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ABSTRACT

Solid-state drives are becoming increasingly popular in en-
terprise storage systems, playing the role of large caches and
permanent storage. Although SSDs provide faster random
access than hard-drives, their performance under read/write
workloads is highly variable to the point that it becomes
worse than that of hard-drives (e.g., taking 100ms for a sin-
gle read). Many systems with read /write workloads have low
latency requirements, or require predictable performance and
guarantees. In such cases SSD performance variability be-
comes a problem for both predictability and raw perfor-
mance.

First, we show how to provide tight throughput guarantees
to multiple clients sharing the same solid-state drive storage.
Second, we introduce and evaluate Ianus, a design based on
redundancy, which achieves high performance, low latency
and stable read throughput, as well as fault-tolerance, mak-
ing it an alternative RAID-like design for solid-state drives.
Finally, by combining the two solutions we provide QoS
while maintaining high performance.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management; D.4.8
[Operating Systems]: Performance

Keywords
Storage virtualization, solid-state drives, QoS, resource al-
location, performance

1. INTRODUCTION

Over the past few years, solid-state drives have become an
important component of many enterprise storage systems.
SSDs are currently used as large caches and permanent stor-
age, often on top of hard-drives, which operate as long-
term storage. The main advantage of SSDs over hard-drives
is their significantly faster random access. One would ex-
pect SSDs to be the answer to performance predictability,

throughput and latency guarantees as well as performance
isolation between clients sharing the same drive or stor-
age system in a cloud environment. Unfortunately, their
performance is heavily workload dependent. Depending on
the drive and the workload there can be frequent and pro-
hibitively high latencies in the order of 100ms for both writes
and reads (due to writes) making SSDs multiple times slower
than hard-drives in such cases. This results in unpredictable
performance and creates challenges in dedicated and espe-
cially in consolidated environments, where different types of
workloads are mixed and clients require high throughput and
low latency consistently, often in the form of reservations.

Although there is a continuing spread of solid-state drives
in storage systems, research on providing QoS for SSDs is
limited. In particular, most related work focuses on perfor-
mance characteristics [4, 5, 3], while other work, including [1,
2, 6] is related to topics on the design of drives, such as wear-
leveling, parallelism and the Flash Translation Layer (FTL).
With regards to scheduling, [12] provides fair-sharing while
trying to improve the drive efficiency. However, it does not
attempt to provide QoS and is still susceptible to high la-
tencies due to the nature of SSDs. Given the fast spread of
SSDs, we believe that providing QoS and improving their
performance stability is important for many systems.

Ideally we would like a solution providing high performance
guarantees and low latency under any workload and drive.
We consider guarantees and performance as orthogonal goals
each of which requires an independent solution. In many
cases, such as in shared storage or when applications have
jobs with deadlines, it is important for a client to know what
performance to expect in the worst case. Whether that per-
formance is considered high or not is an independent mat-
ter. Therefore, in terms of providing guarantees we may
ignore whether the worst-case performance of the typical
SSD might be less than the hoped one and instead focus on
achieving the promised performance, which largely depends
on the device itself. In this paper, we provide tight guar-
antees through time-based scheduling, without the need of
heuristic improvements.

The other dimension of the problem is providing high per-
formance and low latency consistently. Towards that goal
we need to find ways to improve the solid-state drive per-
formance and its stability without necessarily modifying the
drive itself. Since the behavior of different SSD models may
differ, it is hard to ensure that a method or heuristic enhanc-
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Figure 1: Performing writes over only 100MB of a
mostly empty SSD leads to stable write performance
and the effect of writes on reads is relatively small.

ing the performance of a specific drive model will perform
equally well (if not worse) on a different one. Instead, we
note that in general, mixing reads with writes in commod-
ity drives can lead to significant latencies in the order of
100ms due to the writes. That type of interference has been
noted in previous work [4, 5, 10, 12] and is well-known in
the industry. Such blocking events are responsible to a large
degree for the low or variable performance a user eventually
perceives when using SSDs. Given the above, we propose
the physical separation of reads from writes through redun-
dancy in order to consistently achieve low latency and high
read throughput under read /write workloads. By combining
the above with our method for performance guarantees, we
can guarantee high read performance and low latency under
mixed workloads.

