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ABSTRACT
Predicting access times is a crucial part of predicting hard
disk drive performance. Existing approaches use white-box
modeling and require intimate knowledge of the internal lay-
out of the drive, which can take months to extract. Auto-
matically learning this behavior is a much more desirable
approach, requiring less expert knowledge, fewer assump-
tions, and less time. Others have created behavioral models
of hard disk drive performance, but none have shown low
per-request errors. A barrier to machine learning of access
times has been the existence of periodic behavior with high,
unknown frequencies. We show how hard disk drive access
times can be predicted to within 0.83 ms using a neural net
after these frequencies are found using Fourier analysis.

Categories and Subject Descriptors
I.6.5 [Model Development]: Modeling methodologies; D.4.8
[Performance]: Modeling and prediction; D.4.2 [Storage
Management]:

General Terms
Performance

Keywords
black-box, storage, modeling, hard disk, machine learning,
neural network, Fourier transform

1. INTRODUCTION
Hard disk drive performance models are often used as part

of a much larger system simulation [38], for parallel file sys-
tem simulation [39], for storage configuration [2], and for
data placement [26]. The most accurate models are white-
box models such as DiskSim [8], which is used by many
people [9, 55, 39]. These models require extensive parame-
terization.

Manufacturers do not release details such as sector lay-
out required by white-box models, which makes parameter-
izing the models a long and difficult process. In fact, one
of us (Oldfield) spent several months configuring DiskSim
to model an existing device. Tools such as DIG can ex-
tract some of this information [20]. Unfortunately, they re-
quire assumptions about the internal structure of the hard

disk drive. This structure is likely to change in the fu-
ture due to the introduction of shingled hard disk drives
or other optimizations, as has happened in the past with
Zoned Bit Recording, serpentine layouts, etc. Since manu-
facturers do not release this information, researchers must
reverse-engineer a device before modifying DIG and DiskSim
to support the new layout.

A more desirable approach is to use machine learning to
generate models that can reproduce the behavior with as few
assumptions as possible. Some progress has been made in
behavioral modeling of hard disk drive performance [29, 12,
51, 55], but none can accurately model individual requests.

Access time has stubbornly resisted efforts to model it,
which is what we focus on in this paper. We use workloads
that read random single sectors, which minimizes caching
and readahead effects. In this case, request latency consists
of two components:

1. Queue time — the time the request spends in the de-
vice’s queue, waiting to be processed. Requests may
queue to some maximum depth in the device, then be
serviced out of order.

2. Access time — the time it takes to start reading sector
B, given that sector A was just read. This includes seek
time, rotational latency, and settle time. Medium and
large seeks are relatively easy to model, because the
time can be closely approximated by a simple, smooth
function of the logical block numbers (LBNs). Settle
time can be modeled as a constant and is easily sub-
sumed into the seek model. Small seeks and rotational
latency are difficult to model because these are very
high-frequency functions in LBN-space.

After decomposing the latency into these two parts, we dis-
card the queue time and focus on the access time, which we
approximate as the time the request was completed minus
the time the previously completed request was completed.

We tested decision trees and neural nets for access time
prediction. One of the complications in the problem is the
existence of unknown, high frequency components caused
by the rotational aspect of the drive. Unfortunately, a lim-
itation of traditional neural nets and decision trees is their
inability to recognize periodic patterns in the data. This can
be seen with the checkerboard problem [49] as well as the
two-spirals problem [14, 46]. We overcome this limitation



by finding the frequencies of these periodic patterns with
Fourier analysis and then feeding them into the neural net
explicitly by augmenting the feature vector.

2. RELATED WORK

2.1 Predicting request latencies
DiskSim [8] is a well-regarded disk model based on discrete

event simulation. It has been validated to produce request-
level accuracy. However, it is computationally expensive and
difficult to configure for modern disks.

Many analytic models exist, including work by Lebrecht,
Dingle, and Knottenbelt [34]. Analytic models are relatively
easy to understand and extremely fast due to their com-
pact formulae. Unfortunately, they require very detailed ex-
pert knowledge to create. Often, they are limited to certain
classes of workloads and are not useful alone in generalized
contexts. Our approach shares the last two limitations (for
now) but does not require experts.

