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Interpolation of Non-Gaussian Probability
Distributions for Ensemble Visualization

Brad Hollister and Alex Pang

Abstract —A typical assumption is that ensemble data at each spatial location follows a Gaussian distribution. We investigate the
consequences of that assumption when distributions are non-Gaussian. A sufficiently acceptable interpolation scheme needs to be
devised for the interpolation of non-Gaussian distributions. We present two methods to calculate interpolations between two arbitrary
distributions and compare them against two baseline methods. The first method uses a Gaussian Mixture Model (GMM) to represent
distributions. The second method is a non-parametric approach that interpolates between quantiles in the cumulative distribution
functions. The baseline methods for comparison purposes are: (a) using a Gaussian distribution and interpolating the means and
standard deviations, and (b) forming a new distribution based on the interpolation of individual realizations of the ensemble. We show
that the two proposed non-Gaussian interpolation methods have the following behavior: the interpolated distributions do not decompose
to more constituent Gaussian distributions than the highest modality of those being interpolated, and do not have variances less than
the smallest variance from the grid points being interpolated. Finally, we compare these four interpolation methods when used in the
analysis of scalar and vector fields of ensemble data sets, particularly in areas where the distribution is non-Gaussian.

Index Terms —Interpolation, non-Gaussian, visualization, flow, uncertainty, ensemble
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1 INTRODUCTION

A fundamental operation used in most visualization
algorithms is interpolation. Interpolation is used in
workhorse visualization techniques such as marching
cubes, direct volume rendering, and stream line gener-
ation, and many other popular algorithms. Performing
interpolation is well defined when the data points and
the interpolants are single valued, or crisp. However, this
is not the case when the data points and the interpolants
are multivalued, or consist of a distribution.

With increasing interest in representing uncertainty
in modeling and simulation with techniques based on
Monte Carlo methods, we are now faced with the
challenge of analyzing and visualizing ensemble fields.
Ensemble fields are made up of individual realizations,
each a possible outcome, of the simulation. Assuming
that the ensemble fields are defined over a grid, a popu-
lar approach is to treat all the values at a given grid point
from different realizations as a multivalue or a distribu-
tion. Recent works in this area have primarily assumed
that the multivalue follow a Gaussian distribution. Even
more recent efforts have tried to remove this assumption.
In this paper, we examine two alternative interpolation
methods that support non-Gaussian distributions and
compare them against two other baseline methods.

There are several reasons for considering a more gen-
eral representation for multivalue aside from a Gaussian
model. The assumption of a normal distribution ne-
glects the possibility that the multivalue represents over-
lapping sub-populations of data, which by themselves
can be considered Gaussian component distributions.
These often arise in various situations such as sub-
voxel material classification for volume rendering, and

ambiguity in resolving fiber orientation during DT-MRI
tractography. Often times, it is at these “mixing” regions
where interesting things happen e.g. presence or absence
of a boundary, crossing or divergence of a path, etc.
The distributions at these regions exhibit multimodal
profiles. Their consideration requires representation of
these distributions as non-Gaussian.

In this paper, we adopt the terms crisp to mean
single valued, whereas multivalued is taken to mean a
collection of values [11]. The concept of multivalues is
general enough to represent (i) the collection of values of
a variable at a particular location as reported by different
realizations in an ensemble, (ii) a probability distribution
of the same set of values represented as a probability
density function (PDF) that requires the area under
the function to sum to one, (iii) other representations
e.g. as a signal. Using the operator based approach for
manipulating multivalues [11], linear interpolations can
be defined as:

M ′ = (1 − α)M1 + αM2 (1)

where M ′, M1 and M2 are multivalues, α ∈ [0, 1]. Note
that (1−α) is a simple subtraction between 2 crisp values.
The multiplication of a crisp value and a multivalue
simply scales each member of the multivalue and results
in a multivalue. On the other hand, the + operator
between two multivalues can be defined according to
the needs of the application. Using this framework, one
can also define and entertain other variations of simple
linear interpolations e.g.

f(M ′) = (1 − α)f(M1) + αf(M2) (2)

where f(.) operates on multivalue M , and + is appro-
priately defined.
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The two interpolation methods examined in this paper
define f(.) as: (i) a gaussian mixture model to represent
M , and (ii) different quantiles of the PDF representing
M . We refer to interpolation using method (i) as GMM
PDF interpolation, and method (ii) as Quantile PDF inter-
polation. These are described later in Section 4. The two
baseline methods used to compare these interpolations
are: (i) one that uses a Gaussian representation of M –
interpolation is referred to as Gaussian PDF interpolation,
and (ii) one that uses the raw multivalues – interpolation
is referred to as Ensemble PDF interpolation.

There are three main considerations in formulating the
interpolation methods. Firstly, if additional modes are
introduced during interpolation, this would imply that
new sub-populations are somehow introduced during
the process. While such populations may exist, there is
nothing in the data set to suggest this. So, we impose
the condition that the interpolation method cannot cre-
ate additional modalities between known distributions.
Secondly, a suitable interpolation method should not
produce distributions that have variance less than the
smallest variance from the grid points being interpolated
between. As a contradiction, suppose that the interpo-
lated distributions did in fact have variances less than
those at the grid points. This is undesirable since the
interpolated distributions should be less certain than
at the observed grid point distributions, and should
therefore not have variances that are smaller than those
observed at the grid points. Thirdly, the method must
naturally produce a total probability of 1.0. While one
approach is to normalize the sum of components treated
separately, we present more than one possible method
that adheres to our specifications and that does not
require explicit normalization. Therefore, a good inter-
polation method should ensure that: (i) no additional
modes are introduced during the interpolation, (ii) the
variance should not be smaller during interpolation, and
(iii) interpolated results are also probability distributions.
These are described further in Section 4. Aside from
interpolation, the more general problem of curve fitting
or data analysis over ensemble fields can also benefit
from this work.