2. OVERVIEW

The contribution of this paper is (1) a method for providing
high performance guarantees at different time granularities
for shared solid-state drives, as well as (2) a design based
on redundancy that stabilizes read throughput and latency
under read/write workloads. Each component can be used
independently or under a single solution. We implemented
a prototype of the above and present our results in three
parts. First, in Section 3 we study the performance of two
SSD models with different behavior. We observe that al-
though SSD performance depends on past workloads and
that it can become significantly unstable, as we are lowering
the measurement granularity the worst-case throughput in-
creases and stabilizes. Second, based on that observation, in
Section 4 we present a method based on profiling and time-
based scheduling for providing throughput guarantees at dif-
ferent granularities to clients sharing the same drive. In that
section, we are not attempting to improve the performance
variance of the drive through heuristics, instead we provide
tight guarantees based on its own capabilities. Third, hav-
ing observed that SSD performance may vary significantly
at a high granularity and therefore worst-case guarantees
become relatively low, in Section 5 we introduce a new de-

I0OPS (256KB)

1400 % x Random Write ||

12001

IOOOW

800

I10PS

X

600

W e Ssonon e
200l RIS 3y 5;«»«%« w%e& m«x X

” X X ><><><
><><x>< X
x %X S

0K %
200} ol o XX 2 % X x x
x XKy X ééXXXf% x5 XX
% 100 200 300 400 500

Time (seconds)

Figure 2: When the drive is already filled up, the
garbage collector cannot keep up leading to blocking
events and unpredictable performance.

sign based on redundancy. This design uses two drives to
physically separate reads from writes allowing us to guar-
antee high read performance and low latency consistently,
while providing fault-tolerance.

2.1 System Notes

For our experiments we perform direct I/O to bypass the
OS cache and use Kernel AIO to asynchronously dispatch
requests to the raw device. To make our results easier to
interpret, we do not use a filesystem. Limited experiments
on top of ext3 and ext4d suggest our method would work
in those cases. Moreover, our experiments were performed
with both our queue and NCQ (Native Command Queueing)
depth set to 31. Other queue depths had similar effects to
what is presented in [5], that is throughput increased with
the queue size. Our method can take into account different
queue sizes (Section 4). Finally, the SATA connector was of
3.0Gb/s and we used the following models of Intel SSDs:

Model Type | Capacity | Cache | Year
A | Intel X-25E | SLC | 66GB 16MB | 2008
B | Intel 510 MLC | 250GB 128MB | 2011

3. WORST-CASE PERFORMANCE

Solid-state drives can achieve orders-of-magnitude faster ran-
dom access than hard-drives. On the other hand, SSDs are
stateful and their performance depends on past workloads.
This observation and the interference of writes on reads has
been noted in prior work [4, 5, 10, 12], and is widely known
in the industry. In what follows we illustrate that behavior
by two experiments on drive B. In the first experiment, we
have four streams of different type, the drive has over 200GB
of free space and one of the streams performs random writes
over a range of only 100MB. Figure 1 shows the through-
put in IOPS (input/output per second) achieved by each
stream over time. We note that the performance behavior
is relatively stable, which is expected, since there are clean
blocks in the device, which reduces write amplification. In
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Figure 3: Starting with a sequentially written drive
(A), random writes make it hard for the garbage
collector to keep up, leading to low throughput.
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Figure 4: Within a second, ten high latency events
occur, which in total make for half the drive time,
leading to 200 rather than 400 IOPS in Figure 3.

the second experiment, the drive is filled and we perform
writes uniformly at random over the first 200GB. Figure 2
illustrates that under such conditions the performance even-
tually degrades and becomes unstable. We attribute this to
the garbage collector not being able to keep up, which turns
background operations into blocking ones.

Different SSD models can exhibit different throughput vari-
ance for the same workload. Previously, we saw that random
writes on drive B eventually exhibit variable and relatively
low performance. Performing random writes over the first
50GB of drive A, which has a capacity of 65GB, gives a more
stable throughput (Figure 3) than drive B. Still, the average
performance eventually degrades to that of B. Moreover,
the total blocking time corresponds to about 50% of the de-
vice time (Figure 4). The significance of the performance
stability of drive A is that it enables higher guarantees at a
granularity of a second. In what follows we study this obser-
vation in more detail, whereas in Section 4 we use the notion
of granularity to enable higher throughput reservations.
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Figure 5: With the throughput of small writes oscil-
lating from 0 to 40,000 IOPS, meaningful guarantees
may only be provided at a low granularity.

