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Complex functions, such as the output of computer simulators, can be difficult to opti-
mize. The task becomes even more difficult when only some of the function evaluations return
real numbers and others simply fail to return a value. We combine statistical emulation, clas-
sification, sequential design, and optimization with an asymmetric entropy measure to solve
the thorny problem of finding an optimum along a constraint boundary. This approach is
demonstrated on simulated examples and a real problem in groundwater remediation.
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1. INTRODUCTION

One recurring but difficult problem that arises in many contexts is constrained optimization.

We want to find the minimum or maximum of a function f(x) ∈ R where x ∈ R
m but the

output of f is only defined for x ∈ Ω ⊂ R
m. When x /∈ Ω, then f(x) is not defined. When f is

expensive to evaluate, such as for a computer simulator, it is critical to use as few evaluations

as possible that are outside the valid region, as they are a complete waste of computational

efforts. Thus one needs to have a good understanding of both the function and the boundary

of the valid region. Statistical models can approximate both the function and the boundary,

and can then guide the optimization.

We propose herein an approach that combines statistical emulation, statistical classifica-

tion, sequential design via asymmetric entropy, and optimization. We build upon a number of

earlier works that look at pieces of this problem. Emulation is the approximation of a complex
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function with a statistical model, typically a Gaussian process. Santner et al. (2003) provides

a good overview of emulation, including its use for optimization, and considers simple convex

constraints. Jones et al. (1998) introduces expected improvement as the statistical approach

to unconstrained optimization. Lee et al. (2011) offers an initial attempt at constrained op-

timization, seeking to find the optimum at a location with high probability of being valid.

However, in most real problems, the optimum will occur along the boundary, which increases

the difficulty of the problem. If the solution is far from a boundary, finding the unconstrained

solution may work just as well, and is a simpler problem. Thus we focus here on finding an

optimum on the constraint boundary. Gramacy and Polson (2011) propose the use of entropy

during active learning to hone in on the boundary, however entropy alone does not tend to

fully incorporate learning behavior, and when combined with optimization tends to push the

exploration too much into the invalid region. Marcellin et al. (2006) introduce an asymmetric

entropy measure in the context of growing decision trees when one class is rare compared

to the dominant class. We incorporate asymmetric entropy to focus our exploration close to

the constraint boundary but with a bias of staying inside the valid region, which improves

the efficiency of the optimization. We believe our approach is the first to use statistical em-

ulation to focus on an optimum along a constraint boundary, and the first to incorporate

asymmetric entropy. Many computer models result in highly complex constraint boundaries,

so our methodology has the potential to be of high impact in the field of computer simulation

experiments.

Our focus here is on derivative-free optimization (Kolda et al., 2003), where function

evaluations do not provide derivative information, a fairly common situation for computer

experiments. We note our approach is applicable to both deterministic simulators as well as

stochastic simulators or functions observed with noise, and it can deal with noisy constraint

boundaries. The format for the rest of this paper starts with a review of Gaussian process
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emulation and classification, then discusses the key concepts and innovations in sequential

design under hidden constraints, and finally examines simulated and real examples.

2. GAUSSIAN PROCESS MODEL FOR

REGRESSION

The typical model for statistical emulation is a Gaussian process (GP) (Sacks et al., 1989;

Kennedy and O’Hagan, 2001; Santner et al., 2003), which provides a good combination of

nonparametric flexibility and structure induced through correlation. Assume we have n

observed data points (X,y) = (x1, y1), . . . , (xn, yn) where xi ∈ R
m are input vectors and

yi = f(xi) ∈ R are observed scalar outputs from an unknown output function f . We model

f by a GP surrogate model with linear regression mean

Y (x) = β′x+ Z(x) + ǫ. (2.1)

Here Y is the modeled output function, β ∈ R
m is a regression coefficient parameter, Z(·) is

a zero-mean GP with spatial covariance matrix C(·, ·) and ǫ ∼ N(0, σ2
ǫ ) is a possible white

noise term. Hence, Y (x) is a GP with mean β′f(x) and covariance matrix C(·, ·) + σ2
ǫ Im. In

our actual computations, we expand the linear regression mean to include an intercept b0,

i.e. b0 + β′x := β′x in Eqn (2.1) for notational convenience.

