
CrowdGrader:
Crowdsourcing the Evaluation of Homework Assignments∗

Technical Report UCSC-SOE-13-11
August 2013

Luca de Alfaro
Computer Science Dept.
University of California

Santa Cruz, CA 95064, USA
luca@ucsc.edu

Michael Shavlovsky
Computer Science Dept.
University of California

Santa Cruz, CA 95064, USA
mshavlov@ucsc.edu

ABSTRACT
Crowdsourcing offers a practical method for ranking and scoring
large amounts of items. To investigate the algorithms and incen-
tives that can be used in crowdsourcing quality evaluations, we
built CrowdGrader, a tool that lets students submit and collabo-
ratively grade solutions to homework assignments. We present the
algorithms and techniques used in CrowdGrader, and we describe
our results and experience in using the tool for several computer-
science assignments.

CrowdGrader combines the student-provided grades into a con-
sensus grade for each submission using a novel crowdsourcing al-
gorithm that relies on a reputation system. The algorithm itera-
tiverly refines inter-dependent estimates of the consensus grades,
and of the grading accuracy of each student. On synthetic data,
the algorithm performs better than alternatives not based on reputa-
tion. On our preliminary experimental data, the performance seems
dependent on the nature of review errors, with errors that can be as-
cribed to the reviewer being more tractable than those arising from
random external events. To provide an incentive for reviewers, the
grade each student receives in an assignment is a combination of the
consensus grade received by their submissions, and of a reviewing
grade capturing their reviewing effort and accuracy. This incentive
worked well in practice.

1. INTRODUCTION
Ranking items according to their quality is a universal problem,

occurring when hiring, admitting students, accepting conference
papers, presenting search results, selecting winners in contests, and
more. Often, the quality of items is best judged by human evalu-
ators. As relying on a single evaluator is often impractical — and
can be perceived as unfair — an overall evaluation can be obtained
via crowdsourcing: several evaluators compare or grade a subset of
the items, and their feedback is then combined in an overall ranking
or scoring of the items.

To study the algorithms and incentives that can be used in crowd-
sourcing quality evaluations, we built CrowdGrader, a tool for
the crowdsourced evaluation of homework assignments. Crowd-
Grader lets students submit, and collaboratively grade, solutions
to homework assignments; their grade for each assignment de-
pends both on the quality of their submitted solution, and on the
quality of their work as graders. CrowdGrader is available at
∗This work was supported in part by the Google Research Award
“Crowdsourced Ranking”. The authors are listed in alphabetical
order.

http://www.crowdgrader.org/.
We chose to focus on homework grading for several reasons.

First, this is a problem that we know well, and we were confident
that the tool would be used by us and by some of our colleagues,
providing valuable experimental data. Furthermore, solutions sub-
mitted to a homework assignment share the same topic: we do not
need to address the problem of matching the topic of each submis-
sion to the domain of expertise of each reviewer, as it is necessary
for conference submissions. The students submitting the home-
work solutions would provide a ready pool of graders. Last, but
not least, we hoped the tool would provide educational benefits to
the students. We hoped students would benefit from being able to
examine the solutions submitted by other students: accomplished
students would be able to look at alternative ways of solving the
same problem, and students who encountered difficulties would be
able to study several working solutions to the problem while grad-
ing. We also hoped that students would benefit from their peer’s
feedback.

The first question we studied with the help of CrowdGrader was
whether it is best to ask students to compare and rank submissions,
or to assign them numerical grades. Ranking alone did not work
to our satisfaction. Students expresseded some uneasiness in rank-
ing their peers, especially as they perceived ranking as a blunt tool,
unable to capture the difference between a pair of roughly equiva-
lent submissions, and a pair of submissions, one of which was very
good, and the other non-functional. As a consequence, ranking
was frequently skipped. We settled on asking students to both as-
sign grades to each submission, and rank them in quality order. Of
course, the ranking can be derived from the grades, but we believe
that the exercise of ranking added precision to the grades.

The second question concerned the algorithms that can be used
to merge the grades provided by each evaluator, into overall con-
sensus grades for each assignment. We developed a novel crowd-
sourcing algorithm, which we nicknamed vancouver, that com-
bines the grades provided by the students with the help of a rep-
utation system that captures the student’s grading accuracy. The
algorithm proceeds via iterations, following a structure inspired by
[17], and inspired also by expectation maximization techniques [9,
6, 26]. In each iteration, the algorithm computes a consensus esti-
mate of the grade of each submission, weighing the student input
according to the accuracy of each student; the consensus estimates
are then used to update the estimated accuracy of the students. On
synthetic data, vancouver performs well, far outperforming al-
gorithms such as the average or median. On our real-world data,
the results are mixed. Our impression is that vancouver outper-

1

http://www.crowdgrader.org/

forms simpler algorithms when the grading errors of the students
are not random. However, in one of the classes where Crowd-
Grader was used, the grading errors were random in nature, due
to mis-matches between the code compilation environments of the
students submitting and evaluating homework solutions, and in that
case, vancouver performed slightly worse than simple average.

The last question we studied concerned the incentives necessary
to obtain quality evaluations from the students. Our approach was
simple: we made the grade each student received depend on both
the quality of the solution they submitted, and on the quality of
their review and grading work. This worked well in practice, and
we will describe the methods we used for assigning grading credit.

The remainder of the paper presents in detail the techniques and
algorithms used, and the experimental results obtained.

2. PREVIOUS WORK
The work most closely related in goals to ours is the proposal

to crowdsource the review of proposals for use of telescope time
by [22], as well as the recent NSF pilot project for reviewing fund-
ing proposals [12]. As in those approaches, we also distribute the
task of reviewing the submissions to the same set of people who
submitted the items to be reviewed. Both for proposals submitted
to a specific panel, and for solutions submitted to the same home-
work assignment, the submissions are on sufficiently related topics
that the problem of matching submission topic with reviewer ex-
pertise can be disregarded. For proposals, of course, care must be
taken to avoid conflicts of interest; our situation for homeworks is
relatively simpler. Where the problems differ is that proposal re-
viewing is essentially a top-k problem: the best k proposals must
be selected for funding. Homework grading, on the other hand, is
an evaluation problem: each item needs to be graded on a scale.
In top-k problems, the most important consideration is precision
at the top; mis-ranking items that are far from the top-k carries
no real consequence. In our evaluation problem, each evaluation
carries approximately the same importance, and we do not need to
precisely rank students whose submissions have approximately the
same quality. While there are techniques that can be applied to both
problems, this difference in goals justifies the reliance of [22, 12]
on comparisons, and ours on grades. Comparisons can allow the
precise determination of the top-k items in a ranking [5]; we chose
instead to develop reputation-based algorithms for merging grades.