3.1 Performance Granularity

For certain workloads and depending on the drive, to main-
tain a throughput above zero the granularity has to be rela-
tively low, i.e., multiple seconds. A simple example of such
workload on drive A consists of 4KB sequential writes. From
Figure 5, we note that after 20 seconds, when the sequential
writes enter a randomly written area, the throughput oscil-
lates between 0 and 40,000 writes/sec. Therefore, to provide
meaningful guarantees we must lower the granularity. We
believe this variance is indeed due to the SSD itself rather
than a system effect since disabling the drive write cache
leads to stable but lower throughput of 2,500 writes/sec. In
Figure 6, we see that the granularity has to be lowered to
about 5 seconds before the close to worst-case throughput
is similar to the average. Also, we note that the increase
of the worst-case throughput is fast. Similarly, the worst-
case throughput achieved by drive B when executing large
sequential writes increases in the window size (Figure 7).

To further emphasize the differences between SSD models
with respect to throughput stability, we note that running
4KB sequential writes on drive B gives a stable performance
(not shown). This implies that requests on drive B are not
as affected by the access patterns of previous writes, possibly
due to its large cache. On the other hand, as shown before,
drive A provides a more stable performance for large ran-
dom writes than B. The above imply that for mixtures of
small sequential and large random writes, neither drive pro-
vides stable throughput at a granularity of a second. From
the above, we conclude that stable performance at a high
granularity depends on both the workload and the drive.

The above observations will be useful in the next section,
where we present our method for providing performance
guarantees. In particular, we will give clients the option
of specifying the required granularity for their workload and
trade it for higher throughput guarantees. Finally, note that
the SSD write cache contributes to the throughput variance
and although in our experiments we keep it enabled by de-
fault, disabling it does indeed improve stability but often at
the cost of lower throughput, especially for small writes.



I0PS of 5% CDF over window sizes, (4KB)

~—— Sequential Write

50000

40000+

300001

I0PS

20000

10000+

I . . . .
5 10 15 20 25 30
Window size (seconds)

Figure 6: The reservable throughput increases with
the window over which we average. To reach 20,000
writes/sec we need windows of at least four seconds.

4. PERFORMANCE GUARANTEES

In this section, we present a method for providing through-
put guarantees to SSDs. To construct a generic QoS method,
we distinguish between performance guarantees and improve-
ments, e.g., through heuristics. In this section we focus on
guarantees without attempting to improve the performance
or its variance. Instead, we rely on the device capabilities.
Despite that, we consider both goals as important and in
Section 5 we introduce a design consisting of two SSDs that
improves read performance stability under mixed workloads.

4.1 Overview

Storage users want Service Level Agreements (SLAs) in the
form of throughput or latency requirements. Our solution
supports throughput guarantees at different granularities for
shared SSDs with each client receiving the promised perfor-
mance irrespectively of other workloads. What follows is
an overview of the steps we take to achieve that. First, we
profile the drive by running simple workloads. Using the
profiling results we construct throughput distributions al-
lowing us to estimate the cost of each type of request at
any granularity and confidence level. Based on those distri-
butions, we convert the client requirements into utilization,
which is defined as the fraction of device time provided to
a client/workload. Afterwards, each request is assigned a
deadline based on its cost estimate and the utilization as-
signed to its workload. Finally, each request is dispatched
based on its deadline and according to the Earliest Deadline
First algorithm. In the rest of this section, we describe the
above in more detail and present our evaluation results.

4.2 Scheduling for Guarantees

In shared environments, where multiple streams utilize the
same storage system, each stream expects its performance
objectives to be satisfied independently of other workloads.
Hence, any interference between different types of requests
due to request cost inequalities has to be minimized and the
utilization provided to each stream adjusted accordingly. To
achieve that we follow a time-based approach [13] and pro-
vide each stream with a proportion of the drive time based
on its requests and performance needs. By reserving time
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Figure 7: The throughput of the bottom 5% of se-
quential writes can be relatively low, making high
granularity guarantees expensive.

we can guarantee an absolute throughput for each stream
rather than a proportion of the total throughput, which can
vary significantly and lead to low reservations.

In order to reserve a specific percentage of the device time
for each stream, we need to know the cost of the queued
requests. The amount of time it takes for a request to com-
plete, irrespectively of any queueing time varies, and esti-
mating it online is a separate challenge [16]. From our ex-
periments and from previous work [5] we know that in SSDs
the request size and the queue depth are significant factors
in a request’s cost. Moreover, it is known from [4], and ver-
ify it here, that whether a request is a read or write, and
whether it is sequential or random can significantly affect its
cost. We conclude that by ignoring the state of an SSD, it
is possible to estimate the cost of a request to a large degree
based on its size, type and the queue depth. On the other
hand, SSDs are stateful and their behavior is shaped by cur-
rent and previous workloads. Hence, depending on the state
of the drive, e.g., whether it has enough free space, the cost
of a request may differ. Therefore, to provide close to worst-
case guarantees we should consider a worst-case behavior.