If interpolation is desired, σ2
ǫ can be set to zero. In practice, this term can account for

possible noise as well as making the algorithms more numerically stable, and can be advan-

tageous even for deterministic simulators (Gramacy and Lee, 2012). Following the computer

modeling literature, we use the nugget effect parameterization, resulting in a covariance func-

tion parametrization

C(xi,xj) = σ2 × [K(xi,xj) + gδij] .

Here g > 0 is the nugget parameter, δij is the delta function, and σ2 is a covariance scale
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parameter. The correlation structure K is modeled by a Gaussian correlation function, which

is the standard in the computer modeling literature (Santner et al., 2003; Higdon et al., 2008)

K(xi,xj) = exp

{

−
m
∑

k=1

(xik − xjk)
2

dk

}

,

where d = (d1, . . . , dm) are smoothing parameters. See also Abrahamsen (1997) for an

excellent review on correlation functions. For notational convenience, we let K := K + gIn.

When all parameters are known, the predictive distribution of the unknown output value

y∗ = y(x∗) for some input x∗ is Gaussian p(y∗|y,β, σ2, K) = N(ŷ(x∗) , σ̂2(x∗)) where

ŷ(x∗) = β′x∗ + k′
∗
K−1(y− β′X) , σ̂2

y(x
∗) = σ2 ×

[

1 + g − k′
∗
K−1k∗

]

(2.2)

is the prediction mean and variance. Here

k∗ = k(x∗) : ki(x
∗) = K(x∗,xi), i = 1 . . . , n (2.3)

We can thus represent the unknown response surface f by our statistical surrogate model

ŷ with necessary confidence bounds available through σ̂y. Hence, GP modeling provides

simultaneous prediction and uncertainty quantification in an easy interpretable fashion.

2.1 Parameter Estimation

The parameters in our GP regression model constitute θ = (β, σ2,d, g). We can take a

Bayesian approach, estimating the parameters by MCMC, following the model presented

in Gramacy and Polson (2011). For priors, we use an improper uniform prior on β ∝ 1

and an inverse gamma prior for the covariance scale σ2 ∼ IG (ασ/2, qσ/2). The correlation

matrix K is defined by d and g for which we choose independent exponential prior models,

p(d) = p(g) = Exp(λ) assuming equal priors for the smoothness parameters p(dk) = p(d) ∀ k.

The hyperparameters ασ, qσ, λ are assumed known.
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We can update β and σ2 in Gibbs steps, for which we can compute the full conditional

posterior distributions analytically. It can be shown that the full conditionals are

β|y, σ2, K ∼ Nm(β̃ , σ2Vβ̃) , σ2|y, K ∼ IG

(

ασ + n

2
,
qσ + ψ

2

)

(2.4)

where β is integrated out in the conditional distribution of σ2. Here

β̃ = Vβ̃
(

XK−1y
)

, Vβ̃ =
(

XK−1X′
)

−1
, ψ = y′K−1y − β̃

′

V −1

β̃
β̃

For the correlation matrix posterior, analytically integrating out β and σ2 gives

p(K|y) ∝
( |Vβ̃|
|K|

)1/2

×
(

qσ + ψ

2

)(ασ+n)/2

× p(K) (2.5)

where p(K) = p(d, g). We can thus update K in a MH-step where Eqn (2.5) is the part of

the posterior that appears in the acceptance probability. As proposals for d and g we choose

independent uniform sliding windows.

Integrating out β and σ2, it can be shown that the predictive distribution p(y∗|y, K) is

Student-t with n−m−1 degrees of freedom and with mean and scale given by Eqn (2.2). We

note here that the posterior means for β and σ2 are β̂ = β̃(K) and σ̂2 = (qσ + ψ (K)) /(ασ+n)

by Eqn (2.4), which depend only on K, a property we will make use of in the next section

when defining particles.