After reviewing relevant related works in Section 2, we
summarize different interpolation methods that assume
the data to have a Gaussian distribution in Section 3.
This is followed by detailed descriptions of our two
proposed interpolation methods in Section 4. In Section
5, we examine the behavior and relative performance of
these two methods against two baseline methods, and
use them to analyze an ensemble forecast of an ocean
circulation model in Section 5.3.

2 RELATED WORK

A nice overview of statistical techniques for spatial in-
terpolation was presented by Myers [13]. The techniques
range from simple linear models with no covariance,
to those using spatial structure functions. The survey

however does not include non-parametric distribution
interpolation. The paper does claim that interpolation is
a solution to an inherently ill-posed problem, namely
that it is a problem of prediction with limited data. For
that, multiple models with different purposes can be
employed. A more detailed survey [9], but focusing on
geostatistical applications, compare methods according
to different criteria such as local vs global support,
deterministic vs stochastic, univariate vs multivariate,
linear vs nonlinear etc. Among the methods that con-
sider stochastic data, they assume normal distribution.

Within the visualization community, there are also a
number of recent publications that address stochastic
interpolation. Scheuermann, et al. [28] present a form
of Kriging interpolation of spatial data for Gaussian
distributions using a parameter-based approach. This
technique relies on computing a covariance matrix and
that the underlying data be formed from a Gaussian
process. Pfaffelmoser et. al [17] visualize isosurfaces via
a raycasting scheme, and perform spatial interpolation
assuming the data has a Gaussian distribution at each
location. Likewise, Pöthkow et. al [21] discuss isocontour
visualization of normally distributed data. They inter-
polated between grid points using the 0th and 1st mo-
ments without spatial correlation considerations. Their
subsequent work [22] considered the effects of spatial
correlation in visualizing isosurfaces using probabilistic
marching cubes. An alternative method of looking at
global correlation structures in a hierarchical fashion was
presented in [18].

When data do not follow a Gaussian distribution,
a more general uncertainty model is needed. Liu et.
al [10] propose a Gaussian mixture to represent the
distribution of voxel values in air temperature data.
They perform volume rendering on the data set and
interpolate between pairs of a fixed number of Gaussians
components along cast rays. In their study, they found
that four Gaussian kernels are sufficient for a variety of
data sets that they examined. In addition, they support
stationary and anisotropic correlations in the process,
For non-parametric representations of non-Gaussian dis-
tributions, operations on the distributions require dif-
ferent handling. Love, et al. [11] discuss two forms of
a non-parametric interpolation method via convolution
addition of probability distributions as well as bin-wise
addition. Pohl, et al., [20] first transform the (discrete)
distribution to Euclidean space via a set of Log Odds
operations, where they can then be manipulated using
conventional addition and multiplication. Results are
then mapped back to probabilistic space via a reversible
transform. Read [26] delineates a method to interpolate
histograms via quantiles.

Uncertainty in vector fields is of great interest to at
least two broad fields: meteorological community and
fiber tracking community. Most of the work to date
assumes Gaussian random fields. Otto, et al. present
analysis of 2D [14] and 3D velocity fields [15] using
particle advection, critical points, and segmentation of
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field topology. Petz et al. [16] also analyze uncertain
velocity fields modeled as Gaussian random fields with
spatial correlation.

There is a growing body of work on probabilistic
fiber tracking. Unlike velocity fields, the tracks here
represent fiber connectivity from one region to another
and are obtained by integrating the major eigenvector
field. The main source of uncertainty can be attributed
to inadequate resolution in the data acquisition stage
of diffusion tensor MRI. However, there are numerous
other sources as well [3]. While most of the earlier works
on probabilistic fiber tracking delved on the inadequacy
of the simple tensor representation to show alternative
trajectories due to multiple fiber populations within
a cell, more recent works are based on high angular
resolution diffusion imaging (HARDI) data which makes
it is possible to describe fiber orientations using more
sophisticated formulations such as spherical harmonics
and multi-tensor representations. In a recent paper, Jiao
et al. [7] describe a local, icon-based presentation of an
ensemble field of fiber orientation distribution functions
(ODF). The results of our paper can be used towards
spatial analysis of such ensemble fields, for example.

There is much interest in the meteorological com-
munity to provide better visualization of forecast data.
Slingsby et. al [29], discuss how users interpret and use
weather data, specifically hurricane data. Storm path
information are examined from historical data. They
draw attention to spatial and temporal clustering and
its undervalued status among those currently employ-
ing such visualization software. Weather forecasts are
usually based on an ensemble of predictions. For that,
Potter et. al [23] describe a framework for viewing
stochastic information from ensembles. This package
allows for visualization of spaghetti plotting, etc. of
weather data. Zhang, et al. [27] present Noodles, a
software package for displaying uncertainty in stream
lines and other weather data visualization for ensemble
forecasting. Potter et. al [24] describe a software tool to
visualize two-dimensional sets of distribution data. It
displays a contour of field PDF values and allows for
a normed difference between data PDFs and an ansatz
selected by the user. More recently, Phadke et. al [19]
present two novel visualization methods for ensembles.
Primarily, they allow simultaneous viewing of multiple
ensemble members. They also present a technique called
”Screen Door Tinting” which applies value changes to
field points that show differences between ensembles.