To estimate request costs we profile the drive under requests
of different access type, size and queue sizes. Since the
throughput during profiling may fluctuate significantly, in-
stead of taking the average cost, each stream has a confi-
dence level assigned to its reservations, with higher levels
implying a higher request cost. On a similar note, if the
profiling range is small enough (e.g., 1GB,) the write per-
formance may be more consistent as well as higher and the
guarantees granularity can be higher. Having said that, the
write range is not part of our model. Instead, if the storage
user expects to consistently have a lighter workload it is up
to them to adjust the profiling accordingly. If the workload
is not known, then the profiling should cover the worst case
as described in the previous section.

Although scheduling by time allows us to minimize stream
interference and provide tighter guarantees, clients expect
throughput reservations expressed by SLAs. To that end, we
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Figure 8: Due to write-induced blocking events,
read throughput is unpredictable at a 1-second gran-
ularity and the targets are only met on average.

use our profiling results to convert throughput requirements
to the corresponding stream utilization us, which is defined
as the proportion of the device time provided to stream s.
Note that throughput requirements need to have a granu-
larity associated with them and us depends on that value.
In particular, a higher granularity is expected to imply a
lower throughput (Figures 6 and 7) and a higher utilization.
The notion of granularity is useful because there are applica-
tions such as video streaming, which would trade granularity
for higher throughput guarantees, whereas online processes
such as audio streams would accept lower throughput guar-
antees for higher granularity. By converting throughput to
utilization we can also perform admission control, since the
total utilization cannot exceed 100%. On the other hand, for
systems that can be over-utilized, where guarantees are less
important, this model offers stream isolation by providing
each stream with its relative proportion of the device time.

In order to schedule the stream requests, given the expected
cost of a request we assign it a deadline that depends on
the time utilization rate us of the corresponding stream s.
In particular, if the expected cost of a request is e, then its
(relative) deadline is defined as d = e/u. Also, the absolute
deadline of the request is set to Ds = Ts +d, where Ty is the
sum of all relative deadlines of stream s up to that point.
After a request is assigned a deadline, it is inserted to a prior-
ity queue and dispatched according to the Earliest Deadline
First algorithm. To summarize, at a high level our method
consists of the following sequence of operations: drive profil-
ing, throughput requirements to utilization conversion, (i.e.,
resource allocation) and time-based request dispatching.

4.3 Providing Guarantees

In the previous section, we presented worst-case scenarios,
where random writes span most of the logical space and
SSD performance degrades significantly. Here, we apply our
model to provide guarantees to multiple streams sharing the
same drive and illustrate the importance of associating gran-
ularity to throughput guarantees. A natural question is how
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Figure 9: The blocking events do not have a short
period, meaning that some, e.g., 1-second intervals
have no or few such events while others have many.

to decide the granularity at which we can provide certain
guarantees. Since drives often behave differently, we take
advantage of the profiling we already perform. For exam-
ple, in Figure 7, we saw that increasing the granularity, de-
creases the guarantees for large sequential writes (similarly
for random ones). Based on that information we can convert
throughput requirements of certain granularity to the re-
quired utilization u, and decide whether those requirements
can be guaranteed, i.e., if u+ >, u; < 1.

