
In-Vivo Storage System Development

Noah Watkins1, Carlos Maltzahn1, Scott Brandt1, Ian Pye2, and Adam Manzanares3

1University of California, Santa Cruz, {jayhawk,carlosm,scott}@cs.ucsc.edu
3California State University, Chico, amanzanares@csuchico.edu

2CloudFlare, Inc., ianpye@gmail.com

Abstract

The emergence of high-performance open-source stor-
age systems is allowing application and middleware de-
velopers to consider non-standard storage system inter-
faces. In contrast to the common practice of translating
all I/O access onto the POSIX file interface, it will soon
be common for application development to include the
co-design of storage system interfaces. In order for de-
velopers to evolve a co-design in high-availability clus-
ters, services are needed for in-vivo interface evolution
that allows the development of interfaces in the context
of a live system.

Current clustered storage systems that provide inter-
face customizability expose primitive services for man-
aging static interfaces. For maximum utility, creating,
evolving, and deploying dynamic storage interfaces is
needed. However, in large-scale clusters, dynamic in-
terface instantiation will require system-level support
that ensures interface version consistency among stor-
age nodes and clients. We propose that storage systems
should provide services that fully manage the life-cycle
of dynamic interfaces that are aligned with the com-
mon branch-and-merge form of software maintenance,
including isolated development workspaces that can be
combined into existing production views of the system.

1 Introduction

The emergence of high-performance open-source stor-
age systems are permitting applications and middleware
architects to look beyond the standardized POSIX file in-
terface towards co-designed, domain-specific storage in-
terfaces that offer unique opportunities for optimization.
However, current systems that provide extensibility ex-
pose only primitive interface management facilities, and
provide little to no isolation between application devel-
opers that evolve storage interfaces.

Consider an application that captures, stores, and an-

alyzes log-style data—a common task in analytics plat-
forms. Ingested logs are partitioned and written to ob-
jects within a distributed storage system. Despite be-
ing used in this case to store semi-structured data, low-
level object stores typically present a single, static byte-
oriented interface. Being constrained by a byte-oriented
interface makes it difficult to provide fine-grained data
access such as predicate-based filtering, or to evolve low-
level data layout. Previous work on active storage sys-
tems has shown the benefits of co-locating processing
data such as reducing data transfer and exploiting I/O and
CPU parallelism [5, 7, 10, 4] However, existing systems
tend to assume long-lived, installed interfaces having un-
constrained system access, and do not provide services
for managing the evolution of interfaces that are aligned
with the development methodologies of applications that
use custom interfaces. Addressing these concerns for the
effective adoption of extensible storage services is im-
portant.

Applications and storage system interfaces are inher-
ently co-designed, with the POSIX file interface repre-
senting a long-lived static interface assumed to exist on
virtually all platforms. A storage system that allows its
interfaces to be dynamically defined presents a challenge
for application development because dynamic storage in-
terfaces are not directly managed within the application
run-time environment. We argue in this paper that man-
aging the deployment, consistency, and versioning of in-
terfaces, as well as enforcing isolation between devel-
opers and production interfaces is best handled by the
storage system itself.

The development of co-designed storage system in-
terfaces is an entirely software-based activity tightly
coupled with the development of a driving application.
In particular, it is very common for engineering teams
to follow a branch-and-merge source-code management
style using software such as Git, Perforce, or Subversion,
in which feature branches are merged into a production
line after some period of insulated feature development

1



and maturation. While application feature development
can often take place using, for example small-scale de-
ployments on developer desktops, the same is not true
for storage system interface development, where access
to distributed resources and the peculiarities of live data
are crucial to feature development and testing correctness
at scale. One option is to allow developers unconstrained
access to the storage system, relying on informal team
guidelines to avoid conflicts. However, branch-based
feature development emphasizes developer isolation. It
would be useful if the storage system also provided a de-
velopment environment for storage interfaces akin to the
isolated development workflows for applications.

