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Abstract: Seasonal point processes refer to stochastic models for random events which are only observed

in a given season. We develop nonparametric Bayesian methodology to study the dynamic evolution of

a seasonal marked point process intensity. We assume the point process is a non-homogeneous Poisson

process, and propose a nonparametric mixture of beta densities to model dynamically evolving temporal

Poisson process intensities. Dependence structure is built through a dependent Dirichlet process prior for

the seasonally-varying mixing distributions. We extend the nonparametric model to incorporate time-

varying marks resulting in flexible inference for both the seasonal point process intensity and for the

conditional mark distribution. The motivating application involves the analysis of hurricane landfalls

with reported damages along the U.S. Gulf and Atlantic coasts from 1900 to 2010. We focus on studying

the evolution of the intensity of the process of hurricane landfall occurrences, and the respective maximum

wind speed and associated damages. Our results indicate an increase in the number of hurricane landfall

occurrences and a decrease in the median maximum wind speed at the peak of the season. Introducing

standardized damage as a mark, such that reported damages are comparable both in time and space, we

find that there is no significant rising trend in hurricane damages over time.
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1 Introduction

There are many examples of phenomena that occur every year at random times, but are limited

to a specific season. Two examples of natural events with strong scientific and economic relevance

are: the Atlantic hurricanes and the Pacific typhoons formed by tropical cyclones that occur

between May and November; and the spawning of coho salmon that takes place from November to

January. There are some situations where the observational window is limited to a given season,

such as wildlife abundance in regions that are not accessible in the winter. In addition, there exist

applications where interest lies in studying a physical process during a particular season. One

example is the study of extreme precipitation during the dry season in tropical environments.

This can be important to guarantee water supplies and also to prevent unexpected disasters.

On a different note, studying incidence of online purchase of products during the Christmas

season is indispensable for retailers in order to optimize stocking, advertising, logistics, staffing,

and website maintenance and support. In all these examples it is important to understand the

underlying mechanism of the seasonal point process. To this end, we need a flexible statistical

model that can describe the changes of the process intensity during the season. The model also

has to capture the evolution of the intensities from one year to the next, borrowing strength from

the whole dataset to improve the estimation in a given season. Moreover, the model should be

extensible to allow for inference on possible marks associated with the occurrence of the events.

In this paper, we focus on the study of landfalling hurricanes recorded along the U.S. Gulf

and Atlantic coasts between 1900 and 2010, and their associated maximum wind speed and

damages. Hurricanes are typical seasonal extreme climate events. In the light of potential

societal and economic impact of climate change, the obvious question regarding hurricanes is

whether there is an intensification of hurricane frequency and an increasing trend of hurricane

wind speed and associated damage. A substantial part of the literature on the variability of

hurricane occurrences is based on annual counts of events. For example, Elsner et al. (2004) and

Robbins et al. (2011) use change point detection methods to find significant increases in storm

frequencies around 1960 and 1995. Limiting the analysis to the number of hurricanes per year
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precludes the description of occurrence variability within each year. Thus, it is not possible to

estimate trends in hurricane occurrence during a particular period within the hurricane season,

say, a given month. An alternative approach is considered in Parisi and Lund (2000) where the

process of hurricane occurrences is modeled with a continuous time-varying intensity function

within one year. However, in this case, the inter-annual variability is not accounted for. An

approach that models intra-annual, as well as inter-annual variability is presented in Solow

(1989). The model is applied to a US hurricane data set (different from the one considered here)

that consists of monthly counts along the mid-Atlantic coast of the US in 1942-83. The basic

assumption is that the data correspond to a Poisson process with a non-stationary intensity

function. This is decomposed into a secular and a seasonal component, estimated from annual

and monthly counts, respectively. The analysis indicates no trend during 1950s and a decreasing

trend in 1970s for the secular component, and a stationary seasonal cycle over time.

The focus on hurricane occurrence is of great importance in a climatological context. How-

ever, the frequency of hurricanes provides only a partial measure of the threat that these phe-

nomena represent. When exploring the association of hurricane strength with global warming,

Emanuel (2005) calls for research on hurricane potential destructiveness. The disastrous impact

to coastal areas draws the attention of the public, and government officials and policy makers

need reliable inferences on hurricanes’ potential damage for long-term action on economic de-

velopment and population growth (Pielke and Pielke, 1997). For instance, in about ten years

from Hurricane Fay in 2002 to Hurricane Irene in 2011, hurricane landfalls have caused around

$235 billion damages in 2013 values, and in 2005 Hurricane Katrina alone caused more than $80

billion in damage. The devastation raises public concern about societal vulnerability to extreme

climate (Katz, 2010).

The statistical literature includes some work on exploring possible trends in landfalling hur-

ricanes total damages. Katz (2002) uses a compound Poisson process as a stochastic model

for total damage. The model consists of two separate components: one for annual hurricane

frequency, and a second one for individual hurricane damage. The resulting analysis suggests
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no upward trend for hurricane damages recorded between 1925-1995, after normalization due

to societal changes. Damages are modeled using a log-normal distribution and occurrences are

assumed to follow a homogeneous Poisson process, without any time-varying dynamics. More-

over, the literature includes approaches that study the effect of climate and physical factors on

hurricane activity (Elsner and Jagger, 2013). Katz (2002) describes the association between hur-

ricane damages and El Niño. Jagger and Elsner (2006) apply extreme value theory to hurricanes

with extreme wind speeds. They assume a homogeneous Poisson process for the occurrences

of hurricanes with wind speeds above a threshold, and a generalized Pareto distribution for

maximum wind speeds. They find that the quantiles of the distribution of extreme wind speeds

vary according to climate factors that affect specific regions differently. Yet another association

of hurricane activity with climatic indexes is found in Jagger et al. (2011), where hurricane

damages are related to the number of sunspots, as well as to the North Atlantic Oscillation and

the Southern Oscillation indexes. Chavas et al. (2012) model the damage index exceedance over

a certain threshold using the generalized Pareto distribution with several physical covariates,

such as maximum wind speed and continental slope. Murnane and Elsner (2012) use quan-

tile regression to study the relationship between maximum wind speed and normalized economic

losses. Essentially all the papers discussed above focus on estimating trends in hurricane damage

and/or its relationship with climate factors. When the point process of hurricane occurrences is

modeled, this is done under the simplistic setting of a homogeneous Poisson process.

A fundamental question that remains unanswered by the previously described work is whether

the trend of hurricane damage over time is due to the increasing/decreasing frequency or to

more/less destructive power of individual hurricanes. These are challenging questions, as nat-

ural variability is large and we observe only a handful of hurricanes per season. These issues

motivate the presentation of a new statistical method for the analysis of the hurricane data.