We start with a set of four streams of different type, each
having a throughput requirement. In particular, we set the
target of the two read streams to 250 and 275 IOPS and set
the write targets to 50 IOPS each. Although the write tar-
gets might appear low, according to the profiling results (for
drive B) in order to achieve those targets at a low granular-
ity their streams have to occupy a total of 50% of the drive
time. Instead, at a granularity of a second the utilization re-
quired just for the sequential writes is over 60% (as implied
by Figure 7) for a total of over 170%. This is due to the sig-
nificantly higher worst-case cost of writes compared to that
of reads when performed in isolation (as in profiling). As
expected, from Figure 8 we see that the throughput targets
are not achieved at a 1-second granularity since the total
utilization required exceeds 100%. On the other hand, the
average throughputs still satisfy the targets but there is an
oscillating behavior for all streams. Another way to visual-
ize why a 1-second granularity leads to a high utilization is
by noting the blocking events over a typical 2-second subin-
terval as shown in Figure 9. We observe that the number
of blocking events per second varies, while it remains sim-
ilar over 10-second intervals leading to a lower worst-case
request cost. As expected, increasing the granularity to 10
seconds leads to a write cost drop and a required utilization
of 99% to 100%. As illustrated in Figure 10, the achieved
throughput at a 10-second granularity remains close to the
targets of each stream. Finally, since the total utilization
is between 99% and 100%, we conclude that almost all of
the drive’s time is successfully reserved, while achieving the
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Figure 10: At a granularity of 10-seconds, the
throughput is close enough to the targets while the
reserved utilization is almost 100%.
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throughput guarantees are almost always achieved
while the reserved utilization is almost 100%.

throughput guarantees to the granularity possible by drive
B, without any heuristic optimizations. Moreover, this im-
plies that the cost estimates extracted during profiling were
accurate enough.

Large requests allow us to examine the drive behavior more
easily by having a more consistent behavior than small (e.g.,
4KB) requests. Although the behavior of small writes can
be more variable, proper profiling and time scheduling still
allow us to provide guarantees. As mentioned earlier, Figure
6 shows the relation between the throughput of sequential
writes running in isolation on drive A and its granularity.
We see that reducing the window size to less than four sec-
onds drops the throughput quickly to the point where it
becomes zero. In what follows we set the window size to five
seconds, which corresponds to about 20,000 writes/second,
therefore, an average cost of 50us per request. From Fig-
ure 11, we see that the achieved throughput at a 5-second
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Figure 12: The guarantees (over 3-second intervals)
for mixed request sizes are tightly satisfied, with a
total device time reservation of 99%.

granularity meets the targets almost always, while the to-
tal reserved utilization reaches 100%. In the next exper-
iment, as illustrated in Figure 12, we consider streams of
different request sizes at a 3-second granularity, based on
the granularity-throughput relation in Figure 13. Besides
showing that the targets are met while reserving 99% of
the device time, this experiment illustrates that a stream
with larger requests can have a higher target than one with
smaller requests without one making the other miss its tar-
gets. Moreover, since the scheduling happens based on the
cost extracted from profiling, where each type of stream runs
in isolation, we conclude that isolation is also provided to
the granularity permitted by the device. Finally, our ex-
periments so far were performed on a single SSD. We have
noticed that on SSD arrays, dependencies between requests
can lead to more frequent blocking. Therefore, to provide
guarantees on arrays using the same method, the worst-case
profiling has to be applied on top of the array.

4.4 Heuristic Performance Improvements

By studying drive models A and B, we found the behavior of
A, which has a small cache, to be more easily affected by the
workload type. First, writing sequentially over blocks that
were previously written with a random pattern has a low and
unstable behavior, while writing sequentially over sequen-
tially written blocks has a high and stable performance. Al-
though such a pattern may appear under certain workloads
and could be a filesystem optimization for certain drives, we
cannot assume that in general. Moreover, switching from
random to sequential writes on drive A, adds significant vari-
ance and lowers its performance. To reduce that effect we
tried to disaggregate sequential from random writes (e.g.,
in 10-second batches). Doing so doubled the throughput
and reduced the variance significantly (to 10% of the aver-
age), which increases our guarantees (figure skipped). On
the other hand, we should emphasize that the above heuris-
tic does not improve the read variance of drive B unless the
random writes happen over a small range, which strengthens
the position of not relying on heuristics due to differences
between SSD models. In contrast to the above, in the next
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section, we present a method for providing high and stable
read performance under mixed workloads for generic drives.

S. HIGH PERFORMANCE GUARANTEES

In the previous section, we observed that the granularity at
which SSD devices achieve high performance under mixed
(read/write) workloads is low, i.e., multiple seconds, instead
of a single second or less. That leads to high read latencies,
which are prohibitive for many applications. In this section,
we propose a generic design (Figure 14) based on redun-
dancy that when applied on SSDs provides predictable per-
formance and low latency for reads, by physically isolating
them from writes. We expect this design to be significantly
less prone to differences between SSDs than heuristics, and
demonstrate its benefits under two different models.