In the remainder of this paper we present a solu-
tion based on the concept of a developer workspace.
A workspace represents a unit of isolation within the
storage system that allows for the independent evolution
of interfaces that are dynamically created using a high-
performance embedded scripting language. The system
fully manages versioned interfaces within a workspace,
ensuring a consistent view of interface versions between
storage system clients and co-designed interface. Devel-
opers may merge interfaces from their workspace into
production views of the system, providing an evolution-
ary development path aligned with common software
maintenance protocols.

2 Motivation

The collection and analysis of streaming data such ac-
cess logs, click streams, and sensor data require scal-
able, fault-tolerant systems for high-performance inges-
tion, and post-processing is typically applied to extract
knowledge using batch-oriented analysis. Figure 1 illus-
trates a typical architecture in which time-ordered logs
are partitioned by attributes such as user or group, and
stored within objects in a distributed object-store. Shown
in the same figure is a production application that inter-
acts with the log data to produce analysis results, while
an engineering team develop new features, and evolve
the production deployment through standard source-code
management techniques.

This architecture of decoupling storage from analy-
sis is extremely common, however one challenge that
arises is the I/O efficiency of data-intensive analysis.
The object-level interfaces exposed by storage systems
provide generic, byte-oriented access similar to file in-
terfaces. Byte-oriented interfaces force applications to
perform coarse-grained data access, despite analysis that
may exhibit low-selectivity on the data being processed.

Alternatively, work in active storage has shown that
domain-specific interfaces can be constructed within the
storage system, and provide efficient, fine-grained data
access. Domain-specific interfaces can provides access

Partition and Store

2013-3-11, 12:33:22, user, group, attr1, …, attrN
2013-3-11, 12:33:22, user, group, attr1, …, attrN
2013-3-11, 12:33:22, user, group, attr1, …, attrN

...

Production
Analysis

Dev1 Dev2

source code control

Object Store

Figure 1: Log data is stored in objects that are batch an-
alyzed while developers create new features and evolve
the system.

to, for example, the arithmetic mean of a single attribute
computed over the records contained in a single object.
Such an interface implemented within the storage sys-
tem allows applications to avoid unnecessary data trans-
fers and recomputation by caching results, perform asyn-
chronous work such as indexing, and reduces application
complexity.

Allowing application developers to dynamically con-
struct co-designed storage interfaces as part of the nor-
mal development process is a powerful construct for
building distributed applications. However, the tight cou-
pling between storage interfaces and applications require
that both components can evolve together through a stan-
dard software development life-cycle.

2.1 Storage Interface Evolution

Dynamically created storage interfaces pose a challenge
for software development because application software
may evolve independently from the deployed storage in-
terfaces, but still require strong version consistency. Re-
call from Figure 1 that multiple developers evolve a pro-
duction analysis application using feature branch ser-
vices provided by a source-code control library. If each
developer may now co-design alternative storage inter-
faces within a single cluster, isolating the effects of each
developer and from each other and from live data become
important.

Consider the application life cycle depicted in Fig-
ure 2. Developers Dev1 and Dev2 are responsible for
developing independent, domain-specific interfaces—
arithmetic average, and minimum—that will replace the
same computation computed remotely by the produc-
tion analysis application. Each developer must now
evolve the storage-level interfaces, as well as change
application-level code to take advantage of the new the

2



A

Dev1

Dev2

B

DC

avg()

min()

Application Co-design Lifecycle

Merge
St

or
ag

e
In

te
rf

ac
es R/W

AVG

MIN R/W
MIN
AVG

Figure 2: Developers evolve application software and
storage interfaces through a co-design process.

features. For instance, both developers begin with a base
storage interface exposing the standard byte-oriented in-
terface (ver. A). Each developer evolves the application
and storage interfaces with their respective features (ver.
B, C). Once the features are complete, they are merged
to expose the new interfaces to the production applica-
tion (ver. D).

Next we discuss dynamic interfaces, the low-level
building for our system.