In this paper, we propose a flexible joint model for inference on hurricane frequency, max-

imum wind speed and hurricane damage. Our initial assumption is that the point process of

hurricane landfalls follows a non-homogeneous Poisson process. As such, the process is char-
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acterized by non-constant intensity functions indexed by the hurricane season. Notice that

we refer to “intensity” using the point process terminology, and not the climate terminology,

where it refers to maximum wind speed. We decompose the intensity functions into normaliz-

ing constants, which model annual hurricane frequencies, and density functions, which model

normalized intensities within a season. We use a time series model for the normalizing con-

stants. We then take advantage of the flexibility of Bayesian nonparametric methods to model

the sequence of non-homogeneous density functions. The proposed approach allows for detailed

inferences on both the intra-seasonal variations of hurricane occurrences, and the inter-seasonal

changes of hurricane frequencies. The latter can be considered on time frames shorter than the

whole season, for example, monthly. To our knowledge, this is the first statistical analysis of

hurricane behavior that takes such a comprehensive approach. Moreover, to study hurricane

damage, we treat maximum wind speed and hurricane damage as marks associated with each

hurricane occurrence. We extend the method described above to make inference about marks

associated with the time of occurrence of the point process events. As a result, we obtain a full

probabilistic description of the dynamics of the process intensities and the distribution of the

marks. The application is focused on the hurricane data, but the methodology is suitable in

general for time-varying seasonal marked Poisson processes.

The article is organized as follows. Section 2 describes the hurricane data and previous work

relevant to this application. We perform an initial analysis of the data ignoring the year of

hurricane occurrence, and using a mixture of Beta densities to model the hurricane intensity.

This analysis serves to motivate the methodological development, as it clearly suggests that

a simple parametric model would not capture the complex shape of the intensity function of

occurrences during the hurricane season. Section 3 develops the methodology to incorporate

dynamic evolution in the analysis, using dependent Dirichlet process mixture models. We explore

the problem of data aggregation, and study different aggregation strategies. In Section 4, we

present the extension of the model to time-varying marks and apply it to maximum wind speed

and hurricane damage. Our results indicate that at the peak of the season, there is an increase
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in the number of hurricane occurrences, a decrease in the median maximum wind speed, and a

slight decreasing trend in standardized damage associated with a particular hurricane. Section

5 concludes with a general discussion.

2 Hurricane data

We consider data for 239 hurricane landfalls with reported damages along the U.S. Gulf and

Atlantic coasts from 1900 to 2010. The data are available from the ICAT Damage Estimator

website (http://www.icatdamageestimator.com). ICAT provides property insurance to busi-

nesses and home owners for hurricane and earthquake damage in the United States. The ICAT

data are consistent with the landfall summary data of the National Hurricane Center’s North

Atlantic hurricane database (HURDAT). The scope of the data is restricted to landfalling hur-

ricanes, as we emphasize the analysis of a marked point process where damage is a mark of key

interest. Hurricanes are usually defined as tropical cyclones with maximum wind speed of at

least 74 miles per hour (mph). With some abuse of terminology, we use “hurricanes” throughout

the paper to refer to all the storms in the ICAT dataset. This includes 4 tropical depressions,

63 tropical storms, 54 hurricanes of category 1, 42 hurricanes of category 2, 59 hurricanes of

category 3, 14 hurricanes of category 4, and 3 hurricanes of category 5. The classification follows

the Saffir-Simpson hurricane scale in Table 1. The dataset includes information on the landing

date, base damage, normalized damage to current value, category, maximum wind speed and

affected states. A detailed description of the data can be found in Pielke et al. (2008) and the

ICAT website. In particular, as discussed in Pielke et al. (2008), there is an undercount of

damaging storms prior to 1940. This is an important issue that needs to be considered when

quantifying possible trends in the number of hurricane occurrences.

In this application, we consider maximum wind speed and economic damage as marks. Max-

imum wind speed is defined as the maximum sustained (over one minute) surface wind speed to

occur along the U.S. coast. Economic damage is reported as base damage, which is the direct

total loss associated with the hurricane’s impact in the year when the hurricane occurred. In
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Table 1: Saffir-Simpson hurricane scale. TD: tropical depression; TS: tropical storm; HC 1 to
HC 5: hurricane of category 1 to 5.

Category TD TS HC 1 HC 2 HC 3 HC 4 HC 5

Maximum wind speed (mph) < 39 39-73 74-95 96-110 111-130 131-155 > 155

order to make all storm damages comparable, a standardization method is used to estimate the

damages to a baseline year by extending the normalization method from Pielke et al. (2008); see

Section 4.2 for details.

The time series of annual hurricane counts is shown in Figure 1. Evidently, hurricane occur-

rence depicts strong inter-annual variability. Moreover, there are indications of discontinuities,

which have been thoroughly considered in the literature. In fact, significant shifts during the

middle of 1940s, 1960s and in 1995 have been identified in Elsner et al. (2004) and Robbins

et al. (2011). The changes in the underlying data collection methods, leading to change points

in 1935 and 1960, have been explained in Landsea et al. (1999) and Robbins et al. (2011). To

explore the variability within the hurricane season, Figure 1 plots also a histogram of hurricane

occurrences ignoring the years of the events. The histogram reveals strong intra-seasonal vari-

ability, with the peak of the season around September, and a concentration of hurricanes around

June during the early part of the season. Figure 2 provides further insight on the variability

of hurricane occurrence within the season, where we have now applied aggregation by decades.

The distribution of hurricane occurrences within one season varies from decade to decade, and

the inter-decadal change of hurricane occurrences varies from month to month. This indicates

that the hurricane point process intensity during a given season varies over the decades. Here,

we assume that such process corresponds to a non-homogeneous Poisson process (NHPP).

There is a large body of literature on nonparametric methods to model temporal (or spatial)

NHPP intensities and to tackle the analytically intractable NHPP likelihood. Some are based

on the log-Gaussian Cox process model (Møller et al., 1998; Brix and Diggle, 2001; Liang et al.,

2009), while others use a Gaussian Cox process model (Adams et al., 2009). An approach based

on modeling the intensity function using kernel mixtures of weighted gamma process priors
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Figure 1: Left panel: The time series of annual hurricane occurrences. Right panel: Histogram
(with bin width of 10 days) of hurricane occurrences over months after aggregating all hurricanes
into one year. The solid and dashed lines denote the point and 95% interval estimates of the
corresponding NHPP density, using the Dirichlet process mixture model discussed in Section 2.

is developed in Wolpert and Ickstadt (1998) and Ishwaran and James (2004). The method

presented in this paper uses nonparametric mixtures to model a density that, up to a scaling

factor, defines the NHPP intensity. The approach was originally developed in Kottas (2006) and

Kottas and Sansó (2007), with different applications considered by Ihler and Smyth (2007), Ji

et al. (2009), Taddy (2010), Kottas et al. (2012a), and Kottas et al. (2012b).

Let λ(t) be the NHPP time-varying intensity, with t in a bounded time window (0, T ).

Inference proceeds by factoring the intensity function as λ(t) = γf(t), where γ =
∫ T

0 λ(t)dt is

the total intensity over (0, T ); note that γ < ∞ based on the local integrability of the NHPP

intensity function. Hence, the likelihood function induced by the NHPP assumption, using

the observed point pattern {t1, . . . , tn}, is given by p({ti}ni=1|γ, f(·)) ∝ exp(−γ)γn
∏n
i=1 f(ti),

indicating that f(t) and γ can be modeled independently. To develop inference for λ(t), we start

by rescaling all the observations to the unit interval, thus setting T = 1. A convenient choice of

distribution that will result in a conjugate prior for γ is the gamma distribution. Alternatively,

we can use the reference prior p(γ) ∝ γ−11{γ>0} (Kottas, 2006). We model f(t) using the density

estimator given by the Dirichlet process (DP) mixture model (Ferguson, 1973; Antoniak, 1974).
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Figure 2: The number of hurricanes within one season aggregated by decades. In each decade,
the number of hurricanes is grouped by months.