2.2 Particle Learning for Regression GPs

For a single data analysis, MCMC works well. However for sequential design or optimization,

the model needs to be repeatedly updated after each new data point is obtained. Thus a

sequential inference approach such as particle learning (PL) becomes computationally ad-

vantageous (Carvalho et al., 2010). Here we describe a PL approach for GPs (PLGP) in

regression problems, as introduced by Gramacy and Polson (2011) with R software available

(Gramacy, 2012). The main advantage of PLGP is that it updates online, whereas MCMC

needs to be restarted and reiterated in each update step.
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Assume we have an initial set of covariance parameters Pn = {K(h)
n }Nh=1 simulated from

its posterior model given the data (Xn,yn) and all other parameters. The superscript n is in-

cluded here to keep track of the data dimension, i.e. the number of data points. This could be

obtained by storing N sampled values of K after burn-in from the MCMC algorithm above.

For each particle h, we set as point estimates of β̂
(h)

n and σ̂
(h)
n their posterior means (defined

in the previous section), which only depend on K
(h)
n . Hence Pn contains the sufficient infor-

mation about all uncertainties given the data. When adding a new data point (xn+1, yn+1)

to our design, the idea is to update the particles Pn only to account for it, which will be ap-

proximated samples from the posterior distribution p(K|yn+1). We proceed by the two-step

PL update through resampling and propagation as described in Gramacy and Polson (2011).

First we resample the particles from a multinomial pdf with weights vh ∝ p
(

yn+1|yn, K
(h)
n

)

,

which is the Student-t predictive distribution defined at the end of the previous section. Next,

the propagation step updates the particles to account for the new data by

K
(h)
n+1 =







K
(h)
n k(h)(xn+1)

k(h)
′

(xn+1) K
(h)
n (xn+1,xn+1)







where k(h)(xn+1) is defined in Eqn (2.3). The new output yn+1 is then accounted for through

β̂
(h)

n and σ̂
(h)
n . In practice, the predictive Student-t distribution is well approximated by a

Gaussian distribution, as the degrees of freedom are typically large enough, particularly as a

sequential algorithm progresses.

To avoid particle depletion in future resample steps, we choose to rejuvenate the particles

(Gramacy and Polson, 2011). We then resample the updated covariance matrix particles in

a MH-step from the posterior distribution in Eqn (2.5), where we have to recompute all

N covariance matrices. This recomputation negates some of the traditional computational

advantages of PL over MCMC, but we still benefit from the online updating, eliminating the

need for burning-in MCMC after each new data point is collected.
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3. GAUSSIAN PROCESS MODEL FOR BINARY

CLASSIFICATION

Assume we have n observed data points (X, t) = (x1, t1), . . . , (xn, tn) where xi ∈ R
m are input

vectors and ti = f(xi) ∈ {−1, 1} are observed binary categorical outputs from an unknown

function f . When modeling f in the surrogate classification GP (CGP) framework, we intro-

duce latent variables z ∈ R through a link function on t (Neal, 1998; Rasmussen and Williams,

2006). We thus turn the classification problem for the binary output variable t into a regres-

sion problem on z and assign a GP prior to z according to Eqn (2.1). We choose a linear

logistic regression link function

p(t = 1|z) = exp{z}
1 + exp{z} . (3.1)

with p(t = −1|z) = 1 − p(t = 1|z). The purpose of the latent variable z is just to allow a

convenient formulation of the model, we are interested in p(t|x, z) through the link function

and not the actual values of z. As we consider binary classification problems, we can solve

for one class only.

Given data (X, t) we do inference for a new input x∗ in two steps, first computing

p(z∗|X, t,x∗) =

∫

p(z∗|X,x∗, z)× p(z|X, t) dz (3.2)

where z = (z1, . . . , zn) are the unobserved latent variables which we integrate out, zi corre-

sponding to the observation (xi, ti). The posterior distribution of the latent variables given

the data is

p(z|X, t) ∝ p(t|z)× p(z|X) (3.3)

where p(t|z) has conditional independent marginals given in Eqn (3.1) and p(z|X) is the GP

prior. Second, we compute the probability of interest, i.e. the probability that the unknown

7



class f(x∗) is 1, by

p(t∗ = 1|X, t,x∗) =

∫

p(t∗ = 1|z∗)× p(z∗|X, t,x∗) dz∗ . (3.4)

Here, p(z∗|X, t,x∗) is the posterior predictive distribution given by Eqn (3.2).

