S1 0.2910 0.3208 0.3507 0.0299 0.0166 0.0133 0.31
ST1 0.9455 0.9921 1.0388 0.0467 0.0283 0.0184 1.00
S2 -0.0461 0.0013 0.0487 0.0474 0.0289 0.0185 0.00
ST2 0.6481 0.6791 0.7101 0.0310 0.0178 0.0132 0.69
S3 -0.0275 -0.0010 0.0256 0.0265 0.0100 0.0165 0.00
ST3 0.0002 0.0012 0.0022 0.0010 0.0002 0.0008 0.00
S4 -0.0269 -0.0005 0.0260 0.0264 0.0099 0.0165 0.00
ST4 0.0000 0.0007 0.0014 0.0007 0.0001 0.0007 0.00

The actual error is within the upper and lower bounds except for the total sensitivities of

the dummy variables (lines 6 and 8 in the table). Both the errors and the estimated values for

these sensitivities are very small though, implying the sensitivities are for non-influential variables.

Although the estimated errors are only within about 0.047, the actual errors are much smaller:

< 0.011. It is interesting to see how the sensitivities varied throughout the processing and what

indicators were in error at the different steps. Below are the plots of the sensitivities at each

processing step along with their standard deviations and emulator errors. The ’S’s are the mean

sensitivities computed at each step. The horizontal straight black line is the actual sensitivity. The

irregular red (dark) line is the standard deviation. The green (gray) line is the emulator error. The

black dashed lines are the mean sensitivities plus and minus the standard deviations. From the

graphs in Figure 9 convergence seems to have occurred when the training size reaches 160. The

eleven more processing steps are due to the fact that sensitivity convergence errors occur up to

24

step 19 and 5 more steps free of errors are done after convergence to obtain sensitivity values with

accurate error estimates.

Figure 9: Graphs Showing Convergence of Sensitivities for Example 1 with Automatic Stop-
ping: The x-axis is the training point size. The y-axis is the sensitivity. The sensitivities are
S1, ST1, S2, ST2, S3, ST3, S4, ST4 where the Si are the first order sensitivities for variable i, STi

are the total sensitivities of variable i, the ‘S’s are the mean sensitivity estimates at each processing
step converging to the horizontal straight black line which is the actual sensitivity, the irregular
red (dark) lines are the standard deviations which stabilize as the training point size increases, the
green (gray) lines are the emulator errors which decrease as the training point size increases, and
the black dashed lines are the sensitivities plus and minus the standard deviation.

The indicators in Figure 10 are ’1’ if an error occurred in a sensitivity test for that indicator

and zero otherwise. Notice that no sensitivity test errors occur after step 19. As this function

was continuous and relatively simple, we don’t include indicators 5 and 6 as they are among the

first to be satisfied, and do not provide any useful information here. Had the function contained

discontinuities, it would have been important to include them.

5 APPLICATION

We demonstrate this method on the Pump-and-Treat problem of Matott et al. (2011), which in-

volves a groundwater contamination scenario based on the Lockwood Solvent Groundwater Plume

Site located near Billings, Montana. (An illustration of this site is in Figure 2 of Matott et al.

(2011).) Two plumes (A and B) containing chlorinated solvents developed due to industrial prac-

25

Figure 10: Indicators Showing Results of Tests for Automatic Stopping for Example 1: Indicators
1 through 4 were used to test for convergence. The x-axis is the processing step number. The
y-axis is the indicator value which is 1 if any test for the indicator failed and 0 otherwise. After
all indicators had no failed tests (all 0), five more steps were run having no failed tests to assure
convergence.

tices near the Yellowstone river. The remediation to prevent contamination of the Yellowstone

River involved drilling two pump-and-treat wells at Plume A and four pump-and-treat wells at

Plume B. This problem has been modeled using a computer simulator where the inputs are pump-

ing rates and pump locations, and the output is the cost. If a given input of these eighteen variables

causes contamination of the river, a cost penalty is assessed, acting as a hidden constraint. The

Lockwood plume site region is about 2 kilometers by 2 kilometers. Plume A is in the lower left

part of the region where two pumps are installed. The pump locations are on the centroid of plume

A but are shifted to the left within the plume. Plume B is more centrally located in the upper

part of the region where 4 pumps are installed. Their locations are along the centroid of plume

B approximately equally spaced. The application of this method demonstrates its effectiveness in

estimating the sensitivities of the six pumping rates with the pumps in their positions given in

Matott et al. (2011).