To complete the model we need to specify a mixing kernel. The kernel of choice in this case is a

Beta density, which has the advantages of providing flexible shapes and, being compatible with

the compact support of the intensity, avoids edge effect problems. Using the DP stick-breaking

representation (Sethuraman, 1994), the model can be formulated in the following terms

ti | G, τ ∼ f(ti | G, τ) =
∫ 1

0 Beta(ti | µτ, (1− µ)τ)dG(µ), G(µ) =
∑∞

j=1wjδµj (µ)

zj
iid∼ Beta(1, α); w1 = z1, wj = zj

∏j−1
r=1(1− zr), j ≥ 2; µj

iid∼ G0 (1)

where G0 is the DP centering distribution and α is the DP precision parameter. In our case,

a convenient choice for G0 is given by the uniform distribution noting that the Beta mixture

kernel is parameterized such that µ ∈ (0, 1) is the mean, and τ > 0 is a scale parameter.

We apply this model to the hurricane data ignoring the year index. As shown in Figure 1, the

estimated density is multi-modal, non-symmetric, and has a non-standard right tail. From this

analysis it is clear that a proper description of the hurricane data that assumes an underlying

Poisson process requires a non-homogeneous intensity. Although the initial DP mixture model

of Beta densities is flexible enough to capture nonstandard shapes of intensities within a season,
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it is not capable of describing the evolution of intensities across seasons. To address this problem

we propose in the next section a dynamic extension of the Beta DP mixture model.

3 Modeling time-varying intensities

We seek to model a collection of intensities evolving over years, {λk(t) : k ∈ K}, where K =

{1, 2, ...} denotes the discrete-time index set and λk(t) is the intensity for the season in year k.

The model presented in the previous section uses a DP prior to mix over the mean of a Beta

kernel. A temporal extension of such model will have those priors depend on k. To describe the

correlation between successive years, the model needs to impose dependence between the priors.

As an extension of the DP prior, MacEachern (1999, 2000) proposed to model dependency across

several random probability measures. The extension is based on the dependent Dirichlet process

(DDP), which provides a natural way to model data varying smoothly across temporal periods

or spatial regions. The construction of the DDP is based on the DP stick-breaking definition,

where the weights and/or atoms are replaced with appropriate stochastic processes on K. Here,

we utilize the “single-p” DDP prior model, where the weights are constant over K, while the

atoms are realizations of a stochastic process on K.

3.1 Nonparametric dynamic model for Poisson process densities

Denote by ti,k, for i = 1, ..., nk and k = 1, ...,K, the time of the ith event (hurricane landing

date) in the kth season, where K is the observed number of seasons and nk is the observation

count in the kth season. Recall that ti,k has been converted to the unit interval. Following the

modeling approach discussed in Section 2, the collection of NHPP intensities can be represented

by {λk(t) = γkfk(t) : k ∈ K}. To introduce dependence on K, we assume a parametric time

series model for {γk : k ∈ K} and a DDP mixture model for {fk(t) : k ∈ K}. The former is
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described in Section 3.2. The latter is defined as follows:

fk(t) ≡ f(t | Gk, τ) =

∫ 1

0
Beta(t | µτ, (1− µ)τ)dGk(µ), Gk(µ) =

∞∑
j=1

wjδµj,k(µ)

where the weights {wj}, defined as in (1), are the same across seasons. Thus, the model assumes

that observations ti,k in the kth season arise from a mixture of Beta distributions with component-

specific means µj,k and variances µj,k(1 − µj,k)/(τ + 1). The distribution for the mean of the

Beta mixture kernel is allowed to evolve over K, whereas τ is common to all Gk.

To impose dependence between the collection of random mixing distributions Gk, we replace

G0 in (1) with a stochastic process for the atoms {µj,k : k ∈ K}. We thus need a discrete-time

process with marginal distributions supported on (0, 1), an appealing choice for which is the

positive correlated autoregressive process with Beta marginals (PBAR) developed by McKenzie

(1985). For the atom µj,k, this is defined through latent random variables as follows:

µj,k = vj,kuj,kµj,k−1 + (1− vj,k), (2)

where {vj,k : k ∈ K} and {uj,k : k ∈ K} are mutually independent sequences of i.i.d. Beta

random variables, specifically, vj,k ∼ Beta(b, a− ρ) and uj,k ∼ Beta(ρ, a− ρ), with a > 0, b > 0

and 0 < ρ < a. Using properties for products of independent Beta random variables, it can be

shown that (2) defines a stationary process {µj,k : k ∈ K} with Beta(a, b) marginals. Moreover,

the autocorrelation function of the PBAR process is given by {ρba−1(a+b−ρ)−1}m, m = 0, 1, ...,

and thus ρ controls the correlation structure of the process.

Although the DDP-PBAR prior for GK = {Gk : k ∈ K} is centered around a stationary

process, it generates non-stationary realizations. In particular, if {θk : k ∈ K} given GK arises

from GK, then E(θk | Gk) =
∑∞

j=1wjµj,k and Cov(θk, θk+1 | Gk, Gk+1) = (
∑∞

j=1wjµj,kµj,k+1)−

(
∑∞

j=1wjµj,k)(
∑∞

j=1wjµj,k+1).

The Markov chain Monte Carlo (MCMC) method for inference, discussed in Section 3.3

and the Appendix, is based on a truncation approximation to the DDP prior stick-breaking
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representation. More specifically, Gk ≈
∑N

j=1wjδµj,k , with w1, ..., wN−1 defined as in (1), but

wN = 1 −
∑N−1

j=1 wj . Because the weights are constant across seasons, it is straightforward

to choose the truncation level N to any level of accuracy using standard DP properties. For

instance, E(
∑N

j=1wj | α) = 1 − {α/(α + 1)}N , which can be averaged over the prior for α to

estimate E(
∑N

j=1wj). Given a tolerance level for the approximation, this expression can be

used to obtain the corresponding value N . The truncated version of Gk is used in all ensuing

expressions involving model properties and inference results.

3.2 Time series model for the total intensities

The Poisson process integrated intensities {γk} can be viewed as a realization from a time

series in discrete index space, with positive valued states. We adopt the state-space modeling

method with exact marginal likelihood proposed by Gamerman et al. (2013). Unlike other time

series models that build from a log-Gaussian distributional assumption, this approach provides a

conjugate gamma prior resulting in an efficient MCMC algorithm for posterior simulation. The

model is defined by the following evolution equation for γk:

γk+1 =
1

ω
γkξk+1, ξk+1 | γk, n1:k ∼ Beta(ωak, (1− ω)ak)

where ω is a discount factor with 0 < ω < 1, ξk+1 is a random multiplicative shock, and n1:k

denotes the information available up to time k.

Denote n0 as the information available initially. Take the initial prior of γ0 | n0 as Gamma(a0, b0).