The works of [22] and [12] discuss incentive mechanisms for
reviewers, consisting in awarding a better placement in the final
ranking to proposals whose authors did a better job of reviewing.
We follow the same approach, but we have the additional constraint
that students must find the reviewing work appropriately rewarded
with respect to the time it takes. Students are most often under time
pressure, and they often consider the question of whether one hour
is better spent reviewing for one class, or working on the home-
work assignment of another. A reward such as the one of [12],
where a couple of places in the ranking are awarded based on re-
viewing work, would not have sufficed, especially in the context of
an evaluation rather than top-k setting. Rather, we let instructors
chose a reward magnitude that is commensurate with the time re-
quired by reviewing. Furthermore, unlike [22, 12], we face the ad-
ditional constraint that students must regard the reward as fair and
non-punitive; as we will see in Section 7, this affected our choice
of reward metrics.

The effect of review incentive on the quality of the ranking is
examined in depth in [23]. The main problem, also raised in [22],
is that the incentive mechanism makes the grading a “Keynesian
beauty contest", where reviewers are rewarded for thinking like
other reviewers; in turn, this may encourage a “race to mediocrity”,

in which non-controversial, blander propsals may fare better than
more audacious and original ones. We agree with the authors of
[23] that this may be a true problem for proposal review. How-
ever, we believe that in the context of homework assignments, the
problem may be minor or non-existent. Our incentive function,
described in Section 7, gives a farily generous reward that would
not overly decrease if a students mis-ranks one of the assignments;
this gives more leeway to students presented with a homework sub-
mission that does not follow the beaten path. We also believe that
the less competitive evaluation setting, as compared to a top-k set-
ting, may lessen the problem. Finally, in our somewhat limited
real-world experience, students generally were more ready to re-
ward originality than teaching assistants. The main goal of a teach-
ing assistant is often to avoid controversy, in order to avoid con-
frontations with students. Thus, teaching assistants generally felt a
stronger obligation to follow a rigid grading scheme, for the sake
of consistency, and subtract a fixed number of points for each type
of error encountered. Students felt less constrained by the need
for full consistency, as the authors of the submissions they graded
could not easily identify or compare the grades they received from
the same grader.

The reputation-based crowdsourcing algorithm we use to aggre-
gate grades is inspired by the algorithm of [17] for the aggregation
of boolean input. Unlike that work, however, we do not have a
proof of convergence for our crowdsourcing algorithm, nor a full
theoretical characterization of how the precision depends asymp-
totically on the number of reviews. The algorithm is also inspired,
and related, to the technique of expectation maximization [9, 6, 27,
16, 29, 26, 28]. The approach is also related to belief propaga-
tion methods [25, 30]. A related, but coarser, method was used by
one of the authors to aggregate information provided by editors of
Google Maps via the Crowdsensus system [7].

Rank aggregation methods have a very long history. The prob-
lem originally arose in the context of elections. In a classical con-
tribution [8], de Borda proposed that each voter assigns each of n
candidates a score 1, 2, . . . , n, according to the preference; the can-
didates were then ranked according to the total score they received
from all voters. Again in the context of elections, Arrow proved
a famous theorem, stating that any rank aggregation that satisfies
transitivity, unanimity, and independence of irrelevant alternatives
is a dictatorship, where there is a single fixed voter (the dictator)
who determines the outcome [2, 13]. An overview of rank aggre-
gation methods used in democracies around the world can be found
in [20].

Kemeny-optimal rankings minimize the sum of Kendall-Tau dis-
tances between the ranks proposed by individual voters, and the ag-
gregate rank. The problem of computing Kemeny-optimal rankings
is known to be NP-hard [3, 10]. Cynthia Dwork, Ravi Kumar et al.
[10] study approximation methods that can be applied to the prob-
lem of ranking search results by combining the output of several
rankers. Nir Ailon et al. [1] developed an algorithm to find ap-
proximate solution subject to additional constraints. The problem
of finding Kemeny optimal solution is equivalent to the minimum
feedback arc set problem, and Kenyon-Mathieu and Schudy [19]
obtained polynomial time algorithm for computing a solution with
loss at most (1 + ε).

On-line algorithms for rank aggregation have been long stud-
ied, especially in their application to ranking in sports such as
chess and tennis. In these algorithms, a global ranking is gradu-
ally refined and updated according to a stream of incoming com-
parisons. In sports, these comparisons consist in the outcomes of
matches between players; in other settings, the comparisons may
be obtained by asking users or visitors to sites to select a winner

2

among a set of alternatives. In the original paper by Bradley and
Terry, the player strenghts are obtained from match outcomes via
a maximum-likelyhood approach [4, 21]; Elo replaced this with
a dynamic update process which could account also for the time-
varying aspect of player strenghts [11]. Glickman then refined the
models and the algorithms by first adapting a Bayesian update ap-
proach [14], and by then obtaining efficient algorithms via approx-
imation and parameter estimation [15].

3. CROWDGRADER
CrowdGrader lets students submit and collaboratively grade so-

lutions to homework assignments. The lifecycle of an assignment
in CrowdGrader consists of three phases: a submission phase, a
review phase, and a grading phase.

The submission phase is standard.
In the review phase, each student must review a given number

of submissions. The more submissions each student reviews, the
more accurate the crowd-sourced grade will be, but the larger the
workload on the students. In our experiments, asking that each
submission was reviewed by 5 or more students yielded acceptable
accuracy.