3.1 Sampling Latent Variables by MCMC

The integrals in Eqn (3.2) and (3.4) are analytically intractable, but simple numerical in-

tegration is possible for the last integral which is one-dimensional. A thorough overview of

analytic approximations to these integrals is given by Nickisch and Rasmussen (2008). We

choose to solve it by Monte Carlo integration, sampling from the latent posterior distribution

in Eqn (3.3) in a MH-step and passing the samples (after some burn-in) through the predic-

tive distributions. In the MH-steps, assuming that all parameters are known and given the

previous latent sample z, we propose new latent states z∗ by

q(z∗|z) = Nn

(

(1− η2)1/2z , η2σ2K
)

(3.5)

where η is some constant. Smaller η results in small changes in the proposed values, but with

higher acceptance probability. This specific proposal is chosen to enhance the acceptance

probability, which can be shown to depend on the link likelihood ratio only (Neal, 1998). As

proposed in Neal (1998), we also choose to do multiple updates of the latent variables for each

change of the parameters, choosing the last update. When estimating the GP parameters we

first sample z in the described MH-step and given z we sample all parameters as described

in Section 2.1. With estimated parameters, the predictive latent distribution p(z∗|X,x∗, z)

in Eqn (3.2) is Gaussian with mean and variance given by Eqn (2.2).

When estimating the parameters for the latent variable GP model, there is little benefit

in allowing a linear mean (Gramacy and Polson, 2011). We thus use a zero-mean GP prior,

simplifying the computations.
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3.2 Particle Learning for Binary CGPs

We describe here the PL approach for Gaussian processes in binary classification problems

similar to PLGP for regression problems as described in Section 2.2 (Gramacy and Polson,

2011). Given data (Xn, tn) all sufficient information is contained in K, but we should

also store the latent variables zn = {z1, . . . , zn}. We thus let our initial particle set be

{K(h)
n , [zn](h)}Nh=1 which can be sampled by MCMC as described above. When adding a

new data point (xn+1, tn+1) to our design, we proceed by the two-step PL update through

resampling and propagation.

In the resampling step, we now need to compute weights which depend on the latent

variable zn+1

vh ∝ p
(

tn+1 = 1
∣

∣[zn](h), K(h)
n

)

=

∫

p (tn+1 = 1|zn+1)× p
(

zn+1

∣

∣[zn](h), K(h)
n

)

dzn+1

Here, p
(

zn+1

∣

∣

∣
[zn](h), K

(h)
n

)

is the Student-t predictive distribution. To approximate this

weight integral, we simulate S samples of zn+1 from its predictive distribution, next pass the

samples through the link likelihood function and then average. We thus resample the indices

with replacement from a multinomial pdf with these approximated weights, obtaining new

indices for the particles. According to Gramacy and Polson (2011), S = 100 should suffice.

In the the propagation step, we need to update the particles to account for the new data.

For each resampled particle h, we first sample z
(h)
n+1 from its predictive distribution and set

[zn+1](h) =
(

[zn](h), z
(h)
n+1

)

. Next, we update the latent variables in a MH-step as described in

the previous section. The correlation matrices are propagated and rejuvenated as described

in Section 2.2.
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4. SEQUENTIAL DESIGN UNDER HIDDEN

CONSTRAINTS

We consider here (unsupervised) sequential design, in particular optimization of an expensive

Black-box output function f subject to some hidden constraints, where f is not defined

outside the valid region. The hidden constraints are assesed through a binary classification

problem. Lee et al. (2011) provides an early attempt at this difficult problem, but does

not capitalize on the fact that in most constrained optimization problems, the solution lies

along the constraint boundary. (When the solution is well within the interior, the problem

is essentially equivalent to an easier unconstrained problem.) Here we consider problems

where the optimum is expected to be located on the constraint boundary. Hence we need our

algorithm to both explore the output function over the input space within the constraints, as

well as to efficiently determine the constraint boundary. Because function calls outside the

valid region do not provide any information about the function, we have a strong bias for

sampling along or inside the boundary. This is a critical distinction from the case where the

function can be evaluated outside the valid region (Gramacy and Lee, 2011).