Then, the prior distribution at time k is γk | n1:k ∼ Gamma(ak|k−1, bk|k−1), where ak|k−1 = ωak−1

and bk|k−1 = ωbk−1. Based on the NHPP assumption, nk | γk ∼ Poisson(γk), and thus the up-

dated distribution is γk | n1:k ∼ Gamma(ak, bk), where ak = ωak−1 + nk and bk = ωbk−1 + 1.

The smoothing updated distribution is

γk − ωγk+1 | γk+1, n1:k ∼ Gamma((1− ω)ak, bk) (3)
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For MCMC posterior inference, we can obtain samples from the full conditionals of the joint

vector γ1, . . . , γK by first filtering the observations forward to obtain ak and bk, k = 1, . . . ,K,

and then sampling γk backwards, for k = K, . . . , 1, using the distribution in (3). The discount

factor ω is estimated by maximizing the joint log-likelihood function defined by the observed

predictive distribution log
∏K
k=1 p(nk | n1:k−1, ω).

3.3 Implementation details and posterior inference

Inference for the scale parameter of the Beta mixture kernel using the fully aggregated data (see

Section 2) presented no problems and was quite robust to the choice of the gamma prior assigned

to τ . As discussed in more detail in Section 3.4, to estimate evolving hurricane intensities using

the DDP mixture model, it is necessary to apply some aggregation of the data into periods

of time that comprise more than one year. In this respect, aggregating the data in decades

emerges as an appropriate choice. However, the estimation of τ becomes a challenging problem,

since in each decade there are still only a handful of hurricanes. In fact, a simulation analysis

indicates that reliable estimation of τ requires between 50 to 100 observations per time period.

This problem can be explained by the fact that τ partially controls the bandwidth of the Beta

kernels, with the width of the kernels in inverse relationship with the size of τ . Thus, when only a

few data points are available, τ will tend to be small allowing wide kernels to use the information

from most of the few available data. Such kernels can not capture the multi-modality of the

seasonal hurricane intensity. We thus resort to fixing the value of τ in our analysis of the data

aggregated by decade. We assume that the typical width of the Beta kernel corresponds to a

month, such that (1/12)/4 can be used as a proxy for the corresponding standard deviation

{µ̂(1− µ̂)/(τ +1)}1/2, yielding τ = 575 when µ̂ = 0.5. This is the value of τ used in our analysis.

We note that informative priors for τ centered around this value result in similar inferences.

For the centering PBAR process of the DDP prior, we set a = b = 1 leading to the default

choice of uniform marginal distributions for the µj,k covering the entire season between May

and November. The DDP prior specification is completed with a uniform hyperprior for the
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PBAR correlation parameter ρ, and a gamma(2, 1) prior for α. Finally, we set N = 50 for

the truncation level in the DDP approximation; note that under the gamma(2, 1) prior for α,

E(
∑50

j=1wj) ≈ 0.9999578, using the results discussed in Section 3.1.

We implement the DDP-PBAR model using the blocked Gibbs sampler (Ishwaran and James,

2001) with Metropolis-Hastings steps; see the Appendix for details. Combining the posterior

samples for the parameters of the DDP-PBAR model for {fk(t)} and the posterior samples for

the parameters of the time series model for {γk}, a variety of inferences about hurricane intensity

functionals can be obtained.

Of particular interest in our application is the average number of hurricanes within a time

interval (t1, t2) in the kth season, which is given by Λk(t1, t2) = γk
∫ t2
t1
fk(t)dt. We can also obtain

the probability of having a certain number x of hurricanes within time interval (t1, t2) in the

kth season as {(Λk(t1, t2))x/x!} exp(−Λk(t1, t2)). As a consequence, the probability of having at

least one hurricane within time interval (t1, t2) in the kth season is given by 1−exp(−Λk(t1, t2)).

Under the DDP Beta mixture model,
∫ t2
t1
fk(t)dt =

∑N
j=1wj

∫ t2
t1

Beta(t | µj,kτ, (1− µj,k)τ)dt.

A further inferential objective is the one-step ahead prediction of the intensity function for

the next season, γk+1
∑N

j=1wjBeta(t | µ̃j,k+1τ, (1− µ̃j,k+1)τ). Based on the PBAR construction

in (2), the conditional distribution for µ̃j,k+1 given µj,k and vj,k+1 is a rescaled version of the

Beta(ρ, 1− ρ) distribution for uj,k+1. Hence, for each j = 1, ..., N , posterior predictive samples

for the µ̃j,k+1 can be readily obtained given draws for the µj,k and vj,k+1; the former are imputed

in the course of the MCMC, the latter can be sampled from their Beta(1, 1−ρ) distribution given

the MCMC draws for ρ. Therefore, combining with predictive draws for γk+1, full inference is

available for forecasting any functional of the hurricane intensity.

3.4 Analysis of dynamically evolving hurricane intensities

3.4.1 Data aggregation

The number of landfalling hurricanes with reported damages during 1900-2010 in the U.S. is 239.

On average there are merely 2 or 3 hurricanes every year, with no hurricane in some years, e.g.,
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Figure 3: Under the two distinct levels of data aggregation, posterior mean estimates for the
hurricane intensity in 2011-2015 (left panel) and posterior densities for the probability of at least
one hurricane in May for 2011-2015 (right panel).

1922-1925 and 2009. Thus, the first practical problem we face is that of data scarcity. When

modeling the data at the yearly level, the challenge is that it is difficult to analyze a process

with so few realizations per year. Hence, we consider aggregating the data over periods of five

and ten years, and compare the results under the two different levels of aggregation.

Aggregation over a period of time is based on the assumption that the NHPP densities for all

the years corresponding to the aggregated period are the same. For the five year aggregation we

have 22 different intensities and for the decadal aggregation we have 11. Data aggregation does

not effect the estimation of normalizing constants {γk}. In fact, we can apply the model for the

{γk} proposed in Section 3.2 to the yearly data, and then aggregate. Figure 3 provides results

to compare the two aggregation strategies in the context of forecasting the hurricane intensity

and one of its functionals in the next five years 2011-2015. Encouragingly, the results are very

similar under the two levels of data aggregation.

Regarding the analysis of historical data, we focus on the month of September. In fact,

for the Atlantic hurricane season, August, September and October (ASO) are very important

months, as 95% of Saffir-Simpson Category 3, 4, and 5 hurricane activity occurs during August
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Figure 4: Boxplots of posterior samples for the average number of hurricanes in the month of
September across five-year periods from 1900 to 2010.

to October (Landsea, 1993). In particular, September is the most frequently-occurring month.