From the point of view of users, Martin et. al [12]
point out the difficulty of users to identify hurricane
directional movement and speed from current data vi-
sualization, or directly on vector fields. In a similar
study, Broad et. al [4], further emphasize interpretation
and usage of complex weather data. They show how
a general interpretation of a Gaussian distribution of
hurricane direction prediction can lead to inaccurate
views on the probability within a ”cone of uncertainty”.
Clearly, if multimodal velocity distribution is calculated

with such a broad region of uncertainty using a Gaussian
assumption, incorrect estimation of the probability of
hurricane direction can occur, most specifically within
the general population who can be greatly impacted
by such interpretation. A non-Gaussian consideration
for vector field visualization together with a redesigned
visualization may rectify this issue to a degree. We hope
that with the results presented in this paper, we will
be able to extend such visualizations to consider non-
Gaussian mixing regions.

3 GAUSSIAN INTERPOLATION

In this section, we briefly summarize alternative strate-
gies of performing spatial interpolation for distributions
that are assumed to be Gaussian. In this discussion,
we consider linear interpolation between two univariate
Gaussian distributions. The interpolation parameter α

indicates both the parameterized spatial distance and
the parametric interpolation distance between the two
distributions.

First, it is possible to interpolate Gaussian parameters:
the mean, standard deviation (and other moments) in-
dependently. The interpolants remain Gaussian and can
be reconstructed based on interpolated parameters. This
method is simple yet allows for smooth translation of
mode and smoothly varying moments as can be seen in
figure 1. Gaussian PDF interpolation in this paper refers
to this variant of Gaussian interpolation.

Fig. 1. Intermediate interpolants (black dashed curves)
travel from the blue to the green Gaussian curve.

When the distribution is represented by samples rather
than by Gaussian parameters, another approach is to
interpolate the samples directly rather than fitting it
with a Gaussian first. Here, samples drawn from each
distribution are interpolated independently. For a ran-
dom variable B (representing samples drawn from the
blue curve), let the random sample Y1, Y2, ..., Yn be n

independent and identically distributed (i.i.d.) variables.
Similarly, a random sample from G (representing sam-
ples drawn from the green curve) are the n i.i.d. vari-
ables Y1+n, Y2+n, ..., Y2n. The total number of all possible
sample interpolants is the count of all possible pairings
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between the members of the random samples, i.e. the
cardinality of the Cartesian product: |{Y1, Y2, ..., Yn} ×
{Y1+n, Y2+n, ..., Y2n}|, for any given α ∈ [0, 1]. This
method of PDF interpolation allows translation of mode
but variance is potentially less than either the B or
G distribution during interpolation. Figure 2 shows an
instance of sample pairings between two PDFs and the
resulting PDF interpolants. In this example, there are in-
terpolants that have variance less than the distributions
being interpolated.

(a) One set of sample pairs drawn indepen-
dently from the distribution on the left (blue
dots) and the distribution on the right (green
dots).

(b) Intermediate interpolants (black dashed
curves) show smaller variance than end points
distributions.

Fig. 2. Sample interpolation for a given instance of
distribution sample pairings. (a) Shows pairings and (b)
depicts interpolants with dashed lines.

Thirdly, there is “probabilistic interpolation”, also re-
ferred to as histogram interpolation. This method nor-
malizes the range of the grid point distributions. For
each “bin”, frequencies are interpolated. With this ap-
proach, the PDF at one grid point morphs into the the
PDF at the other grid point. In figure 3, the interpolant
at α = 0.5 is bimodal.

This third method might be suitable for some ap-
plications, such as volume rendering materials where
a cell might contain multiple materials. That is, when

Fig. 3. An interpolant can become multimodal between
unimodal distributions as shown by the dashed black
interpolant at α = 0.5.

one considers the situation where the populations are
predominantly of different types on either side of a
boundary, but is made up of both populations at the
boundary region, then interpolations that increase the
modality of the distributions might be desirable. On
the other hand, when one considers the transport or
transition of a population or mixture of populations e.g.
volume of water at different temperatures, across some
distance then we do not want to increase the modality of
the interpolant distributions. In this paper, we consider
the latter design criterion as we consider interpolation
of non-Gaussian distributions.

4 NON-GAUSSIAN INTERPOLATION

We present two techniques for the linear interpolation of
PDFs as represented by a GMM and a non-parametric
quantile model. These techniques directly apply to the
standard unit reference cell, where each grid point rep-
resents a distribution from an ensemble.

4.1 GMM PDF Interpolation

Our first approach is to linearly interpolate Gaussian
parameters for a Gaussian Mixture Model (GMM) as
outlined in figure 4. The final step may be optional
depending on the application, as indicated by the dotted
arrow and box. We describe fitting components and in-
terpolating parameters in this section. Gathering samples
is implementation specific and is influenced by the data
source.