Once the review period is over, CrowdGrader computes a con-
sensus grade for each submission, aggregating the grades or com-
parisons provided by the students via the algorithms we will present
in Section 5. Crowdgrader then assigns a “crowd-grade” to each
student, by combining the consensus grade of the submission with
a review grade which quantifies the review effort and accuracy of
each student. In our experiments, computing the crowd-grade by
giving 75% weight to the submission grade, and 25% to the review
grade, provided sufficient motivation for the students to put ade-
quate effort in reviewing. The instructors can either use the crowd-
grade as the grade for the student in the assignment, or they can
fine-tune the final grades, for instance to correct overall biases.

We applied CrowdGrader to the grading of coding assignments,
namely, Android programming assignments (CMPS 121, taught
by one of the authors at UCSC); C++ programming assignments
(CMPS 109, also taught at UCSC); and Java assignments (taught
at University of Naples). While CrowdGrader can support in prin-
ciple many types of assignments, we focused on programming as-
signments for three reasons.

Programming assignments are especially burdensome to grade:
unpacking, compiling, and testing each submission is a time-
consuming process. CrowdGrader enabled us to give coding as-
signments weekly, spreading what would have been a very onerous
grading task on the students participating in the class.

Second, we thought that students would be able to test and eval-
uate the submitted code with reasonable accuracy.

Third, we believed that students would directly benefit from
reading the code submitted by other students. Strong students
would be presented with alternative ways of solving the problems,
and weaker students would have an opportunity to study several
working solutions. Indeed, students reported a positive experience
from the tool, citing their ability to learn from others, and at the
usefulness of the feedback they received, as the main benefits.

The code for CrowdGrader as used for this paper is avail-
able from https://github.com/lucadealfaro/
crowdranker, and CrowdGrader itself is available at
http://www.crowdgrader.org/.

4. DESIGN OF THE REVIEW PHASE
The review phase is of primary importance for the accuracy of

the generated ranking, and we experimented with several designs.

4.1 Review assignment
We opted for an anonymous review process, in which submis-

sions to review were assigned automatically to students. Since stu-
dents could not choose which submissions to review, nor in general
did they know the identity of the submissions’ authors, they had
limited ability to collude and cause their friends to receive higher
grades.

In usual computer-science conferences, papers are assigned to
program-committee members in a single batch; each member then
has a period of time to read the papers and enter all reviews. We
decided to follow a different approach, in which submissions were
assigned to students for review one at a time: students were as-
signed a new review task only upon completion of the previous
one. Our chief concern in making this decision was to ensure that
students would not get the submissions, and their reviews, mixed
up. Unlike conference papers, the submitted homework solutions
are all on the same topic, and they can be fairly similar to each
other; furthermore, to preserve anonymity, submissions under re-
view were denoted by un-memorable names such as “Homework 2
Assignment 3”. By having students work on one review at a time,
we hoped to cut down on the possibility of mix-ups. Indeed, we
received no valid reports of mis-directed reviews.

Delaying the review assignment until the last moment offered
two additional benefits. First, we were able to ensure that all sub-
missions received roughly the same number of reviews, even if
some students failed to do any reviewing work. For each submis-
sion, we considered the number of likely reviews, consisting of the
completed reviews, along with the review tasks that had been as-
signed only a short time before. When assigning reviews, we chose
submissions having least number of likely reviews. Second, the
delayed assignment let us gather information about the quality of
submissions, as the review process proceeded, enabling us to opti-
mize the review assignment by routing submissions to students who
were in the best position to provide feedback on them. We have ex-
perimented with various techniques for routing submissions, but
we do not yet have sufficient experimental evidence to report on
the performance of the algorithms.

4.2 Comparisons vs. grades
For the first homework assignment conducted using Crowd-

Grader, we decided to ask students to rank homework submissions,
rather than grade them. We had more faith in the students’ abil-
ity to compare submissions, than in their ability to assign grades
with sufficient consistency, so that grades assigned by different stu-
dents would be comparable. When reviewing a submission, stu-
dents were presented with a screen displaying the submissions they
had already ranked, in the quality order they had previously en-
tered; at the bottom, and in a highlighted color, was the new sub-
mission to review. Students were instructed to write some feedback
for the submission’s author, and then to drag and drop the new sub-
mission into the appropriate place in the ranking.1

Unfortunately, after writing the feedback paragraph, many stu-
dents skipped the ranking step, leaving the new submission where
they found it — at the bottom of the ranking. To confirm this,
we measured the fraction of times fh that students would rank the
newly assigned submission higher than a given submission they had
already reviewed. Had students been accurate, this fraction should
have been close to 50%, since there was no relationship between the
quality of the new submissions, and that of the previously-reviewed
ones. Instead, in the first assignment this fraction was only 36%.

1While inserting the new submission in the ranking, the students
were able to re-order previously ranked submissions.

3

https://github.com/lucadealfaro/crowdranker
https://github.com/lucadealfaro/crowdranker
http://www.crowdgrader.org/

Assignment fh Number of pairs
CMPS 121 hw 1 36% 252
CMPS 121 hw 2 41% 231
CMPS 121 hw 3 53% 271
CMPS 121 hw 4 52% 277
CMPS 121 hw 5 49% 221

Table 1: Fraction fh of pairs consisting of a previously-reviewed
submission, and a submission under review, in which the sub-
mission under review was ranked higher by the student than the
previously-reviewed one.

Even after strongly reminding students to provide a ranking, the
fraction fh rose only to 41% in the second assignment. Table 1 re-
ports the value of fh for the five CMPS 121 Android assignments.

Talking to students, we understood that they were skipping the
ranking step because of a combination of forgetfulness, and unwill-
ingness. Several students mentioned that they felt unconfortable
with providing a ranking of their peers. Furthermore, they thought
that ranking was a blunt instrument. They complained about having
to arbitrarily rank submissions that they felt were roughly equiva-
lent, and they worried that ranking did not differentiate between the
situations of submissions of roughly equivalent quality, and sub-
missions of widely different quality. While ranking can indeed be
precise, we are concerned not only with precision, but also with
how the tool is received by the students.

