
Attributing Authorship of Revisioned Content
Technical Report UCSC-SOE-12-21

Luca de Alfaro
∗

Computer Science Dept.
University of California

Santa Cruz, CA 95064, USA
luca@ucsc.edu

Michael Shavlovsky
Computer Science Dept.
University of California

Santa Cruz, CA 95064, USA
mshavlov@ucsc.edu

ABSTRACT
A considerable portion of web content, from wikis to collab-
oratively edited documents, to code posted online, is revi-
sioned. We consider the problem of attributing authorship
to such revisioned content, and we develop scalable attribu-
tion algorithms that can be applied to very large bodies of
revisioned content, such as the English Wikipedia.

Since content can be deleted, only to be later re-inserted,
we introduce a notion of authorship that requires compar-
ing each new revision with the entire set of past revisions.
For each portion of content in the newest revision, we search
the entire history for content matches that are statistically
unlikely to occur spontaneously, thus denoting common ori-
gin. We use these matches to compute the earliest possible
attribution of each word (or each token) of the new con-
tent. We show that this “earliest plausible attribution” can
be computed efficiently via compact summaries of the past
revision history. This leads to an algorithm that runs in
time proportional to the sum of the size of the most recent
revision, and the total amount of change (edit work) in the
revision history. This amount of change is typically much
smaller than the total size of all past revisions. The resulting
algorithm can scale to very large repositories of revisioned
content, as we show via experimental data over the English
Wikipedia.

1. INTRODUCTION
Versioned content is abundant on the Web. The

Wikipedia, and wikis, constitute the most prominent exam-
ple, and they account for a large portion of total page-views.
Blogs with multiple authors, and pages served by content-
management systems, are another example in which the ver-
sioning is present, but not directly exposed to the viewer.
Code is another prominent example of revisioned content,
and one that is becoming common on the web, thanks to
the success of sites like GitHub, where users can share their
code repositories.

We study in this paper the problem of attributing revi-
sioned content to its author, and more generally, to the re-
vision where it was originally introduced. This problem is
insteresting for several reasons. The Wikipedia Reuse Pol-
icy1 requires people reusing Wikipedia material to either
provide a link to the original article and revision history,
or to cite the most prominent authors of the content. Fur-

∗The authors are listed in alphabetical order.
1http://en.wikipedia.org/wiki/Wikipedia:Reusing_
Wikipedia_content

thermore, in the Wikipedia community it is felt that proper
content attribution is an important way to acknowledge and
reward contributors, and to foster participation and contri-
butions from communities where authorship has been tra-
ditionally recognized and rewarded, such as the academic
community [6, 11]. Tracking the authorship of Wikipedia
content is also an important tool in assisting editors, and
viewers, in determining the origin of assertions, and analyz-
ing page evolution. In code, as in wikis, authorship tracking
is useful to properly reward contributors. Furthermore, au-
thorship tracking can be useful in determining the reason
behind implementation choices. Several revisioning systems
implement “blame” methods, which attribute every line to
an author/revision, but this attribution is extremely crude
and imprecise, as it cannot cope with blocks of code that are
transposed from one location to another, or from one file to
another — changes that are common when code is polished
or refactored.

At first glance, the attribution problem for revisioned con-
tent seems trivial: surely we can simply compare each re-
vision with the previous one, detect any new content, and
attribute it to the revision’s author. Unfortunately, things
are not quite so simple. Content in revisioned systems is
often deleted, only to be later introduced, and it is impor-
tant to be able to trace the authorship to the first original
introduction. In the Wikipedia, the content of pages is fre-
quently removed by vandals, and re-instated in subsequent
revisions: this is illustrated in Figure 10, where the periodic
dips in page size correspond to content deletions. One way
to guard against such attacks is to check whether the most
recent revision happens to coincide with one of the previous
revisions, in which case, authorship is carried over from the
previous revision. However, this ad-hoc remedy cannot cope
with broader attacks. For instance, attackers could first use
a fake identity to remove the page contents, then use their
main identity to restore the page to its previous contents,
except for some small, imperceptible changes that foil the re-
vision equality check: the whole page content would then be
attributed to them. The goal of this work is to present algo-
rithms that can be used on the Wikipedia, with the resulting
authorship information available to visitors. Once author-
ship information is prominently displayed, attacks that aim
at inflating the size of one’s authorship are likely, prompt-
ing our quest for general, robust algorithms. A more general
solution also benefits code attribution, since blocks of code
are commonly moved from one branch to another, or deleted
and later re-inserted.

We propose to attribute authorship of revisioned content

http://en.wikipedia.org/wiki/Wikipedia:Reusing_Wikipedia_content
http://en.wikipedia.org/wiki/Wikipedia:Reusing_Wikipedia_content

by comparing the content of the most recent revision, with
the entire content of all previous revisions. For every sym-
bol (word, or character, or token) in the most recent revi-
sion, we compute all statistically significant matches with
previous content: these are the matches whose sequence of
symbols is rare enough that the match is likely to be due to
a shared origin, rather than serendipitous re-invention. The
symbol is then assigned the earliest possible origin that is
compatible with all the matches. We call this approach the
earliest plausible attribution approach. We show that earli-
est plausible attribution yields a more natural content attri-
bution than other approaches, including approaches based
on longest matches with previous content, or approaches in-
spired by the edit-analysis work of Tichy [13]. By comparing
new revisions with the full set of previous revisions, the ear-
liest plausible attribution approach achieves resistance to
page deletions and vandalism. As Figure 9 (A0 vs. A1) later
in the paper indicates, the resulting attribution differs by
over 75% from the attribution computed via comparisons
to the most recent revision only, the difference being due
chiefly to deletion-reinsertion attacks and other vandalism.