The seven input variables were the six well pumping rates and a dummy variable added to

26

give verification that the emulator model is sufficiently accurate to detect a non-influential variable

and, also, indicate if any other variables are non-influential. With seven dimensions, the number of

samples of emulator predictions was set to a larger value, namely 2000. Also, the control variable

setting the number of iterations per processing step for the emulator was set to 12, anticipating

a long processing time for this application on a PC. With this small number of iterations, the

tolerance parameter used to monitor the variability of the standard deviation of the sensitivities

was set to 2 as indicated in the Section 4.2, Indicator 2, Stability of Standard Deviations. More

iterations per processing step would be needed for more stable standard deviations, requiring much

more processing time. The initial training set was a Latin hypercube sample of 200 points with the

input bounds set to [0, 20000]. At each processing step, 10 more adaptively sampled points were

added. All indicators were monitored for convergence. The emulator error tolerance was set to 0.01

and standardized error tolerance was keep at its default value of 1.5%. Convergence was attained

by the 17th processing step. Table 3 shows the sensitivities obtained.

The sensitivities for the pumping rates for pumps 1 and 2 in plume A are larger than the

pumping rates sensitivities for pumps 3, 4, 5, and 6 of plume B. Another observation is that the

pumping rate sensitivities get progressively larger for pumps 3, 4, 5, and 6, although the pumping

rate sensitivities are very similar for pumps 5 and 6. The emulator errors are all less than 0.01. The

sampling error, 2se(Si), is less than 0.015 for all sensitivities. The largest total error, ∆e, is 0.02.

The small size of the dummy variable sensitivities, S7 and ST7, gives additional confirmation of the

emulator model accuracy. More accuracy and more stability (less fluctuation) could be achieved

by using a larger sample size and more iterations per processing step, although processing time

would be increased considerably. In our opinion, this application demonstrates the capability of

our global sensitivity method.

It is interesting to see how the sensitivities varied throughout the processing and what indicators

were in error at the different steps. Figure 11 shows the plots of the sensitivities at each processing

step along with their standard deviations and emulator errors. The S’s are the mean sensitivities

computed at each step. The black line is the actual sensitivity. The irregular red (solid) line is

the standard deviation. The blue dotted line is the emulator error. The black dashed lines are

27

Table 3: Sensitivities for Pumping Rates after Convergence with Automatic Stopping: The
sensitivity corresponding to each row entry is shown in the first column (Row Label). Si is the
first order sensitivity of variable i and STi is the total sensitivity. The second column is the lower
bound for the mean sensitivity, SL

i = Si − ∆e. The third column is the mean sensitivity, Si,
averaged over 5 processing steps. The fourth column is the upper bound for the mean sensitivity,
SU

i = Si + ∆e. The fifth column is the total error, ∆e = ee + 2se(Si). The sixth column is twice
the standard error for the sensitivity, 2se(Si). The seventh column is the emulator error, ee, for
the sensitivity.

Row Label SL
i Si SL

i ∆e 2se(Si) ee

S1 0.1970 0.2151 0.2332 0.0181 0.0122 0.0058
ST1 0.2081 0.2158 0.2236 0.0077 0.0047 0.0031
S2 0.1904 0.2086 0.2268 0.0182 0.0123 0.0059
ST2 0.2014 0.2092 0.217 0.0078 0.0048 0.0030
S3 0.0785 0.0971 0.1157 0.0186 0.0123 0.0063
ST3 0.1071 0.1113 0.1155 0.0042 0.0020 0.0022
S4 0.1200 0.1382 0.1565 0.0183 0.0121 0.0061
ST4 0.1432 0.1492 0.1552 0.0060 0.0035 0.0025
S5 0.1438 0.1621 0.1805 0.0184 0.0123 0.0060
ST5 0.1594 0.1653 0.1712 0.0059 0.0033 0.0027
S6 0.1462 0.1662 0.1862 0.0200 0.0140 0.0060
ST6 0.1604 0.1669 0.1734 0.0065 0.0038 0.0027
S7 -0.0189 0.0008 0.0205 0.0197 0.0131 0.0066
ST7 0.0003 0.0005 0.0008 0.0002 0.0000 0.0002

the mean sensitivities plus and minus the standard deviations. The indicators in Figure 12 are