Figure 4 shows the estimated average number of hurricanes in September under the five year

data aggregation. We observe a strong variability, in particular for the periods 1921-1925, 1966-

1970 and 1991-1995. This can be attributed to the fact that during 1921-1925 there was no

hurricane in September. Moreover, there was only one hurricane in September during 1966-

1970, but there were 7 hurricanes in September during both 1961-1965 and 1971-1975. Finally,

there was no hurricane in September during 1991-1995, but 10 hurricanes occurred in September

during 1996-2000. Thus, even though the prior model is imposing some smoothness, posterior

inference results are still strongly affected by the scarcity of observations, even at the level of

a five year period. Our resulting inference in the five-year aggregation level reflects the strong

variability of hurricane counts in September. More specifically, the clear separation of the

posterior distributions for the different periods mentioned above, gives a probabilistic assessment

of significant breakpoints. These are in agreement with the change points detected in Elsner

et al. (2004) and Robbins et al. (2011) for the counts over all months. However, in this work

we focus on revealing possible long term trends rather than on anomaly detection. Thus, on the

basis of these analyses, for the rest of the paper we focus on data aggregated over decades.
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Figure 5: Posterior mean estimates (solid line) and 95% intervals (grey bands) of the hurricane
intensity during 1971-2010. Points along the horizontal axis correspond to the observations.

3.4.2 Evolving hurricane intensities across decades

Figure 5 presents the estimated intensity functions in the most recent four decades. The es-

timates fit the data very well, correctly capturing the peaks in ASO and tails in June and

November. They show some similarities between the decades, but they adapt to the charac-

teristic of the distribution of hurricane events in each decade. An important product of our

probabilistic analysis is the average number of hurricanes in a given time period, which as dis-

cussed in Section 3.3, requires the posterior distribution for both γk and Gk. In Figure 6 we

present the distributions for the mean number of hurricanes in the peak month of September

and the off-season months of May and June, along with the associated observed number of hur-

ricanes. Inference based on our model smooths the data through the decades, especially when

a small number of observations are available. Overall, the distribution of the mean number of

hurricanes in each decade matches the observations quite well. Both panels depict an increasing

trend in the first four decades as well as during the most recent three decades. The former
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Figure 6: Boxplots of posterior samples of the mean number of hurricanes in early season (May
and June) by decade (left panel), and in September by decade (right panel). In both panels, the
solid dots indicate the corresponding observed numbers of hurricanes.

may be an artifact of the under-reporting during the beginning of the 20th Century. While the

latter is very subtle for the off-season months, it is very strong for the month of September. In

fact, the last decade depicts an average number of hurricanes in the peak of the season which is

substantially higher than any other decade on record.

4 DDP model for seasonal marked Poisson processes

Here, we extend the DDP model, developed in the previous section, to a seasonal marked Poisson

process. A marked Poisson process (MPP) refers to a Poisson process with an associated random

variable or vector for each event. In our application, {ti,k : i = 1, ..., nk} is a point pattern

on (0, T ) and the marks can be denoted as {yi,k : i = 1, ..., nk} on mark space Y . Thus, the

realization from the marked point process in the kth decade is {(ti,k, yi,k) : ti,k ∈ (0, T ), yi,k ∈ Y }.

A MPP can be defined as a Poisson process on the joint marks-points space with intensity

function ϕ on (0, T )×Y . In particular, the marking theorem (Møller and Waagepetersen, 2004)

states that a MPP is a NHPP with intensity function given by ϕ(t, y) = λ(t)f(y | t), where λ(t)

is the marginal temporal intensity function, and the conditional mark density f(y | t) depends
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only on the current time point t.

4.1 The DDP-AR model

We extend the methodology from Taddy and Kottas (2012) for MPPs based on joint mixture

modeling on the marks-points space. This modeling approach yields flexible inference for both

the marginal temporal intensity and for the conditional mark distribution. Here, it is utilized

to develop a model for the collection of hurricane MPPs evolving over decades. We will refer

to the full model as DDP-AR model, since in addition to the PBAR structure, it incorporates

autoregressive processes to model the conditional evolution of marks over time.

The marks are given by the maximum wind speed for each hurricane and the associated

economic damages. Instead of using the total dollar amount of hurricane damage, we define

a standardized damage, which is calculated as a proportion of total wealth with respect to a

reference region and a baseline year (see Section 4.2). The resulting NHPP is defined in a three

dimensional space comprising time, maximum wind speed, and standardized damage. Maximum

wind speed and standardized damage are transformed by taking logarithm and subtracting the

global average of the log-transformed values. We denote yi,k and zi,k as, respectively, the trans-

formed maximum wind speed and the transformed standardized damage of the ith hurricane in

the kth decade. For the three dimensional intensity function, ϕk(t, y, z), we use the factorization

γkfk(t, y, z), where {γk} follows the time series model presented in Section 3.2. Regarding the

density function, we use a DDP mixture with a product of univariate kernel densities for time

and marks. Thus, the dependence among time and marks is introduced by the mixing distri-

bution. We retain the Beta kernel density for time and use Gaussian kernel densities on the

log scale for the two marks, mixing on the mean of each kernel component. Hence, the DDP

mixture model for fk(t, y, z) can be expressed as:

∫
Beta(t | µτ, (1− µ)τ)N(y | ν, σ2)N(z | η, ζ2) dGk(µ, ν, η) (4)

19



where Gk(µ, ν, η) =
∑N

j=1wjδ(µj,k,νj,k,ηj,k)(µ, ν, η). The locations ν and η of the normal kernels

are allowed to change across decades. The scales σ2 and ζ2 are the same across decades serving as

adjusting parameters for the bandwidth of the kernels. Conditionally conjugate inverse gamma

priors are assumed for σ2 and ζ2.

Dependence across decades for maximum wind speeds and standardized damages is obtained

through AR(1) processes for the respective kernel means {νj,k : k ∈ K} and {ηj,k : k ∈ K}:

νj,k | νj,k−1 ∼ N(βνj,k−1, σ
2
1), ηj,k | ηj,k−1 ∼ N(φηj,k−1, σ

2
2)

with inverse gamma priors assigned to σ2
1 and σ2

2, and uniform priors on (−1, 1) placed on β

and φ. Since the DDP prior structure for GK = {Gk : k ∈ K} in (4) extends the one for the

DDP-PBAR model, we retain the result about non-stationary realizations given GK, extending

the argument in Section 3.1. When the random measures Gk are integrated out, we obtain

E(yk) = 0, Var(yk) = E(σ2) + (1 − β2)−1E(σ2
1) and Cov(yk, yk+1) = β(1 − β2)−1E(σ2

1), with

analogous results for the zk. These expressions can be of help for prior specification.

The MCMC method for the DDP-AR model involves an extension of the posterior simula-

tion algorithm described in the Appendix. 1 As the marks are associated with normal AR(1)

processes and conditionally conjugate priors are used, all the parameters associated with marks

have closed-form full conditionals. Finally, since the normalizing factors (required for the stan-

dardization of damages) corresponding to the period 2005–2010 are not available, the MCMC

algorithm includes steps to impute the missing standardized damages for those years.

4.2 Standardization of hurricane damages

The purpose of standardizing hurricane damages is to isolate societal and spatial factors that

affect the amount of damage, and are not considered in the model. There exist several methods

to adjust the economic damages of past hurricanes to today’s value (Pielke et al., 2008; Schmidt

1The code to implement the DDP-AR model (as well as the DDP-PBAR model) is available from the first
author’s website at http://users.soe.ucsc.edu/~sxiao/research.html#software
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et al., 2010; Collins and Lowe, 2001). Here, we define standardized damage as an extension to

the method in Pielke et al. (2008).