The fit components stage from figure 4 requires model-
ing the samples with Gaussian components. The GMM
can be extracted using the Expectation-maximization
(EM) algorithm ([1], [2], and [25]) in order to derive a
mixture from the starting samples using m Gaussian
components. The mixture is denoted as the random
variable Vg located at grid point location g, where g ⊂
{p|p ⊂ R

n, n ∈ N, 0 < n ≤ 3}. The GMM is determined
by a linear combination of Gaussian basis functions Φi:
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Vg =

m
∑

i=1

aiΦi (3)

m
∑

i=1

ai = 1 (4)

Φi = N (µi, σ
2
i ) (5)

In the next stage of the method, interpolate parameters,
we first determine the how to pair each Gaussian com-
ponent from different grid point distributions. For the
separate grid points g0 and g1, whose Euclidean norm
||g0−g1|| = 1, we pair corresponding Φi from V0 and V1

(located at g0 and g1 respectively). The pairing heuristic
for Gaussian components between each end point is
based on a one-dimensional linear scale. For univariates,
in order to minimize interpolation distance between the
mean of paired Gaussian components, we allow sub-
steps in which a possible re-pairing ranked by sorted
Gaussian means takes place. In the multivariate case, we
pair and sort based on the weight of each Gaussian.

Fig. 4. Gaussian Mixture Model PDF interpolation
method. Dashed outline signifies core method stages
primarily discussed in paper. Dotted arrow and box signify
optional stage.

We calculate α, and the interpolant Gaussian compo-
nent parameters: µ̄i, σ̄2

i and their associated weights āi

using equations 6 through 9. Another index is used for
each component to denote which Vg it is from. Therefore,
we have µ0,i, σ2

0,i and a0,i from V0. µ1,i, σ2
1,i and a1,i are

from V1.

α = ||p − g0|| (6)

µ̄i = (1 − α)µ0,i + αµ1,i (7)

σ̄2
i = (1 − α)σ2

0,i + ασ2
1,i (8)

āi = (1 − α)a0,i + αa1,i (9)

Thus, our interpolant PDF is V̄p at location p, defined
on a line segment of unit length and with end points g0

and g1.

This interpolation method meets our design criteria.
Interpolant PDFs will not have greater modality than
end point distributions since we require a constant
number of Gaussian components to be interpolated.
Therefore no additional modes can be present in the
interpolants. Linear interpolation of variances from com-
ponents produce GMM interpolants whose component
variances are bounded by those at the end points. Mean
interpolation difference is minimized for univariates.
Probability interpolation difference between components
is minimized for multivariates. The interpolated weights
will always sum to one. This is ensured, as long as
the total of the weights at every α equal one, as we
require. Because EM only returns weights that sum to
one, and we only make one-to-one pairings with a fixed
and the same number of Gaussian components at each
end point, then any number of re-pairings will also have
total weights equal to one.

4.2 Quantile PDF Interpolation

The quantile interpolation method overview is shown in
figure 5.

Fig. 5. Quantile PDF interpolation method. Dashed out-
line signifies core method stages discussed in the paper.

Stages gather samples and estimate density are imple-
mentation specific. We do not cover their implemen-
tation details here and the user may choose varying
approaches depending on the data. For example, kernel
density estimation (KDE) with different window setting
techniques can be used for density estimation.

During the determine quantiles stage, we compute the
random value from the cumulative distribution function
(CDF) that will return the desired quantile.

The interpolate quantiles phase from figure 5 utilizes a
linear interpolation between quantiles q0 and q1 of the
cumulative density functions (CDF) of V0 and V1. This
is expressed in equation 10 and uses α from equation 6.

q̄ = (1 − α)q0 + αq1 (10)
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In the evaluate interpolant PDF values step, both grid
point distributions’ quantiles evaluate to the same cu-
mulative density of the interpolant CDF over the sample
space variable s:

∫ q̄

−∞

V̄p(s)ds =

∫ q0

−∞

V0(s)ds =

∫ q1

−∞

V1(s)ds (11)

Each interpolant probability value for the interpolant’s
qth quantile can be evaluated using the following expres-
sion (see [26] for a complete derivation):

V̄p(q̄) =
V0(q0)V1(q1)

(1 − α)V1(q1) + αV0(q0)
(12)

While we can find a unique random value to obtain a
desired quantile for univariates, this is not true for the
bivariate (or multivariate) case. For the bivariate case,
the determine quantiles stage requires that we sum over
the two-dimensional sample space of the PDF estimate
in order to collect (u, v) sample pairs that correspond
to the same cumulative density. We do this only at the
end points g0 and g1. Note that integration of density is
performed over a discretized grid and compared within
a specified tolerance of the quantile value.

The result of the determine quantile step is a set of points
that have the same quantile. These points form a curve
which we parameterize and refer to as a quantile curve.
In the interpolate quantiles stage, we take corresponding
points (u0, v0) and (u1, v1) on the curves from g0 and g1

respectively and find (ū, v̄) along a line between (u0, v0)
and (u1, v1) depending on α. The resulting interpolant
is obtained using equation 13.

V̄p(ū, v̄) =
V0(u0, v0)V1(u1, v1)

(1 − α)V1(u1, v1) + αV0(u0, v0)
(13)

For the final reconstruct PDF step, a reconstruction
of the PDF curve or surface is performed using a
suitable interpolation such as those available using [8].
For our study, we tessellate the input point set to n-
dimensional simplices, and interpolate linearly on each
simplex. Unlike the GMM method, PDF modes can only
be estimated with a continuous curve or surface. In the
case of infinitely many interpolant PDF data points, the
surface reconstruction approaches a true PDF.