Kelly et al. describe a black-box probabilistic model [29]
similar to table-based models such as the one by Garcia
et al. [17]. Requests are categorized based on features in-
cluding size, LRU stack distance, number of pending reads,
number of pending writes, and some RAID-specific informa-
tion. Table-based models are limited by the table size. The
work by Kelly et al. ameliorates the issue by essentially not
requiring the entire table to be filled in, but the problem is
not fully solved.

Mesnier et al. create a model for relative performance
of storage devices [40]. Unfortunately, their approach still
requires an accurate base model.

A popular approach is to use regression trees to predict
response time. Dai et al. predict performance with a combi-
nation of regression trees and support vector regression [12].
However, their models are workload-specific, and their pre-
diction errors are based on one-second averages rather than
per-request latencies. Wang et al. also calculate errors based
on windows, using one-minute windows in their case [51].

None of the machine-learning-based approaches have shown
low per-request errors.

2.2 Learning periodic functions
Neural nets can be trained on periodic functions in many

ways. Some setups predict the value of the function di-
rectly from the input. These invariably use a fixed interval
with a very small number of oscillations [22, 21, 45, 15, 54].
Extrapolating beyond the training range leads to poor per-
formance [31]. This approach is infeasible for our problem
because the number of oscillations (roughly, the number of
tracks) is on the order of a million.

If the function is known to have period p, another ap-
proach is to map the input x into the range (0, p) using
x mod p. Common examples include time-of-day or day-
of-year inputs for functions that are daily or yearly peri-
odic [32, 13]. An alternative is to map it to sin(2πx/p) and
cos(2πx/p) [18]. (This pair of functions has nice properties;
they are both continuous and bounded, and weighted sums
are equal to other sinusoids with varying phase.) Either
way, this approach requires the period to be known precisely
ahead of time, and that the input be exactly periodic.

Neurons in a neural net calculate their output by taking
a weighted sum of the inputs and applying an activation
function or transfer function, typically tanh(x) or 1

1+e−x .

Rather than using one of these as the activation function,
one may use sin(x). Unfortunately, sin(x) does not approach
a limit for large x, while tanh(x) and 1

1+e−x do. Lack of a

such a limit can lead to instability [53]. Periodic activation
functions also introduce many local minima [48].

A powerful tool for time series data is recurrent or de-
lay networks [43, 27]. These feed the network back into
itself, so that the network predicts y values from other y
values, rather than from x values. This is usually applied
to problems with one dimension of recursion, but ours has
two, one for the previously accessed sector and one for the
current sector to access. With dense data, only one level
of recursion is necessary, because the other y values are al-
ready known. If the data is sparse, missing values must
be recursively computed. Our sampling is (by necessity) so
sparse that the recursion would be extremely deep, making
computation time impractical.

3. FOURIER ANALYSIS
We assume that the access time function may have com-

ponents that are locally periodic. This is a fairly lax as-
sumption. First of all, it is well-known that these functions
do have locally periodic components for existing hard drives,
due to track lengths and track skews that are constant within
a serpentine. Periodicity is likely to occur in other devices
as well, because of the benefits of regular repetition in de-
signs. Secondly, as described in section 3.2 the cost is minor
if these functions do not have locally periodic components.

3.1 Finding strong frequencies
We refer to the previously accessed sector as the start

sector, which is the current position of the head, and the
first sector of the current request as the end sector, which
will be the new position of the head. Let f(a, b) be the access
time function, where a and b are the LBNs of the start and
end sectors, and f returns the access time in milliseconds.
To find periodic behavior in f , the Fourier transform is an
obvious place to start. It can only find periods that are
directly correlated to the value of f , but it is much faster
than training a neural net for every period to see which
ones are useful. Furthermore, if many periods are useful,
their individual impact on the neural net’s accuracy may be
swamped by noise. Using the Fourier transform allows us
to pinpoint useful periods relatively quickly and with high
precision.

Capturing the access time for every sector pair takes a
very long time. Given our test device’s mean access time
of 15.5 ms and 976,773,1682 pairs of sectors, the time to
capture all of them would be roughly 469 million years. Ob-
viously, this is infeasible, so we are limited to a very sparse
sampling.