The problem in our UI, of course, was that we could not dis-
tinguish between a skipped ranking, and a valid ranking. Starting
from the third homework assignment, we modified the UI so that
students needed to both rank the submissions, and assign a grade to
each one: the ranking had to reflect the grades. As students could
not leave grades blank, this effectively forced students to provide
a valid ranking. Table 1 shows that from assignment 3 onwards
the fraction fh was very close to 50%. Adding grades led to a
more accurate ranking of the submissions — regardless of whether
the grades themselves were used! The student satisfaction with
CrowdGrader also markedly increased, once grades were seen as
the primary method of providing input to the tool.

Once grades were available, we decided to use the additional
information they convey, and we focused on the development of
crowdsourcing algorithms for the aggregation of grades. In the
current UI of CrowdGrader, students still need to both rank submis-
sions, and assign them a grade. Obviously, once we have grades,
the ranking step is un-necessary. However, we believe that ask-
ing students to also rank the submissions forces them to consider
the relationship between submissions with similar grades, leading
them to fine-tune the grades to more accurately reflect their quality
assessment. We intend to confirm this belief in future work, com-
paring the accuracy of the grades with, and without, the ranking
step.

4.3 Rejecting evaluations
We discovered early on that it was important to allow students to

leave some submissions ungraded, and yet consider their review-
ing duty for the submission as completed, as far as the computa-
tion of the students’ own review grades were concerned. In our
programming assignments, there were many cases in which well-
intentioned students were unable to review submissions. In the
Android class, their installation of Eclipse and Android SDK oc-
casionally misbehaved in a way that left students unable to load
and review the code submitted by other students. In the C++ class,

glitches or differences in the build environment occasionally pre-
vented students from compiling and executing the submissions un-
der review. Initially, students needed to enter a grade to receive
credit for their review effort, and students entered very low grades
for the submissions they could not evaluate. In our informal anal-
ysis of the accuracy of the tool, this was the largest source of dis-
crepancy in the grades assigned by different students to the same
submission. The solution was to let students flag a review task as
“declined", omitting the grade, and providing instead an explana-
tion of why they were declining it. In our experiments, no more
than 1% of submissions required instructor evaluation, since all
students declined their review; these submissions typically were
markedly incomplete and non-functional.

5. THE VANCOUVER CROWDSOURCING
ALGORITHM

Once students assign grades to the submissions they review, we
need to aggregate the student-provided grades into a consensus
grade for each submission. The simplest algorithm for comput-
ing consensus grades consists in averaging the grades each submis-
sion has received; we refer to this algorithm as avg. We devel-
oped an alternative algorithm, the vancouver algorithm.2 The
vancouver algorithm measures each student’s grading accuracy,
by comparing the grades assigned by the student with the grades
compared to the same submissions by other students, and gives
more weight to the input of students with higher measured accu-
racy. The algorithm thus implements a reputation system for stu-
dents, where higher accuracy leads to higher reputation, and to
higher influence on the consensus grades.

On synthetic data, vancouver is far more accurate than avg.
On our experimental data, vancouver performs better than avg,
but as we will report in Section 6, the difference is not quite as large,
perhaps due to the fact that our assumptions about user behavior do
not fully correspond to how students behave in practice.

5.1 Variance minimization principle
The vancouver algorithm is based on the following fact.

PROPOSITION 1. (minimum variance estimator) Suppose
we have available uncorrelated estimates X̂1, . . . , X̂n of a quan-
tify x of interest, where each X̂i is a random variable with average
x and variance vi, for 1 ≤ i ≤ n. We can obtain an estimate of x
that has minimum variance by averaging X̂1, . . . , X̂n while giving
each X̂i a weight proportional to 1/vi, for 1 ≤ i ≤ n. That is, the
minimum variance estimator X̂ of x can be obtained as:

X̂ =

∑n
i=1 X̂i/vi∑n
i=1 1/vi

.

The variance of this estimator is

var(X̂) =

(
n∑

i=1

1

vi

)−1

.

PROOF. Given two uncorrelated estimates X̂1, X̂2, with vari-
ances v1, v2, consider their linear combination Y = α1X̂1+α2X̂2,
with α1 + α2 = 1. By the Bienaymé formula, the variance of Y is
given by α2

1v1+(1−α1)2v2.. If we take the derivative with respect
to α1, and set it to 0, we obtain α1v1 = α2v2, or α1 ∝ 1/v1 and
α2 ∝ 1/v2. The general case for n estimates follows similarly.

2The algorithm owes its name to the fact that it was conceived
while strolling the pleasant streets of this Canadian city.

4

This observation immediately suggests how to obtain reputation-
based crowdsourcing algorithms for grades: if we could somehow
measure the variance vi of each student i, we could weigh the input
provided by student i in proportion to 1/vi.

5.2 Algorithm structure
We developed an algorithm that proceeds in iterative fashion,

using consensus grades to estimate the grading variance of each
user, and using the information on user variance to compute more
precise consensus grades. The structure of the algorithm is inspired
by the algorithm of [17] for computing consensus boolean values.
To state the algorithm, we denote by U the set of students, and by S
the set of items to be graded (the submissions). We let G = (T,E)
be the graph encoding the review relation, where T = S ∪ U and
S ∩ U = ∅, and where (i, j) ∈ E iff j reviewed i; for (i, j) ∈ E,
we let gij be the grade assigned by j to i. We denote by ∂t the
1-neighborhood of a node t ∈ T .