5.1 Design

Solid-state drives have fast random access and can exhibit
high performance. However, as shown in Section 3, depend-
ing on the current and past workloads, performance can
degrade quickly. For example, performing large sequential
and random writes over a wide logical range of a drive can
lead to high latencies for all queued requests due to write-
induced blocking events (Figures 4 and 9). In many cases,
such events last for 100ms and account for a significant pro-
portion of the device’s time, e.g., 50%. Therefore, in mixed
workloads, reads may also be blocked considerably, which
is prohibitive for many applications. Such blocking is of-
ten due to the garbage collector not being able to keep up
leading to what is known as internal fragmentation [4].

SSD models differ from each other and a heuristic solution
working on one model may not work well on another. We
are interested in an approach that works across models. To
that end, we look for a general solution that provides pre-
dictable performance and minimal latency for reads under
mixed workloads. We propose a new design based on re-
dundancy that achieves those goals by physically isolating
reads from writes. By doing so, we nearly eliminate the la-
tency that reads have to pay due to writes, which is crucial
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SSD 1 SSD 2
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Figure 14: At any given time each of the two drives
is either performing reads or writes. While one drive
is reading the other drive is performing the writes
of the previous epoch.

for many low-latency applications. Moreover, we have the
opportunity to further optimize reads and writes separately.
Note that using a single drive and dispatching reads and
writes in small time-based batches as in [12], may improve
the performance under certain workloads and SSD models.
However, it does not eliminate the frequent blocking occur-
ring due to garbage collection under a generic workload.

Our design works as follows: given two drives D; and Da,
we separate reads from writes by sending reads to D; and
writes to Ds. After a variable amount of time T > Tiin,
the drives switch roles with Ds performing writes and D;
reads. When the switch takes place, D2 first performs all
the writes D1 completed that D2 has not, so that the drives
are in sync. We call those two consecutive periods an epoch.
If D2 completes syncing and the window is not yet over
(t < Tmin), D2 continues with new writes until ¢ > Ty4. In
order to achieve the above, we place a cache on top of the
drives. While the writing drive D,, performs the writes of
the previous epoch all new writes are written to the cache.
In terms of the write performance, by default, the user per-
ceives write performance as perfectly stable and half that of
a drive dedicated to writes.

5.2 Properties and Challenges

Data consistency & fault-tolerance: By the above de-
sign, reads always have access to the latest data, possibly
through the cache. This is because the union of the cache
with any of the two drives always contains exactly the same
(and latest) data. By the same argument, if any of the two
drives fail at any point in time, there is no data loss and we
continue having access to the latest data. While the system
operates with one drive, the performance will be degraded
until the failed drive is replaced and the data synced.

Cache size: Assuming we switch drive modes every T sec-
onds and the write throughput of each drive is k MB/s, the
cache size has to be at least 2kT. This is because a total of
kT new writes are accepted while performing the previous
kT writes to each drive. We may lower that value to an
average of 3/2kT by removing from memory a write that is
performed to both drives. As an example, if we switch every
10 seconds and the write throughput per drive is 200MB/s,



then we need a cache of 2kT = 4000MBs. The above re-
quires that the drives have the same throughput on average
(over T seconds), which is reasonable to assume if T is not
small. Moreover, we assume that the rate at which writes
are accepted is k/2, i.e., half the write throughput of a drive,
which is achieved through throttling. That is necessary to
hold over large periods since replication implies that the
write throughput, as perceived by the client, has to be half
the drive throughput. Of course, extra cache may be added
to handle bursts. Finally, the cache factor can become kT
by sacrificing up to half the read throughput if the sync-
ing drive retrieves the required data from D, instead of the
cache. However, that would also sacrifice fault-tolerance and
given the low cost of memory it may be an inferior choice.

Power failure: In an event of a power failure if the memory
is volatile, then our design as described so far will result in
a data loss of kKT" MBs, which is less than 2GB in the above
example. Also, shorter switching periods result in smaller
data losses. However, we can avoid data loss by turning in-
coming writes into synchronous ones. Then the incoming
kT/2 MBs of data is written to D,, and the cache. After
the power is restored, we know which drive has the latest
data, as long as we store the mode each drive is in every
T seconds (e.g., in a file). Moreover, the cache in that case
reduces to k. A disadvantage is that the write performance
may be less stable than sending writes to the memory and
only eventually committing to drive. Given the advantages
of the original design, a small data loss may be tolerable
by certain applications, especially in systems where recent
data reside on multiple nodes. Depending on the system
design, other applications may not tolerate a potential data
loss. To solve this problem while maintaining close to per-
fect write stability from the user’s perspective and without
assuming a battery-backed memory, we propose that writes
are committed to a permanent journal. Depending on how
our design is used that could happen in different ways. First,
in a distributed storage system each node often has a sepa-
rate journal drive, which would be used by default. Second,
on a local setup, a separate drive would have to be used.
Since most nodes have a hard-drive, it could be used as a
journal drive as the sequential performance of a hard-drive
is comparable to that of an SSD, i.e., 100MB - which is the
rate at which we accept writes at a stable state. Instead, we
believe it would be best to construct a new SSD that would
include what we logically think of as two, and in addition
to that a small (e.g., 10GB) circular flash buffer to play the
role of a journal. Finally, since no write is removed from
the memory until it is performed on both drives, if our pro-
cess fails but the system does not reboot, when the process
restarts we may flush all writes to both drives.