The hurricane data set includes base damage and normalized damage. Base damage is calcu-

lated as the total landfall year dollar value of the damage caused by a hurricane. Such amount

is converted to the dollar value corresponding to the latest year in the record by normalizing for

inflation, wealth, and population over time. Denote inflation, wealth per capita, and affected

county population in year t as It, Wt, and Pt, respectively. Equation (5) shows the normalization

of the damage due to a hurricane landing in year t to values in year s:

normalized.damages = base.damaget ×
Is
It
× Ws

Wt
× Ps
Pt

. (5)

This normalization method yields the estimated damages of all hurricanes in today’s value but in

the same region, e.g., the damages caused by Katrina 2005 if it occurred under societal conditions

in Louisiana affected counties in 2013.

To make hurricane damages comparable, we have to adjust for inflation, and account for

the fact that much more damage will be caused if the hurricane lands in densely populated and

wealthier counties than in scarcely populated and poor regions. Thus, we have to remove both a

spatial and societal factor from the damage, so that the model can explore the pure association

between damages and climate variability. Hence, we define standardized damage as

standardized.damage =
base.damaget
It ·Wt · Pt

.

Such quantity can be interpreted as a base damage normalized to a reference year’s value in

a reference region; in the reference year and region, the inflation factor, wealth per capita and

population are all equal to 1. This method removes the difference in hurricane damages due

to the landing years and locations. Neumayer and Barthel (2011) and Chavas et al. (2012)

developed similar ideas normalizing damages by using base.damaget/wealtht, where wealtht is

the total wealth of the affected regions. They interpret the standardized damage as a relative
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Figure 7: Data box plots across decades for log-transformed base damages (left panel), damages
normalized to current values (middle panel), and standardized damages (right panel).

damage, termed actual-to-potential-loss ratio. Note that the denominator we use, It ·Wt ·Pt, is an

approximation of wealtht. All inferences presented in Section 4.4 that involve hurricane damage

refer to standardized damage. Note that, if the normalizing factors are provided, actual hurricane

damages for a given affected region and year can be obtained from standardized damages. It is

important to notice that the normalizing factors prior to 1925 have larger uncertainties compared

to those for later periods (Pielke et al., 2008). This problem is compounded with the already

mentioned issue of underreporting of hurricanes in the early part of the 20th Century. The

reader should keep this in mind when interpreting the results in the following sections.

To visualize the effect of the conversion on damage values, Figure 7 shows three different

calculations for hurricane damage and their change over decades. The base damage depicts an

increasing trend over decades, which disappears after normalization and standardization.

4.3 Inference

For a marked point process the typical inference of interest is for the distribution of the marks,

conditional on time. To obtain inference about different functionals of the conditional mark
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distribution, we use the available posterior samples of the joint density fk(t, y, z). Specifically,

conditional inference for maximum wind speed is obtained from

fk(y | t, Gk) =
fk(y, t | Gk)
fk(t | Gk)

=

∑N
j=1wjBeta(t | µj,kτ, (1− µj,k)τ)N(y | νj,k, σ2)∑N

j=1wjBeta(t | µj,kτ, (1− µj,k)τ)
=

N∑
j=1

w∗j,k(t)N(y | νj,k, σ2)

(6)

where w∗j,k(t) =
wjBeta(t|µj,kτ,(1−µj,k)τ)∑N
j=1 wjBeta(t|µj,kτ,(1−µj,k)τ)

. Of particular importance is the distribution of max-

imum wind speed conditional on a specific time period, e.g., the peak season ASO or a particular

month. Suppose that the time period of interest corresponds to the interval (t1, t2). The density

conditional on (t1, t2) can be developed as

fk(y0 | t ∈ (t1, t2), Gk) =
lim∆y0→0

1
∆y0

Pr(y ∈ (y0, y0 + ∆y0], t ∈ (t1, t2) | Gk)
Pr(t ∈ (t1, t2) | Gk)

=

N∑
j=1

h∗j,kN(y0 | νj,k, σ2)

(7)

where h∗j,k ≡ h∗j,k(t1, t2) =
wj

∫ t2
t1

Beta(t|µj,kτ,(1−µj,k)τ) dt∑N
j=1 wj

∫ t2
t1

Beta(t|µj,kτ,(1−µj,k)τ) dt
.

In Equations (6) and (7), both the weights, w∗j,k(t), h
∗
j,k, and the mixing components νj,k

change with the decade index k; importantly, the former are time dependent thus allowing local

learning under the implied location normal mixtures. Hence, the model has the flexibility to

capture general shapes for the conditional mark distribution which are allowed to change across

decades in non-standard fashion. Analogous expressions hold for the conditional distribution of

standardized damage. Moreover, since Equation (4) provides the joint density of time, maximum

wind speed, and standardized damage, we can obtain inference for a mark conditional on an

interval of the other mark and an interval of time. For instance, we can explore the distribution

of damage conditional on the hurricane category as defined by different intervals of maximum

wind speed; see Table 1.

The time evolution of hurricane occurrences and the marks are controlled by autoregres-

sive processes. One-step ahead prediction of joint time-mark distributions can be obtained by
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extending the method described in Section 3.3 with additional sampling for the {νj,k+1} and

{ηj,k+1} from the AR(1) processes that form the building blocks of the DDP prior.

4.4 Results

We applied the DDP-AR model to the full data set involving hurricane occurrences across

decades and the associated maximum wind speeds and standardized damages. The hyperpriors

for the time component of the DDP mixture model were similar to the ones discussed in Section

3.3 for the DDP-PBAR model; τ was again fixed. For the variances of the Gaussian mixture

kernels and the variances of the corresponding AR(1) processes for the DDP prior, we used

σ2 ∼ IG(3, 2), ζ2 ∼ IG(3, 10) and σ2
1 ∼ IG(3, 2), σ2

2 ∼ IG(3, 10). Here, the shape parameter of

each inverse gamma prior is set to 3, which is the smallest (integer) value that ensures finite

prior variance. The prior means were specified using the expressions for the marginal variances

of maximum wind speed and standardized damage (see Section 4.1) with β and φ replaced by

their prior mean at 0. In particular, we set E(σ2) = E(σ2
1) = 0.5(Ry/4)2 and E(ζ2) = E(σ2

2) =

0.5(Rz/4)2, where Ry and Rz denotes the range of the yi,k and zi,k, respectively.

The posterior distribution for the number of distinct mixing components is supported by

values that range from 10 to 16. The 95% posterior credible interval for ρ is given by (0.73, 0.87),

resulting in a (0.59, 0.79) 95% credible interval for the PBAR correlation. On the other hand,

the 95% posterior credible intervals for β and φ are, respectively, (−0.14, 0.79) and (−0.24, 0.81),

indicating more variability in the estimated correlation of the AR(1) centering processes for the

DDP prior. Retaining the uniform priors for ρ, β and φ, we performed a prior sensitivity analysis

for the variance hyperparameters. The parameters σ2 and σ2
1 associated with maximum wind

speed are relatively sensitive to the prior choice, while the parameters ζ2 and σ2
2 for standardized

damage are quite stable. Overall, posterior inference results are robust to moderate changes in

the prior hyperparameters.