3 Extensible Object Interfaces

A core building block of our system is a service that al-
lows the dynamic creation of low-level object interfaces
using a high-performance embedded scripting language.
We consider our design in the context of the Ceph dis-
tributed storage system, and begin our discussion with a
brief overview of Ceph and its object-based storage sys-
tem.

3.1 The RADOS Object Store

The RADOS object store is a highly scalable, fault-
tolerant storage service that forms the basis for high-
level Ceph services such as the Ceph File System [9, 8].
A RADOS cluster consists of a set object-storage de-
vices that expose a rich object interface including byte-
oriented access methods as well extended attributes, in-
dexing, and snapshots. Clients access objects through a
library that hides the cluster layout, network, and fault
recovery. In addition to its natively supported interfaces,
objects in RADOS can be extended by constructing C++-
based plugins that defines new methods on objects, anal-
ogous to creating a sub-class in an object-oriented lan-
guage. A method is invoked against a target object by
a client and is transparently executed within the storage
server process responsible for the object.

The extensibility of RADOS objects is very powerful,
and can be used to construct interfaces like to those dis-
cussed in Section 2. Unfortunately it is non-trivial to

function(avg(attr)
((((key(=("avg."(+(attr((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((
((((val(=(cache.get(key)(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((
((((if(not(val(then(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((
((((((((val(=(ComputeAverage(attr)(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((
((((((((cache.put(key,(val)((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((
((((done
((((return(val((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((
end

Client

OSD

Obj

register

Lu
aV
M

exec(avg)

Interface-Average

Figure 3: An interface defining an average function is
registered with an OSD after which point a client may
remotely invoke the method on an object.

deploy statically compiled, architecture dependent inter-
faces within a high-availability cluster, making it difficult
to integrate rapid interface evolution with the iterative de-
velopment of applications. What is needed is a mecha-
nism for dynamically constructing new object methods.

3.2 Dynamic Interfaces

We have extended the object-storage devices in RADOS
to support dynamically defined object interfaces using
the Lua language, specifically designed to be embedded
in high-performance applications. New interfaces are
created by sending to a storage device a Lua script that
defines any number of methods, after which point the in-
terfaces are made available through any existing RADOS
client libraries.

Figure 3 illustrates how dynamic interfaces are used.
First, a developer authors a Lua script that defines a new
object method. Shown in the figure is a script that com-
putes the arithmetic mean of an attribute over the records
in an object. Notice that before computing the average a
cache is queried to avoid recomputing results. A client
that invokes this method on an object will trigger the
method automatically within the OSD process and the
results will be returned to the client, potentially avoid-
ing recomputation. Scripts may be pre-registered, or sent
along side a client request for completely dynamic be-
havior.

This basic mechanism of constructing dynamic in-
terfaces using small code fragments allows applications
to easily evolve storage interfaces at a fine-granularity.
However, two major issues arise. First, when working
within a live system, developers should be able to work
independently without worrying about causing conflicts.
And second, in a large, elastic system developers should
not have to be involved in the details of ensuring that a
consistent view of their deployed interfaces are present
on all system devices. We propose that the storage sys-
tem expose a specialized development environment that
abstracts away these concerns.

3



Storage
Devices

IDE Service
sync

interfaces

Clients

m
an

ag
e

w
or

ks
pa

ce

work
sp

ac
e1

work
sp

ac
e2

(a) IDE Service

Object-Storage Device

CoW
Proxy

CoW
Proxy

Workspace1 Workspace2

Base
Object

avg().v0
avg().v1

min().v0
min().v1

(b) Isolation

Figure 4: In (a) clients use an IDE service to create
workspaces that form a context within the storage sys-
tem. In (b) base data is not duplicated, and CoW provides
isolation for interface private data.

4 Interface Development Environment

We propose an environment for developing new inter-
faces consisting of one or more workspaces that, at a
high-level, provide isolation between between interfaces.