Assume we have n observed data points (X,y) = (x1, y1), . . . , (xn, yn) where xi ∈ R
m are

input vectors for which we define Ω ⊂ R
m as the part of the input space where the constraints

are not violated, and yi = f(xi) ∈ R are observed scalar outputs only computable within the

constrained region. Introducing corresponding binary constraint variables t = (t1, . . . , tn) :

ti ∈ {−1, 1}, for which t = −1 if constraints are violated and t = 1 if not, the output is

defined as

yi =











f(xi) , xi ∈ Ω : ti = 1

undefined , xi /∈ Ω : ti = −1

We model the unknown output function f by a GP as described in Section 2, and the
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probability of meeting the constraints, i.e., p(t = 1), by a CGP as described in Section 3. We

begin by describing an expected improvement statistic for unconstrained global optimization

by sequential design. Next, we describe how to employ the entropy measure in sequential

design for classification problems. An appealing approach is then to combine the probability

of meeting the constraints through the entropy measure with the expected improvement

statistic of interest.

4.1 Global Optimization

We describe here a sequential updating algorithm for unconstrained optimization as intro-

duced by Jones et al. (1998). From here onwards, we focus on minimization for concrete-

ness, but maximization can be obtained by minimizing the negative of the response func-

tion. From an initial design (X,y) to which we fit a GP, we sequentially add a point to

our design that optimizes the improvement statistic I(x) = maxx {ymin − Y (x) , 0} where

ymin = min{y1, . . . , yn}. This improvement statistic thus favors points with output value

lower than the current minimum, hence searching for a global minimum. But since the true

value of f is unknown at points that have not yet been evaluated, we use the posterior ex-

pectation from our statistical model. The expected improvement (EI) can be computed by

EI(x) = (ymin − ŷ(x))× Φ

(

ymin − ŷ(x)

σ̂y(x)

)

+ σ̂y(x)× φ

(

ymin − ŷ(x)

σ̂y(x)

)

where ŷ and σ̂y is the prediction mean and variance given in Eqn (2.2), and Φ(·) and φ(·) are

the normalized Gaussian cdf and pdf respectively.

4.2 Binary Classification Boundary Detection

Suppose we want to focus on detecting the true classification boundary through a sequential

design algorithm. From an initial data design, we want the updates in our algorithm to add

a point to our design that give us maximal information about the boundary. For a binary
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classification problem, the Shannon entropy is defined as

S(x) = −p1(x)× log(p1(x))− (1− p1(x))× log(1− p1(x))

where p1(x) = p(t(x) = 1). Entropy is thus non-negative with minimum entropy when

p1 = 0 ∨ 1, and maximum entropy at the boundary where p1 = p−1 = 0.5. Hence entropy, as

a measure of uncertainty, is minimized when we are 100% sure of the class and maximized

when we are most unsure. A sequential algorithm for boundary detection could thus add

a point with maximum entropy at each update, i.e. a point at the predicted boundary.

Sequential design by entropy is however a greedy algorithm, and it tends to select new points

in areas which have already been explored (Gramacy and Polson, 2011), thus making it less

efficient for either a global understanding of the boundary or for optimization.

4.3 Combining EI and Asymmetric Entropy

Consider an optimization problem subject to hidden constraints. A natural idea would be

to maximize a statistic of the form T (x) = EI(x)α1 × S(x)α2 . Here α1 and α2 are specified

weights with the property that for α1 = 0 we put all of the emphasis on trying to explore

the constraint boundary, while for increasing α1 we put more emphasis on locating the global

maximum, similarly for α2.