Capacity and cost: Doubling the capacity required to
store the same amount of data appears as doubling the stor-
age cost. However, there are reasons why this is not entirely
true. First, cheaper SSDs may be used in our design because
we are taking away responsibility from the SSD controller by
not mixing reads and writes. In other words, any reasonable
SSD has high and stable read-only performance, and stable
average write performance over large time intervals. Sec-
ond, applications requiring high throughput and low latency
lead to over-provisioning due to the unstable performance of
mixed workloads. On the other hand, this design guarantees
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(b) The read throughput of 4KB requests remains stable at
its maximum performance.

Figure 15: Physically separating reads from writes
leads to a stable and high read performance.

stable performance, which is expected to reduce the amount
of over-provisioning. Third, in practice, distributed storage
systems already replicate data so the hardware is already
available for fault-tolerance and only the software has to be
adjusted to apply this design. This requires to generalize
our method to distributed systems, which is our next step.

We expect the above design to be applicable on other parts
of a system by isolating blocking events (e.g., garbage col-
lection) from cheap operations, e.g., sequential and random
requests on hard-drives. Our design may also be used to
construct arrays by switching between one set of (possibly)
striped read drives and one of writes, or by striping across
read/write drive pairs. Finally, we expect this design to also
qualify for a new high-performance solid-state drive.

5.3 Preliminary Evaluation

We built a prototype of the above design and verified that it
provides high performance, low latency and improved pre-
dictability for reads under mixed workloads. For simplicity,
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Figure 16: On drive A the read throughput is mostly
stable (sequences on the right), with a small variance
due to writes after each drive switch.

we ignored the possibility of cache hits or overwriting data
still in the cache and focused on the worst-case performance.
In what follows, the drives switch roles every Tinin = 10 sec-
onds. For the first experiment we used two instances of drive
model B. The workload consists of large requests of all four
types as shown in Figure 15(a). From the same figure, we see
that reads happen at a total constant rate of 1100 reads/sec.
and are not affected by writes. At the same time, writes have
a variable behavior as in earlier experiments, e.g., Figure 2.
On the other hand, on a single SSD and given 50% of the
device time, reads are unstable due to writes (Figure 8) and
happen at a rate of 525 reads/sec., which is less than half.

Although we physically separate reads from writes, in the
worst-case there can still be interference due to remaining
background work right after the drives switch modes. In
the previous experiment we noticed little interference and
that was partly due to the drive itself. From Figure 16 we
see that drive A performs significantly better than without
redundancy, though reads do not appear as a perfect line,
possibly due to its small cache. Since that may also hap-
pen with other drives we propose letting the write drive idle
before each switch in order to reduce any remaining back-
ground work. That way, as we will later see, when the drive
starts reading, the interference is minimal. When providing
QoS, that idle time is charged to the write streams, since
they are responsible for the blocking. Note that having small
amounts of interference may be acceptable in many cases,
however, certain users may be willing to sacrifice part of the
write throughput to further reduce the chance of high read
latency.