For inference, we focus on the densities of maximum wind speed and logarithmic standardized

damage conditional on events occurring in the early season and the peak season. Figure 8 shows
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Figure 8: Top panel: the density of maximum wind speed conditional on June and September
for all decades. Bottom panel: posterior expectation and 95% interval (red band for September;
grey band for June) for the median maximum wind speed in June and September versus decade.

the comparison between the maximum wind speed densities conditional on June and September

in each decade. We observe that maximum wind speeds in September are higher than in June,

for all decades. In the 1960s the density has a very long left-hand tail, even showing evidence
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of two modes. Noteworthy in the last four decades is the increasing accumulation of density on

lower values of maximum wind speed. The fact that maximum wind speeds in September are

decreasing is confirmed by the plot in the lower panel of Figure 8, where both point and interval

estimates support a decreasing trend for the median maximum wind speed in September. In

particular, after peaking at more than 110 mph in the 1920s, the posterior point estimate has

settled at around 85 mph in the last decade.

Figure 9 (top left panel) shows the density of standardized damages (on the log scale) condi-

tional on the early season and the peak season. The densities of standardized damages in MJJ

(May-June-July) are quite similar throughout all decades, while the densities in ASO show a

moderate decreasing trend across decades. Figure 9 (bottom left panel) plots point and interval

estimates for the median standardized damage in the original scale. From 1900 to 1940, the esti-

mated median standardized damage of one hurricane in ASO is around twice as large as that in

MJJ. However, from 1941 to 2010, the median standardized damage in ASO depicts significant

variability, with some indication of a slight decreasing trend across decades. These results are

similar to the ones reported in Katz (2002) and Pielke et al. (2008), based on essentially the

same data set, albeit under different damage normalization methods. In particular, Katz (2002)

normalizes the damage during 1925–1995 to 1995 values and uses a log-normal distribution to

fit the damage of individual storms, finding only weak evidence of a trend in the median of

log-transformed damage. Likewise, in Pielke et al. (2008) hurricane damage is normalized to

2005 values. In this case, the conclusion is that there is no long-term increasing trend in hurri-

cane damage during the 20th century, once societal factors are removed. We also note here that

Neumayer and Barthel (2011) detected a significant negative trend in hurricane damage. Their

results are based on the same damage standardization method with the one we use, but for a

different data set comprising hurricane damages from 1980–2009 in the US and Canada.

The right hand side panels of Figure 9 focus on the analysis of damage, conditional on the

seven different types of hurricanes that occurred during ASO. The top panel reports the densities

for logarithmic standardized damage conditional on the different hurricane categories. The
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Figure 9: Top left panel: the density of logarithmic standardized damage conditional on MJJ
(May-June-July) and ASO (August-September-October). Top right panel: the density of loga-
rithmic standardized damage in ASO given the seven maximum wind speed categories defined
in Table 1. Bottom left panel: Posterior expectation and 95% interval (red band for ASO; grey
band for MJJ) for the median standardized damage of one hurricane in MJJ and ASO. Bottom
right panel: Posterior expectation for the median standardized damage in ASO for the seven
maximum wind speed categories.
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Figure 10: Bivariate densities of maximum wind speed (mph) (x-axis) and logarithmic stan-
dardized damage (y-axis) in ASO across decades. The dots correspond to observations in ASO.

bottom right panel reports the posterior expectations for the corresponding median standardized

damage. Overall, we observe that the higher the category the larger the standardized damages

tend to be. Standardized damages were very similar for the hurricanes recorded in ASO of

decade 1971–80, which is reflected in both types of inference shown in Figure 9. Standardized

damages for TDs and TSs have indistinguishable distributions. Likewise, at the opposite end

of the scale, damages due to HC4 and HC5 hurricanes are very similar. This is also due to the

data sparseness of TDs and HC5 hurricanes (only 4 TDs and 3 HC5 hurricanes).

Figure 10 presents the bivariate densities of maximum wind speed and logarithmic standard-

ized damage given the ASO period, for each decade. The last panel corresponds to the forecast

density for 2011–2020. We note that only a handful of observations correspond to ASO in each
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particular decade. Thus, the results in Figure 10 are possible owing to our model’s ability to

borrow strength from all the available data. Noteworthy are the positive association between

maximum wind speed and damage after the third decade, and the changes in the density shapes

across the decades, especially 1961–1970 and 1991-2000. We also note the decrease in maximum

wind speeds, starting in 1961–1970. Overall, from 1961, both the maximum wind speed and

standardized damage have a general decreasing trend. This is a reflection of the fact that fewer

hurricanes with extremely high maximum wind speed have occurred in recent decades. Regard-

ing previous related work, Murnane and Elsner (2012) modeled the relationship between wind

speed and normalized economic loss as exponential through quantile regression methods, using

all hurricanes in the 20th century. Our methodology allows for a more comprehensive investi-

gation of the relationship between hurricane damage and maximum wind speed, in particular,

it enables study of its dynamic evolution across decades, without the need to rely on specific

parametric regression forms.

4.5 Model assessment

The modeling approach is based on the assumption of a NHPP over the joint marks-points space.

To check the NHPP assumption, we use the Time-Rescaling theorem (Daley and Vere-Jones,

2003), according to which, in each decade, the cumulative intensities between successive (ordered)

observations, {γk
∫ ti,k
ti−1,k

fk(t)dt}, are independent exponential random variables with mean one.

Thus, {1− exp
(
−γk

∫ ti,k
ti−1,k

fk(t)dt
)
} are independent uniform(0, 1) random variables. Likewise,

the Poisson process assumption for the marks implies that the sets of random variables defined

by the c.d.f. values of the conditional mark distributions, {Fk(yi,k | ti,k)} and {Fk(zi,k | ti,k)},

are independent uniform(0, 1) random variables. Hence, the NHPP assumption over both time

and marks can be checked by using the MCMC output to obtain posterior samples for each

of the three sets of random variables above, in each decade. Figure 11 shows the Q-Q plots

of estimated quantiles for time, maximum wind speed, and standardized damage versus the

theoretical uniform distribution, for the last five decades. The results seem acceptable, especially
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Figure 11: Posterior Q-Q plots (mean and 95% interval) of estimated quantiles against the
theoretical uniform(0, 1) for: time (left panel), maximum wind speed given time (middle panel),
and standardized damage given time (right panel). Results are shown for the last five decades.

in consideration of the limited sample sizes in each decade.

As discussed earlier, Figures 5 and 6 provide visual goodness-of-fit evidence for the model

on hurricane occurrences, by comparing different types of model-based inferences to the corre-

sponding observations. Similar evidence is provided in Figure 10 for the maximum wind speed
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Figure 12: Cross-validated posterior predictive densities in ASO of decade 2001–2010: the left
panel corresponds to maximum wind speed, and the right panel to logarithmic standardized
damage. The histograms plot the associated observations in ASO of 2001–2010.

and log-damage relationship. We also explored other functionals of the model obtaining similar

results. In addition, we performed posterior predictive checks to study the model’s ability to

predict the marks in the 11th decade, based on the data of the previous 10 decades. In particu-

lar, we implemented the model using only the 204 hurricanes from 1900–2000, and obtained the

posterior predictive density of maximum wind speed and logarithmic standardized damage in

ASO of the 11th decade (2001–2010). Figure 12 shows the posterior predictive densities super-

imposed on the histograms of corresponding observations in ASO of 2001–2010. The histogram

in the left panel corresponds to 28 hurricanes, whereas the one in the right panel corresponds

to only 16 hurricanes, since the damages of the other 12 hurricanes are missing. We notice that

the predictions are fairly compatible with the cross-validation data.