The algorithm proceeds by updating estimtes vj of the variance
of user j ∈ U , and estimates ci of the consensus grade of item
i ∈ S, and estimates vi of the variance with which ci is known.
To produce these estimates, the algorithm relies on messages m =
(l, x, v) consisting of a source l ∈ S ∪ U , of a value x, and of a
variance v. We denote by Mi,Mj the lists of messages associated
with item i ∈ T or user j ∈ U . Given a set M of messages, we
indicate by

E(M) =

∑
(l,x,v)∈M x/v∑
(l,x,v)∈M 1/v

var(M) =

 ∑
(l,x,v)∈M

1

v

−1

the best estimator we can obtain from M , and its variance.
The details are given in Algorithm 1. Lines 2–4 initialize the

messages to items using the grade assigned by the users, and a con-
stant variance (whose precise value is unimportant). If we had a-
priori information on the variance of some users, it could be used
in this initialization step. Lines 7–14 propagate, from items to the
users who graded them, the best estimate available on the item
grades and variances. In line 12, when we compute the estimate
that is sent to each user, we do not use information coming from
that same user. Lines 16–23 propagate, from users to the items
they graded, the (immutable) grade the user assigned to the item,
and a newly-recomputed estimate of the user’s grading variance.
The estimate of the user variance is computed by considering the
differences between the item grades assigned by the user, and the
estimates received from the items. Again, when computing the user
variance that will be sent to an item, we do not consider the contri-
bution to the variance due to this same item. Finally, in lines 26–28
we aggregate the information from users into our final estimates
of item grades. We note that we gave above the most concise pre-
sentation of the algorithm; a more efficient implementation can be
obtained by optimizing, in the loops at lines 11 and 20, the con-
structions of the sets of messages, considering the overlap between
the sets. This reduces the time for each loop from O(nm2) to
O(nm), where n is the number of users and items, and m is the
number of reviews for each item.

5.3 Performance on synthetic data
We evaluated the performance of vancouver on simulated

data; results on real-world data will be given in Section 6. We con-
sidered 50 users and 50 items, with each user reviewing 6 items;
these numbers are similar to those occurring in our actual assign-

ρ σ
k = 2 k = 3 k = 2 k = 3

avg 0.82 0.63 0.69 1.21
vancouver 0.99 0.93 0.15 0.38

Table 2: Performance of vancouver algorithm on synthetic data.

ments. The true quality qi of each item i we assumed was normal-
distributed with standard deviation 1. We assumed that each user j
had a characteristic variance vj , and we let the grade qij assigned
by j to i be equal to qi + ∆ij , where qi is the true quality of i,
and ∆ij has normal distribution with mean 0 and variance vj . We
assumed that the variances {vj}j∈U of the users were distributed
according to a Gamma distribution with scale 0.4, and shape fac-
tors k = 2, 3. The results are summarized in Table 2. For each
shape factor, and each of the two algorithms avgand vancouver,
we report the statistical correlation ρ between true quality qi and
consensus quality q̂i for all items i, as well as the standard de-
viation σ of the difference qi − q̂i. Each entry in the table is
the average over 100 runs. The vancouver algorithm reduces
the error betewen true and consensus grades by a factor between
3 and 4, compared with simple average avg. The fact that the
gain is larger for shape factor k = 2 compared with k = 3 in-
dicates that the algorithm performs better when there are fewer,
more imprecise users. Even more significant is the increase in the
correlation ρ. The code used for the table can be obtained from
https://github.com/lucadealfaro/vancouver, and
corresponds to the tag “2013-techrep”; the code can be easily
adapted to study the performance of the algorithms under differ-
ent sets of assumptions on user behavior.

6. EXPERIMENTAL RESULTS
We performed two different types of evaluations of the preci-

sion of the vancouver algorithm in assigning consensus grades
to assignments. In one type of evaluation, we compared crowd-
sourced consensus grades with control grades given by the instruc-
tor or other domain experts; in the other type, we measured the
grade difference among submissions that we knew were identical.

6.1 The dataset
The evaluation dataset consisted in five homework assignments

for an Android class (CMPS 121); five homework assignments for
a C++ class (CMPS 109), and one homework assignment for a Java
class (LP2). The number of homework submissions, and reviews,
for these classes are summarized in Table 3. As the table indicates,
students generally performed the reviews that they were asked to
do, indicating that the system of incentives we have in place (dis-
cussed more in depth in Section 7) was effective. Some of the dif-
ference between the number of reviews due, and performed, can be
ascribed to the fact that students could decline to review specific
submissions. The table also shows that, in the initial homework
assignments of each class, some submissions received a low num-
ber of reviews. This occurred as we had not yet fine-tuned our
algorithms for assigning reviews to students. Once we developed
algorithms that try to predict the probability that each outstanding
review will be completed, we were able to ensure a more uniform
review coverage.

6.2 Evaluation using control grades
For some assignments, we had available control grades given by

the instructor, or other domain experts, for a randomly selected sub-

5

https://github.com/lucadealfaro/vancouver

Algorithm 1 The Vancouver Algorithm.
Input: A review graph G = ((S ∪ U), E) such that |∂t| > 1 for all t ∈ S ∪ U , along with {gij}(i,j)∈E , and number of iterations K > 0.
Output: Estimates q̂i for i ∈ S.
1: {Initialization}
2: for all i ∈ S do
3: Mi := {(j, gij , 1) | (i, j) ∈ E}.
4: end for
5: for iteration k = 1, 2, . . . ,K do
6: {Propagation from items}
7: for all j ∈ U do
8: Mj := ∅
9: end for

10: for all i ∈ S do
11: for all j ∈ ∂i do
12: Let M−j = {(j′, x, v) ∈Mi | j′ 6= j} in Mj := Mj ∪ (i,E(M−j), var(M−j))
13: end for
14: end for
15: {Propagation from users}
16: for all i ∈ S do
17: Mi := ∅
18: end for
19: for all j ∈ U do
20: for all i ∈ ∂j do
21: Let M−i = {(i′, (x− gi′j)2, v) | (i′, x, v) ∈Mj , i

′ 6= i} in Mi := Mi ∪ (j, gij ,E(M−j))
22: end for
23: end for
24: end for
25: {Final Aggregation}
26: for all i ∈ S do
27: q̂i := E(Mi)
28: end for

Assignment |S| RevsDue MinRevs AvgRevs
CMPS 121 hw 1 60 6 2 5.4

hw 2 61 6 2 5.3
hw 3 68 6 0 4.8
hw 4 62 6 6 6.1
hw 5 57 6 5 5.3

CMPS 109 hw 1 102 5 0 4.6
hw 2 97 5 3 4.6
hw 3 91 5 4 5.1
hw 4 97 5 3 4.6
hw 5 90 5 4 5.1

Table 3: Number of reviews assigned and performed for the home-
work assignments that are part of the dataset. |S| is the number of
submissions, RevsDue is the number of reviews that each student
ought to have done, MinRevs is the minimum number of reviews
received by a submission, and AvgRevs is the average number of
reviews per submission.

set of submissions that numbered at least 20. For the Android as-
signments, the control grades were assigned by a Teaching Assis-
tant (TA) who was a fairly accomplished Android developer. For
the Java assignment, the control grades were provided by the in-
structor. For the C++ assignments, the authors graded 20 or more
randomly selected submissions for each assignment. We compared
the control grades with the consensus grades computed by avg and
vancouver according to the following metrics:

• ρ: the coefficient of statistical correlation (also known as

Pearson’s correlation) between the control grades {qi} and
the consensus grades {q̂i}.