Interpolant PDFs will not have greater modality than
end point distributions. Inflection points on the CDFs
will only split and merge corresponding to the modality
at the end points. Linear interpolation of the quantiles
ensures this. In order for additional modes to form
at interpolants, quantiles would have to interpolate to
values outside of the range set by the end point PDF
quantile values during the interpolation. Since this can
not occur using linear interpolation, additional modes
do not occur with this method.

Variance of the interpolants for Quantile PDF interpo-
lation is never greater than either end point distributions.

The interpolants have quantiles located “between” the
end point PDF quantiles in the associated sample space
defined by the end point distributions. If the interpolated
quantiles were to take on values outside of their bounds
set by the end point PDFs, then the variance constraint
would be violated. However, linear interpolation does
not allow that to happen. It can also be shown that
Quantile PDF interpolation is similar to sample based
interpolation discussed in section 3. The method inter-
polates paired samples based on ordered samples from
both end point PDFs by cumulative density. In this way,
no vertical cross-section of the interpolated samples has
variance that is less than the least variance from either
end point PDF in the interpolation.

5 RESULTS

In the results below, we use four Gaussian components
for GMM PDF interpolation as suggested by Liu et al.
[10].

5.1 Ground “Truth” Comparison

We examine the behavior of our interpolation methods
in figure 6 for a one-dimensional case between two non-
Gaussian distributions. Six hundred samples are used to
form a fixed-width kernel density estimate (FKDE [6])
at each end point. Our ground “truth” is derived from
a linear interpolation of realizations. We then form a
non-parametric distribution of each ensemble member
interpolant using FKDE.

Figure 6 qualitatively shows that both quantile and
GMM PDF interpolations are quite similar to our ground
truth ensemble PDF interpolation. On the other hand,
the simple Gaussian PDF interpolation shows marked
difference from our ground truth. To obtain a more quan-
titative measure, we calculate the symmetric Kullback-
Leibler (SKL) divergence which gives us a measure of
dissimilarity between two distributions. Equation 14 is
the SKL between probability distributions P and Q.

DSKL(P‖Q) =
∑

i

ln

(

P (i)

Q(i)

)

P (i)+
∑

i

ln

(

Q(i)

P (i)

)

Q(i)

(14)

SKL is computed from α = 0.0 to α = 1.0 for each PDF
interpolation method. For each method, we compute and
average 100 such SKL comparisons to remove measure-
ment noise due to sampling and EM fitting. Because the
SKL results for Gaussian interpolants are an order of
magnitude greater than both GMM and Quantile PDF
interpolants, we show the Gaussian SKL measurements
separately. In figure 7, we can easily see that Quantile
interpolants (blue line) have the least SKL values, while
both GMM (red line) and Gaussian (purple line) have
larger entropies. The color scheme used for each PDF
interpolation method in figures 6 and 7 are used for the
remainder of this paper.
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Fig. 6. Univariate PDF interpolant from α=0.0 to α=1.0: GMM (red), Quantile (blue), Ensemble (green) and Gaussian
(purple).

Entropy at α = 0.0 and α = 1.0 are due entirely to
the accuracy of the estimation and are not due to any
of the interpolation methods. For intermediate α values,
the SKL entropy is a combination of the entropy due
to estimation errors and the entropy due to difference
between the ensemble interpolant and the GMM, Quan-
tile or Gaussian interpolant. Unfortunately, since density
estimate and fitting of Gaussian components are needed
to form the distributions at the end points, and we do
not know how the estimation or fitting error varies as
a function of α, we cannot distinguish between entropy
due interpolation and those due to estimation or fitting.

Interestingly, as can be seen in figure 7 (b) for Gaussian
interpolants, entropy at α = 1.0 is less than any interme-
diate α. Quantile PDF interpolants are almost identical
with ensemble interpolants and entropy is greatest at
α = 0.0 where estimation entropy is larger than for
any interpolants. Quantile PDF interpolation effectively
orders the samples by their cumulative probability. This
corresponds closely with ensemble physical simulations
per ensemble member.

Figure 8 shows a linear interpolation between two
bivariate distributions. At the top of the figure, we have
a bimodal distribution and at the bottom of the figure,
we have a unimodal distribution. Some tears on the
interpolant PDF can be observed in column (b) due to
insufficient data samples.

5.2 Synthetic Data

For covariant random variables, we describe interpo-
lation in a synthetic velocity field where the velocity

(a) GMM and Quantile SKL (b) Gaussian SKL

Fig. 7. Ten measurements of the SKL divergence for
univariate interpolants from α=0.0 to α=1.0. Values are
averaged from 100 independent comparisons. Entropy is
shown on vertical axes and α on horizontal axes.

components are the bivariate random variables under
consideration. In order to show the effect of considering
a bivariate bimodal distribution when advecting in a
velocity vector field, we construct a toy example consist-
ing of a 3 x 3 grid where all grid points are defined as
unimodal except the center grid point, which is defined
by a bimodal distribution. Our mean parameter(s) for the
velocity PDFs are the mean velocity vector µi = (u, v)T ,
where u and v are the velocity components aligned
with the Cartesian x-y coordinate system. The left half
and the top center of the grid is defined by a normal
bivariate. Spherical covariance matrices are used, i.e.
the covariance matrix designation is a multiple of the
identity matrix.
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(a) (b)

Fig. 8. One-dimensional PDF interpolation using (a)
GMM and (b) Quantile from a bimodal bivariate (α = 0.0)
at the top to a unimodal bivariate (α = 1.0) at the bottom.