For output functions where the solution is expected to be located on the constraint bound-

ary, the unconstrained global optimum is likely located outside the constrained region. Hence

the EI statistic will often favor regions outside the constraints, while the entropy weighs points

symmetrically across the boundary. The proposed statistic T (x) will thus tend to favor points

outside the constrained region, which will be a waste of computational resources because the

function is not defined there. A natural solution would be to put more emphasis on the

entropy by setting α2 > α1, but the entropy part would still be symmetric. We address

this problem by using the asymmetric entropy measure proposed in Marcellin et al. (2006)
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in the rather different context of growing decision trees when one class is rare compared to

the dominant class, and thus one class needs to be favored over another. For our binary

constraint classification problem, the asymmetric entropy is defined as

Sa(x) =
2p1(x)(1− p1(x))

p1(x)− 2wp1(x) + w2
, (4.1)

where w is a mode location parameter. Here maximum uncertainty (maximum entropy) is

reached when p = w instead of p = 0.5 for the standard Shannon entropy measure. The scaled

asymmetric entropy is compared to the scaled Shannon entropy in Figure 4.1 for w = 2/3,

which we have found to work well for our problem, as it sufficiently favors points inside the

valid region while not pushing exploration too far from the boundary. Thus the statistic we

want to maximize in each update is

T (x) = EI(x)α1 × Sa(x)
α2 (4.2)

where the weights α1 and α2 can be defined as dynamic parameters, changing throughout

the algorithm.
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Figure 4.1: Comparison of the scaled standard entropy S and the asymmetric entropy Sa

for w = 2/3.
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5. TEST STUDY: CONSTRAINED OPTIMIZATION

In this empirical study, we consider optimization by sequential design of a simple output

function assuming that the output is subject to hidden constraints. For a m-dimensional

input x = (x1, . . . , xm), consider the function f(x) =
∑m

j=1 xj (see Section 6 for a real world

example of this function). We set as constraints a circular boundary centered in (c1, . . . , cm)

with radius r, hence the valid region in higher dimensions is a hypersphere. The output is

then defined as

f(x) =











∑m
j=1 xj ,

∑m
j=1(xj − cj)

2 ≤ r2 : t = 1

undefined ,
∑m

j=1(xj − cj)
2 > r2 : t = −1

(5.1)

In particular, we set the circular constraints with center cj = 0.5 ∀j and radius r = 0.5.

It is trivial to show that the true minimum keeping the constraints is for identical inputs

xj = (1− 1/
√
m)/2 ∀j. An example for m = 2 is displayed in Figure 5.1, with grey circular

constraint boundary and true minimum as a black point.
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Figure 5.1: Original function with circular constraint, true global minimum as black point.

Our training sets will thus constitute (X,y, t) = (x1, y1, t1), . . . , (xn, yn, tn) where xi ∈

[0, 1]m are the inputs, yi = f(xi) ∈ [0, 1] are the outputs defined by Eqn (5.1) and ti ∈ {1,−1}
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is a binary constraint class varible. We follow the ideas described in Section 4, declaring a GP

model on (X,y) and a CGP model on (X, t) to obtain constraint probability estimates p̂(t =

1). As hyperparameters we set (ασ, qσ) = (5, 1) for p(σ2) and λ = 5 for p(d) = p(g). Uniform

sliding windows are set as covariance parameter proposals, e.g. q(d∗|d) = U [ld/u, ud/l], with

(u, l) = (4, 3). When sampling the latent variables for classification, we set η = 0.05 in the

Gaussian proposal in Eqn (3.5).

We consider three test studies, for dimensions m = 2, 4, 6 respectively. Due to the curse

of dimensionality, the volume V of the valid input space rapidly decreases for higher order

problems (e.g., V = 0.0807 form = 6). Starting with an initial Latin Hybercube (LH) design,

we therefore ensure that it contains at least m+1 data points in each class t, if not we redraw.

We choose to do PL updates with N = 1000 particles, setting the nugget to g = 0.00001 for

numerical stability. In the sequential update results presented we compare the updates for

the test statistic in Eqn (4.2) for α1 = 1 and for the six values α2 = {1, 3, 5, 7, 9, 11}, and we

set w = 2/3 in the asymmetric entropy Sa in Eqn (4.1). The resulting powered asymmetric

entropies are displayed in Figure 5.2, showing how the entropy gets more focused around w

when α2 increases. For all six runs, we use the same initial LH design with equal initiated

particles.
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Figure 5.2: Asymmetric entropy measure Sα2

a for increasing orders α2 with w = 2/3.
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For each update, we sample a LH candidate set of size 10000 and select the points that

optimize the test statistics. In the plots presented, we keep track of log[T (x∗)] : x∗ =

argmax
x
{T (x)} for the statistics in each update, see for example the upper plot in Figure 5.3,

which we expect to decrease with the updates due to the learning. We also keep track of the

corresponding computed output value f(x∗) in each update, see the lower plot in Figure 5.3

where it is compared to the true global minimum plotted in dashed black. In all plots, a

grey marker indicates that the computed output violates the constraints, while a larger black

marker indicates that they are met.