• KT: the Kendall-Tau distance between the orderings induced
by the control and consensus grades [18]. If ri and ti are the
ranks received by submission i in the computed, and control,
rankings respectively, then KT =

∑
i(ri − ti).

• norm-2: the norm-2 distance (
∑

i(qi− q̂i)
2)1/2 between the

control grades {qi} and the consensus grades {q̂i}. Grades
were awarded on a scale from 0 to 10 in the assignments.3

• s-score: we first normalize the control grades {qi} and the
consensus grades {q̂i}, so that they both have zero mean and
unit variance, obtaining {q′i}, {q̂′i} Then, we compute the
standard deviation s of {q′i − q̂′i}, and we report the s-score
1− s/

√
2.

The results for the various assignments are reported in Ta-
ble 4. We see that the results are unclear: in CMPS 121 and JP2,
vancouver does better; in the two CMPS 109 assignments, it
does worse. This may be a consequence of the fact that the pri-
mary cause of evaluation error in CMPS 109 consisted in failures
encountered by students in compiling the C++ submissions of other
students, triggered by development environment (operating system,
build chain) differences. These failures are not well modeled by the
assumption that each user has an intrinsic review accuracy: the fact
that compilation problems occurred in one review may have little

3The grading scale can be chosen for each assignment, but all as-
signments so far have used a 0 to 10 scale.

6

Assignment D, vancouver D, avg N. pairs
CMPS 109 hw 2 1.97 3.24 6
CMPS 109 hw 3 1.29 1.39 12
CMPS 109 hw 4 0.98 1.07 20
CMPS 109 hw 5 1.38 1.19 20

Table 5: Average square difference between grades re-
ceived by identical assignments, using crowdsourcing algorithms
vancouver and avg.

bearing on the accuracy of other reviews by the same user. The
low correlation between consensus grades and control grades for
CMPS 121 is due to the fact that the control grades have a very
coarse granularity (few values in the grading scale were used). We
also note that this evaluation is inherently approximate, since the
control grade is affected by the same type of imprecision that af-
fects the student-provided grades. While instructor and TAs are
(usually) more knowledgeable than students in the subject matter,
they also make mistakes when grading homeworks, failing to spot
problems, or not giving credit to great aspects of the work that go
undetected.

6.3 Evaluation using pairs of identical sub-
missions

For some of the CMPS 109 C++ homework assignments, stu-
dents were able to work in groups. Since at the time Crowd-
Grader did not support group submissions (the feature has since
been added), the students were asked to each submit a solution.
The student submissions would be graded independently, and the
TA, who had a list of groups and their members, would then average
the grades received by the students in the same group, and assign to
each group member this average. This meant that we had available
several pairs of identical submissions, coming from members of the
same group. This made it possible to judge the quality of a crowd-
sourcing algorithm according to how close were the grades received
by pairs of such identical submissions. In Table 5, we report on the
average D of (q̂i − q̂l)2, computed over all pairs (i, l) of identi-
cal submissions, for the algorithms vancouver and avg. We see
that according to this measure, even for CMPS 109 vancouver
has generally better performance than avg, even though the differ-
ence is not large.

6.4 Discussion
The results presented in this section show that, for our assign-

ments, the vancouver algorithm provides a smaller advantage,
compared to avg, than it would be expected from Table 2. We be-
lieve that the lower performance is due to the fact that the user error
model used in developing algorithm vancouver, in which each
user i has a variance vi, is only an approximation for the real be-
havior of students reviewing submissions. The largest single cause
of review errors were:

• Unclear problem statements, that caused different students
to have different interpretations of what constituted a good
homework solution.

• Variability in the student’s code development environment
that occasionally prevented students from compiling and
evaluating submissions.

The clarity and precision of homework assignments is likely the
major factor in the precision of any tool, or any TA, in evaluat-
ing submitted solutions. We believe that the higher correlation and

quality of the results for the Java assignment are due to the unifor-
mity of the environment enforced for that submission.

We also experimented with a number of variations of algorithm
vancouver, some based on using notions of median or weighed
median for selecting grades. In particular, we experimented with
a method we nicknamed “maverage”, in which we aggregated
student-assigned grades for each item by first discarding the high-
est and lowest grades, then doing a weighted average using the re-
ciprocal of variance as weights. This process was inspired by the
way used to average the grades given by Olympic judges in com-
petitions. We also tried to learn the positive or negative bias of
each student compared to the others, and subtract the bias before
using the student’s grades. None of these variants was clearly su-
perior to vancouver. We believe that larger datasets are needed
for us to be able to formulate and validate algorithms superior to
vancouver.

7. REVIEW INCENTIVE AND FINAL
GRADE ASSIGNMENT

7.1 Review Incentive
To provide an incentive for students to complete a certain number

of reviews per assignment, we made the review effort a component
of the overall grade that was assigned to students. For each home-
work assignment, the instructor could choose the number N of re-
views each student had to perform, and the fraction 0 < pr < 1 of
the grade that was due to reviews. Each student j then received for
the assignment a crowd-grade equal to

(1− pr)q̂j + pr
min(mj , N)

N
r̂j ,

wheremj is the number of reviews actually performed by student j,
and where r̂j is the estimated review quality of j, which we discuss
below. The choice of N and pr was dictated chiefly by practical
considerations. In our coding assignments, evaluating a homework
submission entailed a lengthy process of unpacking a submission in
its own directory, loading it with a tool, reading the various source
code files, compiling it, and testing it sometimes with the help of
test data. The whole process would take between 5 and 10 minutes
for each homework; we chose N = 5 or N = 6, as the results
appeared to be sufficiently accurate. We also wanted to ensure that
each student was able to learn by reading good-quality submissions
by others, and a value ofN = 5 was sufficient in practice to ensure
this (students could always do additional reviews if they wished to
see even more solutions). For pr , a common choice was 0.25, so
that 25% of the crowd-grade was due to the reviews. This value
roughly reflected the proportion between the time required to re-
view the submissions, and the time required to complete and submit
one’s own submission.