N1(µ1,Σ1), µ1 =

(

0
−1

)

,Σ1 =

(

1 0
0 1

)

(15)

The right side of the grid is defined by:

N2(µ2,Σ2), µ2 =

(

0
1

)

,Σ2 =

(

1 0
0 1

)

(16)

And, the center grid point is the Gaussian mixture of
the following two bivariate normals where the first is
weighted 0.6 and the second is weighted 0.4:

N3(µ3,Σ3), µ3 =

(

2
1

)

,Σ3 =

(

1 0
0 1

)

(17)

N4(µ4,Σ4), µ4 =

(

−2
−1

)

,Σ4 =

(

1.5 0
0 1.5

)

(18)

We show the results of interpolating between a bi-
modal and a unimodal bivariate distribution in figure 8.
The Quantile interpolants can be seen to have more
pronounced modal separation. There are two discernible
modes in all Quantile interpolants while the GMM in-
terpolants are smoother and most lack multimodality.
One noticeable artifact with the Quantile interpolants are
“missing ” lower quantiles. See section 6 for more details.

For visualizing uncertain vector fields, particularly
where the distributions are non-Gaussian and more
specifically multimodal, and therefore presenting mul-
tiple possible trajectories, we propose the use of modal
curves. While spaghetti plots show bundles or clusters
of (possibly intersecting) streamlines, we want modal
curves to be parsimonious representations of the major
trajectories of the flow, where major is taken to mean
the top b most likely directions. That is, we allow modal
curves to bifurcate, if along its path, the curve encoun-
ters a distribution that is significantly multimodal. To
construct modal curves, we seed and advect massless
particles much like conventional stream lines but using
the interpolated PDF to make decisions. That is, we
advect using the velocity corresponding to the high-
est peak of a bivariate (for 2D) distribution. Modal
curves are allowed to bifurcate along PDF modes after
a minimum number of advection steps. Advection is
performed as usual, using the fourth-order Runge-Kutta
method. Each branch is a separate traditional stream line
in the sense that branches are seeded at the branch point
and advected forward or backward in the velocity field
using the same direction as the parent branch. In order to
reduce clutter, we remove branches according to criteria
outlined in algorithm 1. Figure 9 shows results using
b = 2.

We prune branches that cross over one another with
one exception. Modal curves do not prune themselves
at crossings that occur between “root” curves. Up to
two “root” modal flow curves may advect from the seed
point in either forward or backward integration. Both
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while not at end of the branching modal flow curve list do

advect current branch by taking vector from
distribution that forms smallest angle between itself
and previous velocity taken by current branch;
if new advection position crosses branch that is older and it
is not the root then

mark current branch and all of its descendents for
removal;
continue;

else

mark modal flow curve that was crossed by current
modal flow curve and all of its descendents for
removal

end

if current modal flow curve’s position prior to its own
advection has encountered an interpolated multimodal
distribution and its minimum number of advection steps
have been reached for another bifurcation then

create and advect new modal flow curve along
remaining highest probable velocity and add new
branch to list;
if new advection position of new branch crosses another
modal flow curve then

remove new branch modal flow curve from list;
end

process modal flow curve branches marked for removal

Algorithm 1: Advection for modal flow curves

will be of the same age, i.e. have the same total advection
steps at the end of an update cycle.

Pruning is performed to disallow ambiguation of pri-
mary flow paths and to keep computation to a minimum
while allowing “feeler” breadth-search paths earlier in
advection which can then be discontinued. Thus, we
allow for the greatest divergence of advections along
modes in PDF interpolants.

The GMM modal curves shown in figure 9 (top)
contain only two branched forward advected curves,
while for the Quantile modal curves in figure 9 (bot-
tom), there are three branches, two root branches and
a third child branch. Through monitoring intermediate
advections, it was noted that all child branches encoun-
tered intersections and were subsequently pruned for the
GMM advection. This can be explained by considering
the entropy inherent in the GMM PDF interpolation
method. GMM based modal curves tend to have more
“noise” associated with their paths due to variations
in Gaussian component parameter fitting (EM) at grid
point PDFs. Thus, modal curves branching between
maximal divergent branches (such as those shown in
figure 9 (bottom)) often are completely pruned. In the toy
example, the Quantile PDF interpolation method when
applied, preserved one of the child branches and was
not pruned because its path did not coincide with the
rightmost root curve. Depiction of the most divergent
flow paths are still observed in both methods, however.

Fig. 9. Toy example modal curves for (top) GMM and
(bottom) Quantile PDF interpolation. Black dot denotes
seed point. Mean vector is shown at grid points.

5.3 Simulation Data

Next, we provide verification of the interpolation meth-
ods and consideration of non-Gaussianity using simula-
tion data. Our ensemble data-set covers a region of the
Massachusetts Bay on the east coast of the United States
of America [11] and is provided by Dr. Lermusiaux from
MIT. The Massachusetts Bay volume in the study was
divided into 53 x 90 grid with 16 depths. The depths at
these 53 x 90 grid points vary significantly: depths as
shallow as 90 meters and as deep as 196 meters were
recorded. We use level zero, or the shallowest depth
level in the ensemble and created visualizations using
the temperature and velocity fields only.