’1’ if an error occurred in a sensitivity test for that indicator and zero otherwise. Notice that no

sensitivity test errors occur after step 12. As is typical for continuous functions, indicators 5 and

6 are passed early in the process; they are generally not needed for continuous functions, only for

those simulators with discontinuities.

6 CONCLUSIONS

We propose a global sensitivity method herein that is efficient in terms of simulator evaluations

since it uses sequential experimental design to adaptively sample points that are expected to give

maximum improvement to the model accuracy. It takes into account both sampling error and

emulator error. It has the capability of automatic stopping controlled by parameters that can be

set by the user to attain accuracies commensurate to their requirements. We have demonstrated

our method on an example from hydrology, but it is applicable to virtually any field, for simulators

28

s s s s s s s
s s s s s s s s s s

200 250 300 350

0.
0

0.
1

0.
2

0.
3

0.
4

Si of Rate for Pump 1

size

S
1

s s s s s s s s s s s s s s s s s

200 250 300 350

0.
0

0.
1

0.
2

0.
3

0.
4

STi of Rate for Pump 1

size

S
T

1

s s s s s s s
s

s s s s s s s s s

200 250 300 350

0.
0

0.
1

0.
2

0.
3

0.
4

Si of Rate for Pump 2

size

S
2

s s s s s s s s s s s s s s s s s

200 250 300 350

0.
0

0.
1

0.
2

0.
3

0.
4

STi of Rate for Pump 2

size

S
T

2

s s s s s s s
s

s s s s s
s s s s

200 250 300 350

0.
0

0.
1

0.
2

0.
3

0.
4

Si of Rate for Pump 3

size

S
3

s s s s s s s s s s s s s s s s s

200 250 300 350

0.
0

0.
1

0.
2

0.
3

0.
4

STi of Rate for Pump 3

size

S
T

3

s s s s s s s s s s s s s
s s s s

200 250 300 350

0.
0

0.
1

0.
2

0.
3

0.
4

Si of Rate for Pump 4

size

S
4

s s s s s s s s s s s s s s s s s

200 250 300 350

0.
0

0.
1

0.
2

0.
3

0.
4

STi of Rate for Pump 4

size

S
T

4

s s s s s s s
s s s s s s

s s s s

200 250 300 350

0.
0

0.
1

0.
2

0.
3

0.
4

Si of Rate for Pump 5

size

S
5 s s s s s s s s s s s s s s s s s

200 250 300 350

0.
0

0.
1

0.
2

0.
3

0.
4

STi of Rate for Pump 5

size

S
T

5

s s s s s s s
s s s s s s s s s s

200 250 300 350

0.
0

0.
1

0.
2

0.
3

0.
4

Si of Rate for Pump 6

size

S
6 s s s s s s s s s s s s s s s s s

200 250 300 350

0.
0

0.
1

0.
2

0.
3

0.
4

STi of Rate for Pump 6

size

S
T

6

s s s s s s s
s

s s s s s
s s s s

200 250 300 350

0.
0

0.
1

0.
2

0.
3

0.
4

Si of Dummy Variable

size

S
7

s s s s s s s s s s s s s s s s s

200 250 300 350

0.
0

0.
1

0.
2

0.
3

0.
4

STi of Dumy Variable

size

S
T

7

Figure 11: Graphs Showing Convergence of Sensitivities for the Lockwood Pump-and-Treat Prob-
lem with Automatic Stopping: The x-axis is the training point size. The y-axis is the sensitivity.
The sensitivities are S1, ST1, S2, ST2, S3, ST3, S5, ST5, S6, ST6, S7, ST7, where the Si are the
first order sensitivities and STi are the total sensitivities, the ‘S’s are the mean sensitivity estimates
at each processing step which are converging in value, the red (gray) solid lines are the standard
deviations which show relative stability, the blue dotted lines are the emulator errors which have
remained small throughout for this application, and the black dashed lines are the sensitivities plus
and minus the standard deviation. A larger predicted sample size and more iterations per process-
ing step would show much less fluctuation, although these fluctuations are within the tolerances
used for convergence.