5.4 Guaranteeing High Performance

Given that we now have stable read performance, it becomes
easier to provide high performance guarantees by combining
the above method with our QoS method from the previous
section. As before, we set four streams each with its own
type and throughput requirements. In the following exper-
iments, although the targets of the last two streams are 50
writes/sec, the average throughput plotted is 100 writes/sec
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Figure 17: Using our design and QoS method we
can provide high guarantees for reads and achieve
the targets more than 95% of the time without any
heuristics.

or more. That is due to the same writes eventually being
dispatched to both drives. Moreover, since the write perfor-
mance has too much variance at a high granularity, we plot
the average write throughput over each epoch (two switch
periods) to show that the write guarantees at the drive level
are also achieved at the granularity allowed by the device.
From Figure 17 we see that under drive B the targets are
satisfied 95% of the time. In addition, as shown in Figure 18,
by idling writes for a second before each switch the target
satisfaction rate increases to more than 99%. In a similar
fashion, using drive A we found the same success rates for
both the idle and the non-idling case (figures skipped). How-
ever, due to the nature of drive A there is a small increase in
the variation of the read throughput after each mode switch,
which leads to slightly lower guarantees. Since drive B is a
newer model one would expect that recent models of similar
quality have a behavior closer to that of B. Independently
of that, the read performance achieved with any the two
drives is significantly more stable compared to that without
redundancy. Finally, note that switching less often reduces
the throughput drops but requires a larger cache and may
leave more background work for the SSD after each switch.

5.5 [Evaluation with Traces

In this section we include a short evaluation of our design
using the Stg dataset from the MSR Cambridge Traces [11],
OLTP traces from a financial institution and traces from a
popular search engine [17]. Other combinations of MSRC
traces gave us similar results with respect to read/write iso-
lation and skip them. For the following experiments we used
drive model B and performed large writes before running
the traces in order to fill the drive cache. Evaluation results
using traces can be more challenging to interpret since the
traces themselves can be irregular and may have to be stud-
ied separately. In terms of read/write isolation, Figure 19(a)
shows that reads are affected by writes when using a single
drive, while under the same workload our method provides
read/write isolation (Figure 19(b)). The write plots for both
cases are skipped as they appear as unstable as 19(a).
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Figure 18: Adding a second of idle time to writes be-
fore each switch reduces the read/write interference
while satisfying the targets 99% of the time.

6. RELATED WORK

Although the are a number of papers on the performance and
characteristics of SSDs, there is little work taking advantage
of such results in the context of scheduling and QoS. An ex-
ample of a fair scheduler optimized for flash is FIOS [12].
According to the results in [12], FIOS is an improvement
over OS schedulers that are designed with hard-drive char-
acteristics in mind. Despite that, FIOS has different goals
than our work. First, we manage the performance of each
client as required rather than providing fair usage. Second,
we provide guarantees to the clients rather than best-effort
performance. Third, we are interested in constantly minimal
read latencies that are significantly less than 100ms. FIOS
can give priority to reads in order to decrease the block-
ing due to writes on certain devices, however, read latencies
can still reach 100ms, frequently. Overall, FIOS is not de-
signed to guarantee low latencies but rather as an efficient
flash scheduler. In another direction, SFS [10] presents a
filesystem designed to improve write performance by turn-
ing random writes to sequential ones.

A number of papers study the performance characteristics
of SSDs. [4] includes a set of experiments on the effect of
reads/writes and access patterns on performance. [5] shows
the effect of parallelism on performance, while [3] presents
a benchmark and illustrates flash performance patterns. In
addition, [15] presents system-level assumptions that need to
be revisited in the context of SSDs. Other work focuses on
design improvements. For example, [1] touches on a number
of aspects of performance such as parallelism and write or-
dering. [6] proposes a solution for write amplification, while
[2] focuses on write endurance and its implications on disk
scheduling. Moreover, [7] focuses on the future of flash and
the relation between its density and performance.

There is a significant amount of work on scheduling and per-
formance management for hard-drive based storage systems,
including [8, 9, 13, 14, 16, 18]. Most related to our work are
time-based approaches such as Fahrrad [13], which is placed
on top of a hard-drive as well as QBox [16], which manages
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Figure 19: Under a mixture of real workloads our
method stabilizes the read performance.

the performance of HDD-based storage systems. Although,
the core concepts are similar with respect to scheduling,
hard-drives have other characteristics, such as sequential-
ity and a similar cost for reads and writes. Hence, applying
such solutions directly on SSDs leads to low performance, as
illustrated in [12] for fair schedulers and discussed in [15].

7. CONCLUSIONS

The performance of solid-state drives degrades significantly
under write-heavy workloads. In particular, the average
throughput can drop many times while the latency often
increases to 100ms due to garbage collection. In this paper,
we showed how to provide tight performance guarantees for
SSDs at the level and granularity allowed by the drive itself.
In addition, we introduced a design based on redundancy
that physically separates reads from writes and showed it
enables stable high performance for reads under mixed work-
loads. Finally, by combining the above solutions, we provide
high performance and minimal read latency consistently.
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