
Run, Fatboy, Run:
Applying the Reduction to Uniprocessor Algorithm to Other Wide Resources

Andrew G. Shewmaker Carlos Maltzahn
University of California Santa Cruz

Scott Brandt

Katia Obraczka Ivo Jimenez

Abstract
The RUN (Reduction to UNiprocessor)[3] algorithm was
first described by Regnier, et al. as a novel solution
to real-time multiprocessor scheduling, but its ideas can
be applied to other scheduling problems involving ar-
rays of similar resources. This technical report briefly
describes how RUN can improve the management of
network routes, queueing disciplines, disks, and batch
schedulers.

1 Introduction

The RUN algorithm takes advantage of two features of
highly loaded systems. First, a busy system will gener-
ally have many small tasks that can be packed together
and treated as one task. Second, a highly loaded system
has little idle time, so it makes more sense to solve the
dual schedule (i.e. when tasks aren’t running).

In a system with N processes and M processors where
each process requires a fixed share of a processor, pack-
ing shrinks the size of N and taking the dual of the system
reduces the size of M whenever N < 2M. By alternat-
ing packing and dual operations, Regnier, et al. showed
that they were able to reduce the difficult multiprocessor
problem down to a simple uniprocessor problem. The ap-
proach is revolutionary because it is simple and provably
more efficient in terms of context switches and migra-
tions than any previous approach.

RUN was designed with RAD (Resource Allocation
and Dispatching)[1] reservations in mind, but it can be
incrementally deployed with common rate-limiting tech-
niques such as TBFs (Token Bucket Filters), fair share,
and weighted queueing. However, in order to benefit
from the full power of RUN, subsystems will need to
adopt full RAD reservations.

RAD reservations are (utilization, period) tuples that
obsolete priority classes and previous rate-limit speci-
fications. Current methods possess a limited number

of relative, coarse-grained classes (priorities), require
rates to be strictly satisfisfied for any measured inter-
val (TBFs), have common periods between all tasks, or
have a fixed linear mapping between periods to prior-
ities. RAD reservations enable arbitrarily fine-grained
QoS (Quality of Service), possess meanings that stay
consistent in a dynamic environment, and allow straight-
forward reasoning about composing end-to-end QoS.

2 Networking

Providing QoS on networks is complex because sev-
eral independent queues must be managed in concert:
transmission and reception queues on the communicat-
ing hosts and the transmission queues on the bottleneck
switches. A flow is affected by the route it takes, the bot-
tlenecks on that route, and the manner in which a host
sends its data.

Figure 1: Network QoS Layers

switch

.

.

.

M

1

2

Global
Ethernet SDN Controller / 

Infiniband Subnet Manager

host

transport
protocol

queueing
discipline

tx port
bottleneck 

queue

app app

transport
protocol

1



Note that even with a global scheduler ensuring routes
aren’t overloaded combined with rate limiting on hosts
that bottleneck queues can still build up and drop pack-
ets. The bottleneck would have to be able to handle the
worst case simultaneous burst from every flow on that
route. In order to minimize bottleneck queue usage, the
transport protocol still needs to adapt to congestion.

2.1 Routes

The edges of networks present a perfect opportunity for
RUN. Whether it is a global WAN gateway where band-
width is extremely limited and precious or the high per-
formance interconnect between a supercomputer and a
parallel filesystem, flows should maximize the utilization
of the available routes while preventing congestion and
data loss.

As opposed to traditional distributed multipath rout-
ing approaches described by Hopps [2], RUN would be
used by a SDN (Software Defined Network) Controller
or a Subnet Manager (in the case of Infiniband) to assign
routes to flows after they have passed a simple admission
control test: Does the new flow’s rate cause the total flow
rate to exceed capacity?

To be clear, RUN is not discovering the topology of
the network. It is scheduling the routes given to it to
manage. Also, it would take further work to make RUN
take considerations other than a path’s cost (e.g. security)
into account.

Figure 2: Reduce to Unipath

.

.

.

M

1

2

2.2 Host Hardware Queues and Qdiscs
Multiple hardware queues present another opportunity
for the RUN algorithm. It has provably low numbers of
migrations, and can prevent head-of-line blocking while
enforcing QoS. Current Linux support for multiqueue
network hardware allows an administrator to pin cores or
NUMA nodes to a queue. While that minimizes context
switches and maximizes cache use, it suffers from head-
of-line blocking. Alternatively, a round-robin scheduler
can be used. While being fair and avoiding head-of-line
blocking, round-robin necessarily hurts efficiency.

In addition to the multiqueue support already men-
tioned, a network classifier cgroup can tag packets to be
handled by specific qdiscs. Combining existing strict-
rate limiting qdiscs, routes scheduled by RUN, and bot-
tleneck switches with enough buffering to handle worst
case simultaneous bursts from each flow, the network can
guarantee performance without packet drops.

Worst case buffer requirents change with different
numbers of flows, so providing adequate memory in bot-
tlenecks might not be feasible. The variability in delay in
the worst case might also be undesired. Instead of worry-
ing about providing enough memory for the worst case,
we should make transport protocols adapt to increasing
round trip times due to filling buffers.

3 Storage

In general, RUN cannot be applied to arrays of storage
devices since content is not replicated everywhere. How-
ever, RUN could be useful in two scenarios.

3.1 Placement
When the question arises where to store new data, RUN
can help manage performance after other considerations,
such as available space are answered.

3.2 Replicas
Parallel file systems often replicate data between mul-
tiple servers. Usually one server is considered the pri-
mary, but it can become overloaded and want to balance
its client load with its replicas. As long as consistency
among replicas is maintained (trivially true for read-only
access), then RUN can be used to schedule use of the
replicas.

Conclusion
This tech report only briefly explores how the Reduc-
tion to Uniprocessor algorithm can be applied to other
resources. RUN is a simple algorithm with immense

2



power, and it should enable comprehensive QoS across
many layers of resources. In particular, the Radon Net-
work QoS project will be implementing and evaluating
RUN in the near future. Please stay tuned.

References

[1] Scott A. Brandt, Scott Banachowski, Caixue Lin,
and Timothy Bisson. Dynamic integrated schedul-
ing of hard real-time, soft real-time and non-real-
time processes. In Proceedings of the 24th IEEE
Real-Time Systems Symposium (RTSS 2003), pages
396–407, December 2003.

[2] Christian E Hopps and Dave Thaler. Multipath issues
in unicast and multicast next-hop selection. 2000.

[3] Paul Regnier, George Lima, Ernesto Massa, Greg
Levin, and Scott Brandt. Run: Optimal multiproces-
sor real-time scheduling via reduction to uniproces-
sor. In Real-Time Systems Symposium (RTSS), 2011
IEEE 32nd, pages 104–115. IEEE, 2011.

3