When updating by PL, for each candidate point we could compute compute the heuristic

T (·) for each particle and average (Gramacy and Polson, 2011). We choose instead to set the

covariance matrix in each update to K(d̂, ĝ) where we have averaged the parameters over the

particles, e.g. ĝ =
∑N

t=1 g
(t)/N . In our experience, this works just as well, providing a very

close approximation and reducing the computational time to a single evaluation of T (·) for

each candidate point.

5.1 Results

Results for problems of dimension m = 2, 4, 6 are shown in Figures 5.3, 5.4, 5.5 respectively,

with minimum values computed presented in Table 5.1. Consider the results for m = 2 in

Figure 5.3, we notice how T (x∗) tends to decrease with the updates as expected. In the

run for the first order statistics, the learning algorithm seems to emphasize the expected

improvement over the entropy and locate the optimum slower than higher order statistics.

For m = 4 in Figure 5.4, the first order run did not even return any valid outputs, showing

clearly the need for additional emphasis on asymmetric entropy. The selected points for

higher orders of α2 however, seem to behave more as desired, concentrated in the region

around the boundary optimum when this is located. We notice how the runs for higher
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orders of α2 are almost identical, as the statistics often favor the same input (out of 10000

candidates). The runs for higher orders also identify the constrained minimum quite quickly.

As a result of this study, as well as additional simulations, we chose α1 = 1 and α2 = 5 for

use in the rest of this paper.

α2 m = 2 m = 4 m = 6

1 0.1467 - 0.3234

3 0.1467 0.2575 0.3070

5 0.1467 0.2523 0.3047

7 0.1467 0.2523 0.3070

9 0.1467 0.2550 0.3173

11 0.1467 0.2523 0.3070

True value 0.1464 0.2500 0.2959

Table 5.1: Mimimum values computed during the sequential algorithm.
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Figure 5.3: Updates for test case m = 2, n0 = 21. The top plot shows the objective function

and the bottom plot shows the output function being minimized, with dark symbols for points

meeting the constraint and light points not meeting the constraint.
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Figure 5.4: Updates for test case m = 4. n0 = 43
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Figure 5.5: Updates for test case m = 6. n0 = 65

5.2 Variability Study

We here consider the test statistic T (x) = EI(x)×Sa(x)
5 for inputs of order m = 4, and we

explore the variability that can be inherent in our algorithm. From the same initial design,

we have run the sequential design algorithm ten times, with independent LH candidate sets in

each update between the runs. The ten runs are displayed in Figure 5.6, and they show that

the Monte Carlo variability is relatively small, with a few larger deviations. The minimum
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computed during the algorithm has a smaller range, from 0.2514 to 0.2535, indicating stability

of our proposed algorithm in finding the optimum.
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Figure 5.6: Updates from ten runs for the MC variability test study, m = 4.

6. CASE STUDY: PUMP-AND-TREAT PROBLEM

We consider here sequential design for the pump-and-treat problem case study presented in

Matott et al. (2011) based on the Lockwood Solvent groundwater plume site located near

Billings, Montana (Tetra Tech Inc., 2003). The area under study is presented in Figure 6.1.

We have two plumes A and B containing chlorinated solvents, with two and four pumping

wells respectively which we name wells A1 and A2 and B1 through B4. The objective is to

find the lowest cost pumping rates of the six wells, subject to the hidden constraints such

that the plumes of contamination do not reach the Yellowstone river.