The sparsity means that we cannot use the Fast Fourier
Transform, so we fall back to the brute force method of
calculation. Let the vectors x = (a, b) and ξ = (u, v), where
u and v are coordinates in frequency space. Further define
N as the number of data points (in our case, the number of
requests in the trace), M as the number of frequencies to

search, and f̂ as the Fourier transform of f . The discrete
Fourier transform is defined:

f̂(ξ) =
1

N

∑
k

f(xk)e−2πixk·ξ



which takes O(N) time to calculate for a single frequency

vector ξ, so calculating f̂ for M frequencies takes O(MN)
time. Scanning all frequencies in the 2D space leads to in-
feasible computation time for large datasets or datasets over
larger regions of the drive.

Note that the access time depends mostly on the differ-
ence between the sectors. This is intuitively true, as the
time to move from sector 0 to sector 9 should be roughly
the same as the time to move from sector 1 to sector 10.
This causes stripes in the access time function along a = b
(see fig. 4a), and the Fourier transform of a function with
stripes has strong components in the direction orthogonal
to the stripes [19], which means that strong components of
the access time function should lie on u = −v. We see this
empirically in fig. 1. By searching only this diagonal instead
of the entire space, the computation time becomes feasible.
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Figure 1: Full 2D Fourier spectrum for the first K = 237,631
sectors out to 200

K
× 200

K
= 8.42 · 10−4 × 8.42 · 10−4, which

corresponds to periods of at least 1/(8.42 · 10−4) = 1188.155
sectors. Plot is clipped to magnitude 1 to show detail, but
central spike goes up to 8.6, and other diagonal spikes go up
to 3.9. This figure shows that strong frequencies do lie on
the diagonal v = −u.

Another way to approach the Fourier analysis, which we
did not test, is to use a search-based method. Assuming the
number of strong frequencies is small, this should be much
faster, roughly O(kN logM) for k strong frequencies. Un-
fortunately, these methods require performing convolutions,
and it is not clear if performing a convolution on sparse data
is possible or meaningful.

Off-diagonal frequencies occur, but they are mostly re-
lated in a straightforward fashion to frequencies on the di-
agonal. An example would be a dataset that includes track
sizes of 10 and 11. Strong coefficients are likely at periods
(10, 10), (10, 11), (11, 10), and (11, 11). Since the diagonal
provides (10, 10) and (11, 11) (or just 10 and 11 in 1D), the
locations of the others could be inferred, although that is
not actually necessary.

To determine a threshold for strong frequencies, we sample
1000 frequencies at random and calculate |f̂ |. The threshold
is then set to the mean plus six standard deviations. Assum-
ing the magnitudes are normally distributed, this means that
a frequency has roughly a 1 in 500 million chance of being
spuriously flagged.

We scan across v = −u with a step size of 0.1/blockCount,
looking for local maxima above the threshold. The peaks
were often not centered on integer multiples of 1/blockCount,
which is why the step size is not 1/blockCount. After find-
ing a maximum, we perform a local search to fine-tune its
position.

Due to structures such as serpentines, f may have higher-
order periods. In other words, f may have period p1 for a
subrange, then p2, then p1, then p2, etc., with the switch
between p1 and p2 being periodic. Currently, we have no
method for detecting these explicitly, although we have seen
them show up as interesting periods in their own right.
These actually cause further problems by reducing the utility
of the lower-level periods. The multiple regions using period
p may be out of phase, causing |f̂ | to drop. Essentially, this
is a form of mixed interference which results in a weaker
signal than if the signals interfered purely constructively.

3.2 Input augmentation
Once all interesting periods have been found, the input

vectors for the neural net are augmented. Given an input
(a, b) and periods p1, . . . , pk, the augmented input vector is(
a, cos(2πa/p1), sin(2πa/p1), . . ., cos(2πa/pk), sin(2πa/pk),

b, cos(2πb/p1), sin(2πb/p1), . . ., cos(2πb/pk), sin(2πb/pk)
)
.