The results of the GMM and Quantile PDF interpo-
lation methods are shown for the level crossing prob-
ability (LCP) [21] at 35 degrees Fahrenheit (figure 10),
using equation 20 in a mostly non-Gaussian region of
the temperature field. Figure 11 shows the Shapiro-
Wilk p-values for normality in the region where LCP
is interpolated. Higher p-values of the Shapiro-Wilk test
denote greater likelihood of a normal distribution. This
region represents the lowest Gaussianity measured for
the univariate temperature distributions at level zero of
the ensemble data.

Quantile interpolated LCP matches closely with the
Ensemble interpolated LCP. GMM interpolated LCP con-
tains the most noise of all the interpolation methods
and its probabilistic level set is also the most diffuse.
The interpolated Gaussian assumption and the GMM
interpolated LCP resemble each other more closely than
do the Quantile and Ensemble interpolants.

We use equations 19 and 20 to calculate the LCP. Point
p is a spatial location in the field, θ is the isovalue and Vp

is a random variable at location p. Vp is the interpolated
temperature distribution at p. Equation 20 is determined
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(a) Gaussian PDF interpolation (b) Ensemble PDF interpolation

(c) GMM PDF interpolation (d) Quantile PDF interpolation

LCP probability (left-to-right values range
from 0.0 to 1.0)

Fig. 10. LCP using (a) Gaussian, (b) Ensemble, (c) GMM and (d) Quantile PDF interpolation methods.

by considering whether the cumulative probability at the
isovalue for the interpolated PDF is 0.5 at location p. This
formulation can be derived from [21].

Fig. 11. Temperature field Gaussianity as measured with
Shapiro-Wilk test for normality. Shapiro-Wilk test produce
p-values that range from 0.0 to 1.0. Higher p-values
(white) denote greater likelihood of a normal distribution.

Fp(θ) =

∫ θ

−∞

Vp(s)ds (19)

LCPp = 1 − Fp(θ)4 − (1 − Fp(θ))4 (20)

Next, we examine the modal curves using all four
methods and compare against the spaghetti plots in
figure 13. The Gaussian modal curves (purple) tend to
follow the primary bundle of the spaghetti plots but do
not branch because of the single mode. The ensemble
modal curves (green) show similar behavior but with

branching. Similarly, GMM (red) and Quantile (blue)
modal curves bifurcate, but miss some of the stream
line bundles of the spaghetti plots. The Quantile PDF
interpolant modal curves have the closest paths in the
rightmost part of the plot and GMM has a closer cor-
respondence with the ensemble modal curves with its
leftmost branches. There are two primary coherent bun-
dles at the leftmost region of the spaghetti plots, where
Quantile modal curves depict one bundle and GMM the
other. Small variations in locality of the advections place
both sets of modal curves closer to either stream line
cluster and local modes dominate directional flow.

Fig. 12. Representative non-Gaussian grid point (p-value
= 4.6 × 10−4)

Note that the bivariate velocity Gaussianity is very
low in our dataset, where a typical example of a grid



11

Gaussian PDF interpolation method Ensemble PDF interpolation method

GMM PDF interpolation method Quantile PDF interpolation method

Shapiro-Wilk p-value colorbar (left-to-right
values range from 0.0 to 1.0)

Fig. 13. Modal curves produced using (a) Gaussian, (b) Ensemble, (c) GMM and (d) Quantile PDF interpolation
methods. White curves are spaghetti plots of stream lines. The greenish background represents land. The brownish-
red background denotes bivariate multimodality greater than one. The black-gray-white background shows the p-
values from the Shapiro-Wilk test (e), where higher p-values denote greater likelihood of a normal distribution. Most
of the distributions in this region are multimodal non-Gaussian distributions.

point distribution having relatively low variance along
the direction of the minor eigenvector of its covariance
matrix as compared to the major eigenvector direction
(see figure 12). Also note that non-Gaussianity alone is
not sufficient for deciding whether modal curves should
bifurcate or not. We also need a test for multimodality.
We achieve this based on size and separation of peaks.
If one considers multimodal marginal distributions indi-
vidually, it is possible to generate samples that do not
belong in the original bivariate distribution. Hence, it
is important to consider the bivariate distribution itself
rather than its marginals.

In figure 13, p-values are displayed for the Shapiro-
Wilk test for Gaussianity along with modality from
a Gaussian radial basis function (RBF) estimation.
Each PDF has a set M of fitted Gaussian mean
parameters. We calculate the greatest difference be-
tween any two Gaussian component means as a mea-
sure of multimodality. This is defined as follows:
let R = M × M , r ∈ R. Then, D = {d|d :=
Euclidean distance between each member of r, ∀r}.

For all two-dimensional ensemble velocity values at a
grid point, there are values: umin, vmin, umax and vmax

that represent the minima and maxima of the velocity
components. Let the velocity sample extent γ, be defined
as in equation 21.

γ = ‖ (|umax − umin|, |vmax − vmin|)
T ‖ (21)

Multimodality of PDF at a grid point is considered to
be true or false depending on the following condition in
equation 22, where our weighting factor is 0.10. This is
a heuristic that ensures adequate separation of Gaussian
components in the mixture.

multimodal =

{

true if max D > 0.10γ

false if max D ≤ 0.10γ
(22)

The modal curves use only local ensemble information
(PDF modes) for advection. Thus, they do not always
bifurcate along bundles of ensemble stream lines. Fig-
ure 14 shows good separation along ensemble stream
line bundles but was only reproducible with GMM PDF
interpolation (likely due to over-smoothing of multi-
modality from density estimation with bivariates).