29

Figure 12: Indicators Showing Results of Tests for Automatic Stopping for the Lockwood Pump-
and-Treat Problem: Indicators 1 through 6 were used to test for convergence. The x-axis is the
processing step number. The y-axis is the indicator value which is 1 if any test for the indicator
failed and 0 otherwise. After all indicators had no failed tests (all 0), five more steps were run
having no failed tests to assure convergence.

with both continuous and discontinuous outputs.

Acknowledgments

Partial funding was provided by Sandia National Laboratories and by National Science Foun-

dation grant DMS 0906720.

REFERENCES

L. Bastos and A. O’Hagan. Diagnostics for gaussian process emulators. Technometrics, 51:425–438,

2009.

G. E. P. Box, S. Hunter, and W. G. Hunter. Statistics for Experimenters: Design Innovation, and

Discovery. Wiley, 2005.

D. Cohn. Neural networks exploration using optimal experiment design. Neural Networks, 6(9):

679–686, 1996.

30

M. Farah. Bayesian Nonparametric Methods for Emulation, Sensitivity Analysis, and Calibration

of Computer Simulators. PhD thesis, UC Santa Cruz, 2011.

R. Gramacy and H. Lee. Bayesian treed gaussian process models with application to computer

modeling. Journal of the American Statistical Association, 103(483):1119–1130, 2008.

R. Gramacy and H. Lee. Adaptive design and analysis of supercomputer experiments. Technomet-

rics, 51: 130–145, 2009.

A. Janon, M. Nodet, and C. Prieur. Uncertainties assessment in global sensitivity indices estimation

from metamodels. International Journal for Uncertainty Quantification, to appear, 2013.

M. Jansen. Analysis of variance designs for model output. Computer Physics Communications,

117:35–43, 1999.

D. Jones, M. Shonlau, and W. Welch. Efficient global optimization of expensive black-box functions.

Journal of Global Optimization, 13: 455–492, 1998.

C. Linkletter, D. Bingham, N. Hengartner, D. Higdon, and K. Ye. Variable selection for gaussian

process models in computer experiments. Technometrics, 48:478–490, 2006.

D. MacKay. Information-based objective functions for active data selections. Neural Computation,

4:589–603, 1992.

L. S. Matott, K. Leung, and J. Sim. Application of matlab and python optimizers to two case-studies

involving groundwater flow and contaminant transport modeling. Geospatial Cyberinfrastructure

for Polar Research, 37(11):1894–1899, 2011.

A. Owen. Variance components and generalized soból indices. SIAM/ASA Journal of Uncertainty

Quantification, 1:19–41, 2013.

J. Sacks, W. Welch, T. Mitchell, and H. Wynn. Design and analysis of computer experiments.

Statistical Science, 4: 409–435, 1989.

A. Saltelli. Making best use of model evaluations to compute sensitivity indices. Computer Physics

Communications, 145: 280–297, 2002.

31

A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto. Sensitivity Analysis in Practice. John

Wiley and Sons Ltd., 2004.

A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and S. Taran-

tola. Global Sensitivity Analysis. John Wiley and Sons Ltd., 2008.

A. Saltelli, P. Annoni, F. Campolongo, M. Ratto, and S. Tarantola. Variance based sensitivity

analysis of model output. design and estimator for total sensitivity index. Computer Physics

Communications, 181: 259–270, 2010.

T. Santner, B. Williams, and W. Notz. The Design and Analysis of Computer Experiments.

Springer, 2003.

W. H. Schilders, H. A. Vorst, and J. Rommes, editors. Model Order Reduction: Theory, Research

Aspects and Applications. Springer, 2008.

M. Taddy, H. Lee, G. Gray, and J. Griffin. Bayesian guided pattern search for robust local opti-

mization. Technometrics, 51:389–401, 2009.

32