We use sinusoids of a and b separately rather than sinusoids
of b−a because the period changes for each input separately.
For example, if a is in a region where p1 dominates, and b
is in a region where p2 dominates, then sin(2πa/p1) and
sin(2πb/p2) are useful, but sin(2π(b− a)/p3) is not likely to
be useful for any period p3.

If no interesting periods are found, then the input vectors
are unchanged. This means that for devices with no pe-
riodicity, the cost of the periodicity assumption is just the
time to search for periods. The neural net is unchanged, and
therefore the speed and accuracy of the model is unchanged.

4. SHARED WEIGHTS
A useful and device-independent assumption is that all

sectors map from LBNs to geometrical space in the same
way. This is encoded into the neural net by applying weight
sharing across two subnets (see fig. 2). This means that
the weights in each neuron in subnet 1 are identical to the
weights in the corresponding neuron in subnet 2. This is
essentially a very simple convolutional neural net with only
two instances of the convolving subnet and no overlap of
inputs. A similar approach was used by Kindermann et
al. for solving functional equations with neural nets [30].
Another interpretation is that the subnets perform feature
generation, knowing that the two sectors are instances in
the same input space.

More formally, the net assumes f can be expressed as

f(a, b) = h(g(a), g(b))

where g (the subnet) maps from LBNs to geometry, and h
(the main net) maps from geometry to access time. Reuse
of g, which is equivalent to weight sharing in the neural
network, formalizes the assumption that all sectors map to
geometry in the same way. Technically, f is not restricted
as long as the intermediate space is at least as large as the
input space, since one could always use g(x) = x and h =
f , but this predisposes the neural net to learn more useful
decompositions.
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sin(2πa/p1)

cos(2πa/p1)

...
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sin(2πb/p1)

cos(2πb/p1)
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Subnet 1

Subnet 2 ...

32 units per subnet
10 units per subnet

10 units

Figure 2: Network architecture when subnets are used. Note
that the weights in subnet 1 are identical to the weights in
subnet 2.
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sin(2πa/p1)

cos(2πa/p1)

b

sin(2πb/p1)

cos(2πb/p1)

...

32 units

Figure 3: Network architecture when subnets are not used

Each subnet has 32 hidden and 10 output units, and the
main net has 10 hidden units. All neurons use a sigmoidal
activation function except the final output, which is linear.
This is common practice for neural nets performing regres-
sion [15]. Note that when 6 periods are used, the number of
parameters is nearly equal with or without subnets, so the
configurations should have the same expressive power.

We know of no analogous operation for decision trees, so
they were unmodified in this respect.

5. EXPERIMENTAL SETUP
The device we modeled is a Western Digital Caviar Black

WD5002AALX. It has a capacity of 500GB (976,773,168
sectors), rotational speed of 7200 RPM, cache size of 32 MB,
and NCQ queue length of 32. The drive was connected with
SATA. The host runs 64-bit Ubuntu Linux, kernel version
2.6.35-28-server. It has an Intel Core i7 quad-core CPU (plus
hyper-threading) running at 2.80 GHz and 12 GB of RAM.

Block-level traces were captured using blktrace. Request
latency was defined to be the D2C or device-to-completion
time. This is the time between the OS IO scheduler send-
ing the request to the device driver and receiving a response

from the device driver. Excluding device driver times is dif-
ficult and requires a hardware setup. In modern computers,
the time spent in the device driver should be negligible com-
pared to the time spent in the hard drive.

The dataset is of N = 32,000 random reads of the first
94 tracks, or 237,631 sectors, which is the first 0.024% of
the drive. This corresponds to the first part of the first
serpentine, so all tracks have the same size (2528 sectors).

Decision trees were tested with Weka. In all cases, the
minimum leaf weight (minNum) was set to 0. Bagging, a
popular ensemble method used to improve the accuracy of
decision trees, was also tested. Bagging generates many de-
cision trees trained on random subsets of the data, then aver-
ages their predictions [6]. When using bagging, the number
of decision trees was set to 100.

We trained and tested each configuration five times and
reported the mean and standard deviation. For tests with
random periods, each run used different random periods be-
tween 0 and 5000 sectors.