We can also observe that modal curves do not al-
ways align themselves with regions of higher density
of spaghetti plots. One of the contributing factors, if
not the main contributing factor, is because we do not
account for spatial covariance in our PDF interpolation.
Stream lines in spaghetti plots are created from individ-
ual realizations where neighboring velocity information
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Fig. 14. GMM modal curve exhibiting bifurcation with
ensemble spaghetti plots.

is available. The corresponding (i.e. pairing of) velocity
information is lost in the PDF representation of the
ensemble.

6 DISCUSSION

Based on our limited investigation, Quantile PDF inter-
polation is the method of choice for the case of univariate
interpolation of non-Gaussian distributions since it pro-
vides the best SKL score when compared to the ensemble
PDF interpolants as baseline.

Both GMM and Quantile PDF methods rely on having
a good density estimate either through EM or FKDE.
However, Quantile PDF interpolation is particularly sus-
ceptible to the “curse of dimensionality” as one goes
from univariate to multivariate interpolation. More data
is needed to estimate the density. In our study, we use
six hundred realizations for interpolating both univari-
ate and bivariate joint distributions. Since PDF surface
accuracy is proportional to the number of realizations,
sample aliasing at lower frequencies may cause excess
smoothing and can obscure modality. Aside from FKDE,
there are other estimation methods such as adaptive
kernel or projection pursuit density estimation [6] that
can yield potentially better results with a limited number
of samples for multivariates.

Limited samples also have adverse consequences dur-
ing the integration stage for finding quantiles, where the
sample space resolution needs to be increased in order
to detect finer gradations of density per unit sample
area. The complexity is proportional to nd, where d

is the dimension of the joint probability and n is the
resolution of the sample space. Larger sample spacing
can degrade high frequency probability surface detail.
Such loss of detail may cause tearing in the reconstructed
PDF because of incomplete quantile information during
surface interpolation as can be seen in figure 8. This
is not seen for univariates in our study but has been
encountered for bivariates.

In contrast, because GMM will fit a given number of
Gaussians to the data, GMM PDF interpolation is less
susceptible to over-smoothing of the density estimate
due to lack of data. Hence it can detect modality (up to
the number of Gaussian components) better than Quan-
tile PDF interpolation, but at the cost of accuracy associ-

ated with RBF. Another consideration is that the GMM
at each grid point can be performed in a preprocessing
step and its interpolation will outperform Quantile PDF
interpolation in terms of fewer computations required
per interpolant.

The interpolation methods presented in this paper do
not account for spatial covariance with surrounding grid
point distributions. With GMM, we dismiss PDF-wide
summary parameters that simplify covariance measure-
ments and as a consequence we do not currently have
heuristics for paired Gaussian component covariance. In
the quantile case, we are interpolating unique surface
values of individual PDFs which do not relate as a whole
to surrounding PDFs when considered in isolation.

From our example of a two-dimensional univariate
PDF interpolation, we used LCP to visualize a proba-
bilistic temperature field. Since LCP is determined based
on the CDF, we can apply it directly to non-Gaussian
fields.

7 CONCLUSION

This paper investigated two PDF interpolation methods
for both univariate and bivariate non-Gaussian distribu-
tions, in one and two dimensional space, and compared
them against two baseline methods. The fundamental
problem with PDF interpolation is that there is no unique
path or set of intermediate interpolations between PDFs
(especially in the more general case of non-Gaussian
distributions). Our methods assume no prior knowledge
of the ensemble data, in order to be more broadly
applicable.

The interpolation methods presented in this paper are
designed to have certain properties: variance should be
bounded by the variances at grid points, no additional
modes are introduced during interpolation, and the in-
terpolants are PDFs. Using LCP and modal flow curves,
we compared the results of the 4 interpolation methods
on random fields exhibiting non-Gaussian distributions
and their effects on the visualizations.

The Quantile PDF interpolation appears to offer the
best fitting interpolants relative to the ensemble. How-
ever, it suffers from the “curse of dimensionality”. Im-
provements to this method can come in the form of
alternative ways to estimate density e.g. projection based
methods that can capture multimodality with smaller
sample sets. Hybrid methods that take advantage of
both GMM and Quantile interpolation is also another
area to be explored. We currently do not include spatial
covariance in PDF interpolation, and is another area of
further investigation. Also, while we started out focusing
on non-Gaussian distributions, the modality of the dis-
tribution is perhaps more significant particularly. In the
results presented here, we used an ad-hoc method for
testing the modality of a distribution. There are more
formal multimodality tests that can be incorporated in
the future [5].

Ensembles, when considered as a random field of
(simulation) measurements, instead of merely disparate
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parallel field data, offers promise for a much better in-
sight into the nature of the ensemble when all members
are visualized as their aggregate. Using interpolation on
the grid point PDF directly provides a method for using
the results of ensemble data in this more consolidated
view. Additionally, if ensemble data can be stored as
random field data exclusively, with better insight into the
ensemble information, this approach may prove more
viable than conventional methods (spaghetti plots for
example) which are in large use today. Finally, the results
presented in this paper is but the first step in analyzing
and visualizing uncertainty in random fields.
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