5 Conclusion

We have developed a Bayesian nonparametric modeling method for seasonal marked point pro-

cesses and applied it to the analysis of hurricane landfalls with reported damages along the

U.S. Gulf and Atlantic coasts from 1900 to 2010. Our basic assumption is that hurricane oc-

currences follow a non-homogeneous Poisson process, with the focus on flexible modeling for

dynamically evolving Poisson process intensities. The proposed DDP-PBAR model builds from

a DDP mixture prior for the normalized intensity functions based on a PBAR process for the
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time-varying atoms, and a parametric time-varying model for the total intensities. Inference

for different Poisson process functionals can be obtained by MCMC posterior simulation. To

incorporate time-varying marks into the inferential framework for our motivating application, we

have extended the DDP-PBAR mixture model by adding DDP-AR components for maximum

wind speed and economic damages associated with each hurricane occurrence.

In the analysis of the hurricane data, we have used aggregation to study the dynamic evo-

lution of hurricane intensity over decades. The model uncovers different shapes across decades

which however share common features with respect to the off-season in May and June and the

peak month of September. The results indicate an increase in the number of landfalling hur-

ricanes and a decrease in the median maximum wind speed at the peak of the season across

decades. In the off season, both the number of hurricanes and the maximum wind speed show

little variation across decades. To study economic loss as a mark, we have introduced standard-

ized damage to adjust hurricane damages such that they are comparable both in time and space.

We found a slight decreasing trend in standardized damage of hurricanes in the peak season,

which is also present conditional on the distinct hurricane categories.

With respect to the scientific context of the motivating application, our work provides a

general framework to tackle different practically relevant problems. The key distinguishing fea-

ture of our approach relative to existing work involves the scope of the stochastic modeling

framework under which the various inferences are obtained. As discussed in the Introduction,

current work is limited to either estimating trends in hurricane occurrences at the annual level

or estimating the hurricane intensity based on the fully aggregated data, thus ignoring dynamics

across years. Moreover, when incorporating information on marks, existing approaches oversim-

plify the underlying point process structure by imposing homogeneity for the hurricane intensity.

These assumptions are suspect as demonstrated with the exploratory data analysis of Section 2.

The proposed Bayesian nonparametric methodology enables flexible estimation of dynamically

evolving, time-varying hurricane intensities within each season, and therefore has the capacity

to capture trends during particular periods within the hurricane season. The full inferential
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power of the modeling framework is realized with the extension to incorporate marks, which are

included as random variables in the joint model rather than as fixed covariates as in some of the

previous work. From a practical point of view, the key feature of the model for the point process

over the joint marks-points space is its ability to provide different types of general conditional

inference, including full inference for dynamically evolving conditional mark densities given a

time point, a particular time period, and even a subset of marks.

In summary, the focus of this paper has been in developing a model that can quantify prob-

abilistically the inter-seasonal and intra-seasonal variability of occurrence of a random process

and its marks, jointly, and without restrictive parametric assumptions. The model is particularly

well suited for the description of irregular long term trends, which may be present in the obser-

vations or in subsets of the records. To enhance the forecasting ability of the model, future work

will consider extensions to incorporate external covariates (such as pre-season climate factors)

in a similar fashion to Katz (2002), Jagger et al. (2011), and Elsner and Jagger (2013), albeit

under the more general statistical modeling framework developed here.

Appendix: MCMC algorithm for the DDP-PBAR model

The DDP-PBAR model for the data {ti,k} can be expressed as follows:

ti,k | Gk, τ ∼
∫

Beta(µτ, (1− µ)τ)dGk(µ), i = 1, . . . , nk; k = 1, . . .K

Gk(µ) =

N∑
j=1

wjδµj,k(µ)

zj ∼ Beta(1, α), w1 = z1; wj = zj

j−1∏
r=1

(1− zr), j = 1, ..., N − 1; wN = 1−
N−1∑
j=1

wj

µj,k = vj,kuj,kµj,k−1 + (1− vj,k), vj,k ∼ Beta(1, 1− ρ), uj,k ∼ Beta(ρ, 1− ρ)
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We use an MCMC algorithm to draw posterior samples of ({µj,k}, {vj,k}, {wj}, ρ, α), includ-

ing blocked Gibbs sampling steps for the DDP prior parameters (Ishwaran and James, 2001).

Configuration variables {Li,k} are introduced to indicate the mixture component to which each

observation is allocated. We use n∗ to denote the number of distinct values in the {Li,k}, and

L∗ = {L∗j : j = 1, ..., n∗} for the set of distinct values.

The first step is to update the atoms {µj,k}, which depends on whether j corresponds to an

active component or not. When j /∈ L∗, µj,1 ∼ Unif(0, 1), and for k = 2, ...,K, µj,k is drawn

from p(µj,k | µj,k−1, vj,k, ρ), which is a scaled Beta distribution arising from the PBAR process:

p(µj,k | µj,k−1, vj,k, ρ) =
1

vj,kµj,k−1
Beta(

µj,k + vj,k − 1

vj,kµj,k−1
| ρ, 1− ρ)

where µj,k ∈ (1− vj,k,min{1, 1− vj,k + vj,kµj,k−1}). When j ∈ L∗, the posterior full conditional

for µj,1 is proportional to
∏N1

i=1,{Li,1=j}Beta(ti,1 | µj,1τ, (1 − µj,1)τ)p(µj,2 | µj,1, vj,2, ρ)p(µj,1).

For k = 2, ...,K − 1, the full conditional for µj,k is proportional to
∏Nk

i=1,{Li,k=j}Beta(ti,k |

µj,kτ, (1 − µj,k)τ)p(µj,k+1 | µj,k, vj,k+1, ρ)p(µj,k | µj,k−1, vj,k, ρ). Finally, the full conditional for

µj,K is proportional to
∏NK

i=1,{Li,K=j}Beta(ti,K | µj,Kτ, (1 − µj,K)τ)p(µj,K | µj,K−1, vj,K , ρ). We

use Metropolis-Hastings steps to update the µj,k, with the proposal distribution taken to be

p(µj,k | µj,k−1, vj,k, ρ).

The sampling of weights {wj}, configuration variables {Li,k}, and α can be implemented

using standard updates under the blocked Gibbs sampler. Updating the latent variables {vj,k}

involves only the PBAR process. The full conditionals are given by

p(vj,k | µj,k, µj,k−1, ρ) ∝ 1

vj,k
Beta(

µj,k + vj,k − 1

vj,kµj,k−1
| ρ, 1− ρ)Beta(vj,k | 1, 1− ρ),

where vj,k ∈
(

1− µj,k,min{1, 1−µj,k
1−µj,k−1

}
)

, and sampling from each of them was implemented

with a Metropolis-Hastings step based on Beta(1, 1 − ρ) as the proposal distribution. Finally,

the PBAR correlation parameter ρ is also sampled using a Metropolis-Hastings step.
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