4.1 Workspaces

A workspace is an entity managed by the storage sys-
tem which provides isolation between dynamic inter-
faces. Workspaces can be created, destroyed, and merged
through the use of the interface development environment
(IDE) service, illustrated in Figure 4a. The IDE service
exposes an interface similar to that of Git, Mercurial, or
Subversion in which branches form the basic unit of iso-
lation. A typical use of a workspace by a developer is to
provide a safe environment to construct, test, and refine
storage interfaces as part of a larger application devel-
opment process. Once a developer creates a workspace,
storage clients interact with object devices in the context
of the workspace—analogous to authentication or user
contexts—allowing the system to enforce isolation guar-
antees on a per-workspace basis.

Isolation. Workspace contexts are used within stor-
age devices to enforce isolation between interfaces that
interact with objects. Interfaces that perform only read
operations on an object require no special handling—
reads are directed to the base object. However, writes
must be carefully handled as to not interfere with state
created by interfaces in other workspaces, or data in the
base object. For instance, the interface shown in Fig-
ure 3 caches a computed average value by constructing
a key and saving it in a object-local cache. Write opera-
tions that access the cache, indexes, extended attributes,
or other object services are intercepted by the storage de-
vice and isolated by transparently applying a namespace

to keyed data accesses. Some interfaces will reformat
object payloads in order to test the performance impacts
on alternative data layouts. The system employs copy-
on-write (CoW) techniques to make this efficient, and
internally addresses CoW partitions using namespacing.

Partitioning. By default a client operating within the
context of a workspace has access to all objects on any
object device (subject to the standard privilege restric-
tions imposed by the system). However it may be the
desirable to partition a cluster between development and
production to allow extra protection, such as providing
physical I/O and CPU isolation. Existing facilities within
the RADOS storage system for custom replication and
tiering policies allow subsets of data to be placed onto
specific sets of nodes. Workspaces can be linked to these
physical partitions which ensure that the space of ad-
dressed objects is constrained by the physical partition-
ing.

4.2 Workspace Management

Ultimately interfaces defined within workspaces as part
of application development will be migrated into a pro-
duction environment. For instance, the interfaces defined
in separate workspaces shown in Figure 2 can be merged
into production, providing access to the union of the in-
terfaces to applications accessing the storage system in
the context of the production workspace.

There are several issues that may arise when merging
workspaces. First, at a high-level merging changes the
visibility of interfaces, and as a result interface naming
conflicts may arise. For instance, two workspaces may
define the same interface. These types of conflicts are
largely application-specific and must be handled explic-
itly by developers. Like SCM systems, the primary re-
sponsibility of the storage system is to provide feedback
to developers about the changes they are making through
the IDE service.

Interfaces that utilize private data can be merged with-
out low-level conflicts by migrating the same isolation
parameters (e.g. namespacing) used to prevent conflicts
between workspaces. However, for interfaces that per-
form heavy-weight data transforms such as new data lay-
outs, migrating all interfaces to a use a new layout may
be necessary. In order to make format migration easier,
workspace merging can optionally specify a transforma-
tion routine that the system ensures is applied prior to
invoking any interface following the merge. Finally, the
removal of workspaces results in lazy deletion of all un-
merged interface state created during the lifetime of the
workspace.

4



5 The IDE Service

Interfaces and workspaces are inherently cluster-wide
entities that must be managed by the storage system.
For instance, workspace isolation may be implemented
by constructing a globally unique namespace prefix,
and source code defining interfaces must be versioned,
stored, and deployed to cluster nodes where interface
versions are matched to client requests and workspace
context. In an elastic cluster that experiences failures and
maintenance, automation is essential.

A core service often found in distributed systems is a
highly available versioned data store commonly imple-
mented using a consensus algorithm, such as Paxos. For
instance, Ceph uses monitor services, built upon Paxos,
to manage cluster membership, service discovery, repli-
cated logs, and authentication. A monitor provides a con-
sistent view of the system state, and clients and OSDs
can contact a monitor to synchronize their states. The
IDE service we purpose can be built within a specialized
monitor to provide remote access to the service, as well
as providing a mechanism for OSDs to synchronize their
view of interface versions.