The output function f(x) to be minimized is here the total cost in USD of operating the

wells, where x = (x1, . . . , x6) := (QA1, QA2, QB1, QB2, QB3, QB4) are the pumping rates in

the six wells. We assume a constant cost per water pumped of 35USD/m3 and set simple

bounds 0 ≤ xi ≤ 20000 ∀i. The total cost f(x) is computed by the simulator described
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in Matott et al. (2011) which we will treat as a Black-Box function, although under certain

conditions, it turns out to be simply the sum of the inputs. The simulator also returns

constraint variables t1(x) and t2(x) for the amount of pollution escaping from plumes A and

B repectively. A contraint variable of zero corresponds to meeting that constraint. Hence

we define a common constraint indicator t(x) = 1 when t1(x) = t2(x) = 0 and t(x) = −1

otherwise. Each simulation run in about 2.5s, which is fairly slow when we need to explore the

whole 6-dimensional input space. Higher precision simulations can take even longer. Hence,

the need to model the output by a fast computational surrogate GP model.
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Figure 6.1: Simplified map of the Lockwood site.

6.1 Two-Dimensional Single Plume Problem

As an initial simplification, we first consider wells A1 and A2 only, fixing the pumping

rates for each well in plume B at 10,000. We expect the solution to be located on the

constraint boundary and hence choose to optimize the statistic in Eqn (4.2) with α1 = 1

and α2 = 5. Updates from an initial LH design of size n = 21 is displayed in Figure 6.2.

The optimal pumping rate found in the runs was (QA1, QA2) = (179, 5269) matching the

results in Matott et al. (2011), where optimized low cost was achieved with low rate for well
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A1 and higher rate for well A2. A graphical display of the first four updates is shown in

Figure 6.3, where the grey line indicates the predicted boundary and the white point is the

input maximizing the heuristic objective function T (·). Notice how the algorithm selects

points on or slightly within the predicted boundary in the region of interest, as desired.
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Figure 6.2: Updates for the pump-and-treat problem for the wells in plume A. The top plot

shows the objective function and the bottom plot shows the output function being minimized,

with dark symbols for points meeting the constraint and light points not meeting the constraint.
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Figure 6.3: Sequential PL updates for pumping rates in plume A. Dark points meet the

constraint, light points do not, the gray line is the predicted boundary, and the open circle

shows the point of highest objective T (·).
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6.2 Full Six-Dimensional Problem

We now consider the full problem with six wells, with the weights in Eqn (4.2) again set

to α1 = 1, α2 = 5. The hidden constraints for the 6D problem are known to be a lot

more complex than the seemingly elliptical boundary for the 2D problem. Updates from

an initial LH design of size n = 65 is displayed in Figure 6.4, where we have run 300 PL

updates, thus we run the simulator a total of 365 times. The minimum found over all

runs is (QA1, QA2, QB1, QB2, QB3, QB4) = (54, 6617, 13892, 2385, 1845, 818) with total cost

25, 612, which noticeably is the last valid output obtained (update 186). In comparison, the

best optimzer in Matott et al. (2011) obtained a minimum value of 23, 714 in 993 simulator

runs. Of the algorithms completing in 500 runs or less, the best value found was 27,137.

Hence our algorithm proposed here could be preferred with respect to the number of function

evaluations, which is particularly important for highly CPU-demanding computer simulators.

7. CONCLUSION

Finding an optimum along a constraint boundary is a difficult problem. In this paper, we

introduced an algorithm that uses statistical modeling for emulation of both the response

function and the classification function, and brings in a new use for an asymmetric entropy

measure. Asymmetry is the key for efficient exploration, because we need to focus our efforts

where the function can be successfully evaluated, rather than wasting computational effort

on unsuccessful runs.

One potential extension would be to move beyond the standard assumption of stationarity

in the GP model, for example with a treed Gaussian process emulator (Gramacy and Lee,

2008). Our approach is clearly extensible in this way, although the computational efficiencies

of particle learning will no longer be available.
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Figure 6.4: Updates for the pump-and-treat problem for all six wells.

Another potential extension would be to improve optimization by use of a hybrid algorithm

that incorporates a local direct numerical method, along the lines of Taddy et al. (2009) for

unconstrained optimization. The local algorithm is more efficient at exploring locally, and

the statistical methods guide both global exploration and understanding of the constraint

boundary.
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