The decision of how to measure r̂j for a student j turned out to be
more difficult. Initially, we defined it as follows. Let {gij}i∈S,j∈U
be the set of all grades that were assigned, and let {q̂i}i∈U be the
set of all consensus grades, as before. Then,

ṽ = E({(gij − q̂l)2}j∈U ;i,l∈S)

is the average square error with respect to the consensus grades of a
hypothetical “fully random” user, who assigns to each submission
a grade picked at random from the complete set of assigned grades.
The actual average square error ṽj of a student j ∈ U with respect
to the consensus grades is instead:

ṽj = E({(gij − q̂i)}i∈S) .

7

Homework Algorithm ρ KT norm-2 s-score
CMPS 109 hw 2 avg 0.75 0.37 1.40 0.50

vancouver 0.69 0.39 1.59 0.45
CMPS 109 hw 3 avg 0.84 0.39 1.49 0.60

vancouver 0.80 0.42 1.75 0.55
CMPS 121 hw 3 avg 0.39 0.53 1.63 0.22

vancouver 0.49 0.53 1.33 0.29
LP2 avg 0.85 0.20 1.75 0.61

vancouver 0.87 0.18 1.79 0.64

Table 4: Performance of avg and vancouver, with respect to control grades.

Therefore, we experimented with assigning to each student a re-
view grade that measured how much better the student was than
such a fully random grader, using:

r̂j = 1−
√

min(ṽj , ṽ)

ṽ
.

This choice appealed to us from a theoretical point of view, espe-
cially as it is scale-invariant, so that it would not matter whether
students were using the full grading scale (in our case, [0, 10]) or
a subset of it (for instance, assigning grades only in the interval
[4, 8]). However, the choice did not work to our satisfaction in
practice. In each assignment, some perfectly honest and motivated
students received very low review grades, including 0: strange as it
might seem, some students really did worse than a random grader,
in spite of their best intentions. Those students were not pleased
to see the time they put into reviewing homework submissions go
completely unrewarded. The problem was especially acute in the
initial homework assignments of each class, where a large fraction
of homework submissions received the maximum grade, thereby
lowering ṽ, and making it harder to improve on the random grader.

As student satisfaction is one of our goals, we needed a different
approach. We do not yet have a perfect solution: a metric that is
scale invariant and rewards true accuracy as compared to random
input, and yet, that students find fair and gratifying. The metric
currently used by CrowdGrader is a fairly generous one. We let
vG = G2/3.125 be a refence level for the average square error,
where G is the maximum of the grading scale used (we omit the
justification, as it is fairly ad-hoc), and we use:

r̂j = 1−
√

min ṽj , vG
vG

.

This is not scale-invariant, so that students would get a higher re-
view grade simply by agreeing to use only a small portion of the
overall grade range available to them. We are still seeking a scale-
invariant solution that students find equitable.

7.2 Final grade assignment
CrowdGrader produces crowd-grades that depend both on the

submission and on the review grades, as described above. The in-
structor can then either accept these grades as final, or provide final
grades for a few of the students; the final grades for the remainder
of the students are then derived by interpolation, according to their
crowd-grades. This gives the ability to the instructor to re-shape
the grade curve of the class. In the Android class (CMPS 121), the
instructor relied on this function to manually choose the dividing
lines between A/B, B/C, and C/F grades. The instructor examined
several assignments chosen from the class rank order, read the re-
views, and assign grades (5.3 for A+, 4.5 for the A/B dividing line,
etc.) to selected assignments; CrowdGrader then computed the re-

maining final grades by linear interpolation, in proportion to the
crowd-grades. In CMPS 109, the instructors often used the crowd-
grades as final grades.

8. CONCLUSIONS
We conclude with some informal impressions on the perfor-

mance of CrowdGrader in a class setting.
We investigated many cases where the control and consensus

grades differed by some non-trivial amount. In some cases, this
was due to superficial reviews by students using CrowdGrader.
However, in other cases the problem was with the control grade,
as the instructor or TA had missed problems with the submission
that were instead detected by some students reviewing it. Over-
all, for coding assignments, our impression was that the consensus
grades computed by CrowdGrader were at least of the same quality
as those provided by a TA. A TA is more consistent in evaluating
submissions, paying attention to the same aspects of each submis-
sion. On the other hand, the greater number of reviews used in
CrowdGrader led to a more comprehensive assessment, in which
flaws or positive aspects were more likely to be pointed out. From
the perspective of the individual student, we felt the two grading
options were of similar quality: with TAs, the risk is that they do
not pay attention in their grading to the aspects where most effort
is put (or where the flaws are); with crowdsourced grades, the risk
is in the inherent variability of the process.

Where the crowdsourced evaluations proved clearly superior was
in the feedback provided to the students. When instructors or TAs
are faced with grading a large number of assignments, the feed-
back they provide on each individual assignment is usually limited.
With CrowdGrader, students had access to multiple reviews of their
homework submissions.

In coding assignments, there is usually more than one way to
solve each problem, and students commented on the benefit of be-
ing able to see, and learn from, other students’ solutions. Students
who could not complete the assignment particularly benefited from
being able to examine several different working solutions to the
homework problems.

In informal comments we received, the two aspects of Crowd-
Grader students appreciated the most was the quality of the feed-
back received, and the ability to learn from other students’ solu-
tions. The one aspect they enjoyed the least, of course, was the
time it took for them to do the reviews.

While CrowdGrader may not be suitable for all types of home-
work assignments, the tool performed to our satisfaction for cod-
ing assignments, and we believe that the tool is well-suited to any
homework assignment where students can, by comparing solutions
among them and with their own, come to an assessment of their
peers’ work.