Integration. Finally, a mechanism is needed to relate
interface versions managed by the storage system with
application development. Many source-code control sys-
tems provide the ability to inject external information
into the revision history. For instance, Git allows external
repositories to be seamlessly integrated, and CVS tags
allow the expansion of macros within source code. We
envision a similar form of integration that allows macro-
like expansion of interface versions to be included in ap-
plication development source. However, simpler alterna-
tives such as providing a tagging service to developers
may also be sufficient.

6 Related Work

In Oasis [10] the T10 standard is extended to allow new
active storage scripts to be injected into an object stor-
age device. Primitive script management allows creation,
listing, and removal of new application functions, but
does not address higher-level management challenges
such as versioning or isolating contexts.

GlusterFS [1] translators provide a rich mechanism for
adding functionality at different levels of the storage sys-
tem. Translators are statically defined and designed to be
a long-lived installed component.

Building new pNFS striping strategies using the Lua
scripting language have been proposed [3]. The script
defining a new strategy is embedded in a file inode where
script versioning is aligned with inode consistency mech-
anisms.

A variety of versioning file systems allow data to be
managed using checkpoints, version tags, and other pro-
tocols [6]. While these are concerned with user-level
payload data, the scalability lessons from this body of
work dealing with versioning may prove useful.

The Git source-code control library has been inte-
grated into a FUSE-based file system to extend its ver-
sioning features to files and directories [2]. We are also
considering making use of the Git library for its rich, em-
beddable interface for managing and versioning textual
data such as Lua code snippets.

7 Conclusion

Providing non-POSIX storage interfaces has been the
topic of much research. However, little has been done
to address the management of co-designed storage in-
terfaces with application development processes. In this
paper we have proposed that storage systems provide a
service based on developer workspaces that enforce iso-
lation within the storage system, and allow storage inter-
faces to safely evolve from development into production.

References
[1] Glusterfs clustered file system. http://www.gluster.org.

[2] GRANT, R. Filesystem interface for the git version control sys-
tem. Tech. rep., University of Pennsylvania, 2009.

[3] GRAWINKEL, M., SUSS, T., BEST, G., POPOV, I., AND
BRINKMANN, A. Towards dynamic scripted pnfs layouts. In
PDSW ’12 (2012).

[4] LIM, H., KAPOOR, V., WIGHE, C., AND DU, D. H.-C. Active
disk file system: A distributed, scalable file system. In MSST ’08
(2008).

[5] PIERNAS, J., NIEPLOCHA, J., AND FELIX, E. J. Evaluation of
active storage strategies for the lustre parallel file system. In SC
’07 (2007).

[6] SANTRY, D. S., FEELEY, M. J., HUTCHINSON, N. C., VEITCH,
A. C., CARTON, R. W., AND OFIR, J. Deciding when to forget
in the elephant file system. In SOSP ’99 (1999).

[7] SON, S. W., LANG, S., CARNS, P., ROSS, R., THAKUR, R.,
OZISIKYILMAZ, B., KUMAR, P., LIAO, W.-K., AND CHOUD-
HARY, A. Enabling active storage on parallel i/o software stacks.
In MSST ’10 (2010).

[8] WEIL, S., BRANDT, S. A., MILLER, E. L., LONG, D. D. E.,
AND MALTZAHN, C. Ceph: A scalable, high-performance dis-
tributed file system. In OSDI ’06 (2006).

[9] WEIL, S., LEUNG, A., BRANDT, S. A., AND MALTZAHN, C.
Rados: A fast, scalable, and reliable storage service for petabyte-
scale storage clusters. In PDSW ’07 (2007).

[10] XIE, Y., MUNISWAMY-REDDY, K.-K., FENG, D., LONG, D.
D. E., KANG, Y., NIU, Z., AND TAN, Z. Design and evaluation
of oasis: An active storage framework based on t10 osd standard.
In MSST ’11 (2011).

5