6. RESULTS
For reference, we ran DIG on our test hard disk drive.

From the DIG data, the track length at the beginning of the
drive is 2528 sectors, and the skew is 1.1908 ms, which corre-
sponds to 361.37 sectors (given the rotation time of 8.33 ms).
We expected to see a dominant period of 2528 − 361.37 =
2166.63 sectors, which is a frequency of 1/2166.63 = 4.62 · 10−4.
From the Fourier analysis, the actual dominant period is
1/(4.52 · 10−4) = 2212.99 sectors, which is close to our pre-
diction of 2166.63.

Access time errors are listed in table 1. The first entry is
the error for a model that always predicts the mean value of
the dataset.

When using decision trees, adding the sines and cosines
as additional features reduced the error noticeably. Bag-
ging the decision trees reduced error further, but only when
the periodic information was included. The lowest error
achieved with decision trees was 1.1906 ms.

When using neural nets, adding the sines and cosines re-
duced the error significantly. Weight sharing reduced the
error further by a small but noticeable amount. The lowest
error achieved with neural nets was 0.830 ms.

Most of the time, neural net tests with random periods
fared worse than tests with no period information. How-
ever, one test with random periods performed much better,
although not as well as tests with the correct period infor-
mation. This appears to have been caused by one of the
random periods being nearly equal to twice the most impor-
tant period.

When comparing the actual and predicted access time
functions (fig. 4), we see that the shape is matched very
well. Even the notches in the stripes are in the predicted
locations.

7. CONCLUSIONS
Neural nets achieved lower error than decision trees in all

tests. We suspect this is caused by two things: 1) the struc-
ture imposed by weight sharing cannot be implemented with
decision trees, and 2) many important features are individ-
ually uncorrelated with the output, which decision trees do
not learn from well.

Adding periodic features requires only a mild assumption



Configuration Error (ms)

constant value 2.013± 0.000
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no periods, with bagging 2.067± 0.001

6 random periods, without bagging 2.019± 0.013
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6 periods, without bagging 1.649± 0.154

6 periods, with bagging 1.123± 0.009
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no periods, without subnets 2.014± 0.034

no periods, with subnets 2.012± 0.019

6 random periods, without subnets 1.924± 0.176

6 random periods, with subnets 1.992± 0.059

6 periods, without subnets 0.954± 0.052

6 periods, with subnets 0.830± 0.031

Table 1: Average RMS errors for access time predictions
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Figure 4: Access time over the first 4 tracks of a hard drive, in milliseconds

and improves multiple machine learning algorithms signifi-
cantly. This approach is likely to be a crucial part of future
behavioral modeling of storage device performance.

8. ONGOING WORK
So far, we have restricted the workload to a portion of

the hard disk drive with a single track length. To make the
approach useful, we need to extend it across the entire hard
disk drive. Unfortunately, applying the method directly does
not work, in part because the Fourier transform is heavily
distorted (fig. 5).

To solve this, we split the space into distinct regions where
the periods change. Each region has its Fourier transform
computed separately and gets its own subnet (fig. 6). When
training or evaulating the neural net, the appropriate sub-
nets are swapped in based on which regions the requests lie
in.

To find the boundaries between regions, we search recur-
sively. When evaluating a region, that region is split into
two halves, and the Fourier transform is computed for each
half separately. If significant periodicity is found, and if

Fourier transform

Figure 5: The Fourier transform of mixed data is messy
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Figure 6: Splitting regions results in clean Fourier trans-
forms. Each region gets its own subnet.
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Figure 7: Similar regions reuse subnets, with a phase offset

the spectra of the subregions are sufficiently similar, then
it is assumed that the entire region is one piece and has a
uniform spectrum. Otherwise, the search procedure is re-
peated on the subregions recursively. Regions that straddle
a search boundary may be split unnecessarily. To fix this, a
postprocessing step combines adjacent regions with similar
spectra.

Because of serpentines, there may be many regions, even
though the total number of unique track lengths is low,
meaning that many regions have identical spectra but are
discontiguous. Treating each region independently is im-
practical because of the very large number of parameters
involved. To remedy this, we reuse subnets across regions
with identical spectra (fig. 7). The regions may not be in
phase with each other, so we add a phase offset (φ) to allow
for this.
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