8

Acknowledgements
We thank Ira Pohl at UC Santa Cruz for being an early adopter
of CrowdGrader, and for providing insight and encouragement for
this work. We thank Marco Faella at the University of Naples for
agreeing to use Crowdgrader in his class when the tool was still in
an early, very much experimental, version.

9. REFERENCES
[1] N. Ailon, M. Charikar, and A. Newman. Aggregating

inconsistent information: ranking and clustering. In
Proceedings of the thirty-seventh annual ACM symposium on
Theory of computing, STOC ’05, pages 684–693, New York,
NY, USA, 2005. ACM.

[2] K. Arrow. A difficulty in the concept of social welfare.
Journal of Political Economy, 58:328, 1950.

[3] J. Bartholdi, C. Tovey, and M. Trick. Voting schemes for
which it can be difficult to tell who won the election. Social
Choice and Welfare, 6(2):157–165, 1989.

[4] R. Bradley and M. Terry. Rank analysis of incomplete block
designs: I. the method of paired comparisons. Biometrika,
39(3/4):pp. 324–345, 1952.

[5] A. Das Sarma, A. Das Sarma, S. Gollapudi, and
R. Panigrahy. Ranking mechanisms in twitter-like forums. In
Proceedings of the third ACM international conference on
Web search and data mining, pages 21–30. ACM, 2010.

[6] A. Dawid and A. Skene. Maximum likelihood estimation of
observer error-rates using the em algorithm. Applied
Statistics, pages 20–28, 1979.

[7] L. De Alfaro, A. Kulshreshtha, I. Pye, and B. Adler.
Reputation systems for open collaboration. Communications
of the ACM, 54(8):81–87, 2011.

[8] J.-C. de Borda. Memoire sur les Elections au Scrutin. 1781.
[9] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood

from incomplete data via the em algorithm. Journal of the
Royal Statistical Society. Series B (Methodological), pages
1–38, 1977.

[10] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank
aggregation methods for the web. In Proceedings of the 10th
international conference on World Wide Web, pages
613–622. ACM, 2001.

[11] A. Elo. The Rating of Chess Players Past and Present. New
York, Arco, 1978.

[12] N. S. Foundation. Dear colleague letter: Information to
principal investigators (pis) planning to submit proposals to
the sensors and sensing systems (sss) program October 1 ,
2013 deadline, 2013.

[13] J. Geanakoplos. Three brief proofs of arrowÕs impossibility
theorem. Economic Theory, 26(1):211–215, 2005.

[14] M. Glickman. Paired Comparison Models with Time-varying
Parameters. Harvard University, 1993.

[15] M. E. Glickman. Parameter estimation in large dynamic
paired comparison experiments. Journal of the Royal
Statistical Society: Series C (Applied Statistics),
48(3):377–394, 1999.

[16] R. Jin and Z. Ghahramani. Learning with multiple labels. In
Advances in neural information processing systems, pages
897–904, 2002.

[17] D. Karger, S. Oh, and D. Shah. Iterative learning for reliable
crowdsourcing systems. In Proc. of the 25th Annual
Conference on Neural Information Processing Systems
(NIPS), 2011.

[18] M. Kendall and J. D. Gibbons. Rank Correlation Methods.
Edward Arnold, 1990.

[19] C. Kenyon-Mathieu and W. Schudy. How to rank with few
errors. In Proceedings of the thirty-ninth annual ACM
symposium on Theory of computing, STOC ’07, pages
95–103, New York, NY, USA, 2007. ACM.

[20] A. Lijphart. Electoral Systems and Party Systems: A Study of
Twenty-Seven Democracies, 1945, 1990. Oxford University
Press, 1994.

[21] R. Luce. Individual choice behavior : a theoretical analysis.
Wiley N.Y, 1959.

[22] M. Merrifield and D. Saari. Telescope time without tears: A
distributed approach to peer review. Astronomy &
Geophysics, 50(4):4–16, 2009.

[23] P. Naghizadeh and M. Liu. Incentives, quality, and risk: A
look into the nsf proposal review pilot. Arxiv, 1307.6528v1,
2013.

[24] S. Negahban, S. Oh, and D. Shah. Iterative ranking from
pair-wise comparisons. CoRR, abs/1209.1688, 2012.

[25] J. Pearl. Probabilistic reasoning in intelligent systems:
networks of plausible inference. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1988.

[26] V. Raykar, S. Yu, L. Zhao, G. Valadez, C. Florin, L. Bogoni,
and L. Moy. Learning from crowds. J. Mach. Learn. Res.,
11:1297–1322, Aug. 2010.

[27] P. Smyth, U. Fayyad, M. Burl, P. Perona, and P. Baldi.
Inferring ground truth from subjective labelling of venus
images. In G. Tesauro, D. S. Touretzky, and T. K. Leen,
editors, NIPS, pages 1085–1092. MIT Press, 1994.

[28] P. Welinder, S. Branson, S. Belongie, and P. Perona. The
multidimensional wisdom of crowds. In J. Lafferty, C. K. I.
Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta,
editors, Advances in Neural Information Processing Systems
23, pages 2424–2432. 2010.

[29] J. Whitehill, T.-F. Wu, J. Bergsma, J. Movellan, and
P. Ruvolo. Whose vote should count more: Optimal
integration of labels from labelers of unknown expertise. In
Advances in neural information processing systems, pages
2035–2043, 2009.

[30] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Exploring
artificial intelligence in the new millennium. chapter
Understanding belief propagation and its generalizations,
pages 239–269. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2003.

9

	Introduction
	Previous work
	CrowdGrader
	Design of the Review Phase
	Review assignment
	Comparisons vs. grades
	Rejecting evaluations

	The Vancouver Crowdsourcing Algorithm
	Variance minimization principle
	Algorithm structure
	Performance on synthetic data

	Experimental Results
	The dataset
	Evaluation using control grades
	Evaluation using pairs of identical submissions
	Discussion

	Review Incentive and Final Grade Assignment
	Review Incentive
	Final grade assignment

	Conclusions
	References