We introduce efficient algorithhms for earliest plausible
attribution. If fed all revisions at once, the algorithms can
compute the content origin in time proportional to the size
of the revision history, which is clearly optimal. More com-
monly, though, revisions are created and must be analyzed
one and a time. A practical implementation must maintain
a summary of all past revisions, and process a new revision
on the basis of such a summary. We show that the algo-
rithm we propose uses a summary of size proportional to all
the past change in the previous revisions — and this change
size is typically much smaller than the total revision history
size, since a new revision is usually identical to the preced-
ing one except for a few small changes. The algorithm runs
in time proportional to the sum of the size of the previous
summary, and the size of the most recent revision. Again,
since both summary and most recent revision must be read,
this is optimal.

Related work. The WikiTrust tool computes a value of
reputation for Wikipedia authors and content, as well as the
revision where each word was inserted [1, 2, 3]. The attri-
bution algorithm achieves resistance to vandalism by com-
paring the most recent revision not only with the preceding
one, but also with a set of “reference” revisions, consisting
of recent revisions that either have high content reputation,
or that were created by a high-reputation author. The ap-
proach is fairly effective in practice, but the attribution de-
pends on the reputation computation: there is no indepen-
dent characterization of the attribution that is computed,
and the process is computationally involved. Furthermore,
it is not clear how to extend the approach beyond Wikipedia.

In [3], several text matching algorithms are evaluated for
their ability to explain the editing process in Wikipedia.
Tichy-inspired algorithms [13] were found to be highly ef-
ficient, and as precise as any alternative, for the problem
of comparing two revisions. In contrast, in this work we
show that for the problem of comparing a revision with all
the preceding ones, the earliest plausible attribution yields
more efficient algorithms, and arguably more natural results.

String matching is a very well studied problem; see e.g.
[8] for an in-depth overview. The algorithms presented in
this paper make use of several resuts on string matching, in-
cluding tries and suffix trees. Sophisticated string matching

algorithms developed for genetic applcations involve a two-
step process: a coarse alignment is computed between the
strings, followed by a finer-grained analysis of string differ-
ences (see [8] again). This “genetic” approach is resistant to
the transcription errors that occur in gene sequencing. The
algorithms developed in this paper are based instead on ex-
act matching of short sequences. It is an interesting open
question whether the algorithms for attribution of revisioned
content could benefit from the genetic approach.

The attribution problem considered in this paper is a
special case of information provenance problem. For an
overview of information provenance, see e.g. [4, 5] for prove-
nance in databases, and [12, 10, 7] for an overview in a
broader context.

Paper organization. After introducing some nota-
tion and concepts, we compare in Section 3 conceptual
methods of defining attribution, providing justifications for
our choice of earliest plausible attribution. In 4 we de-
scribe an efficient algorithm for earliest plausible attribu-
tion, and we prove that the algorithm is optimal. We
present empyrical results obtained in the analysis of the
English Wikipedia in Section 5, and we conclude with
some discussion of the results and possible future work
in Section 6. All the code and data for the algorithms
can be found at https://sites.google.com/a/ucsc.edu/

luca/the-wikipedia-authorship-project.

2. DEFINITIONS
Revisions. We model revisioned content as a sequence

of revisions ρ = ρ0, ρ1, ρ2, Each revision ρ consists in
a sequence of tokens t0, t1, . . . , tm−1, taken from a set T of
tokens, where len(ρ) = m is the length of ρ. We assume
that len(ρ0) = 0, so that ρ0 represents the initial, empty
revision that exists before any subsequent revision is created.
For ρ = t0, t1, . . . , tm−1, we indicate with ρ[i] the token ti,
and we write ρ[i : j] for ti, ti+1, . . . , tj−1. Depending on the
application, the tokens can be individual unicode characters,
or they can be words in a text, tokens of a programming
language, and so forth. Given a sequence ρ of revisions, a
global position is a pair (n, k) with n ≥ 0 and 0 ≤ k <
len(ρk). Thus, a global position denotes a token occurrence
at a particular revision. In a Wikipedia page, for instance,
the global position (n, k) may denote the k-th word of the
n-th revision.

Matches. A match M = (n, i, j, n′, i′, j′) between po-
sitions [i..j − 1] of revision ρn and positions [i′..j′ − 1] of
revision ρn′ , denoted informally (and more intuitively) as
M = (ρn[i : j] = ρn′ [i′ : j′]), consists of two revisions ρn,
ρn′ , and indices 0 ≤ i < j ≤ len(ρn), 0 ≤ i′ < j′ ≤ len(ρn′),
such that:

• j − i = j′ − i′ > 0, so that the matched portions have
equal length and are non-empty;

• for all 0 ≤ k < j− i, we have ρn[i+ k] = ρn′ [i′+ k], so
that tokens at corresponding positions of ρn and ρn′

match.

Given a match M = (ρn[i : j] = ρn′ [i′ : j′]), we denote by
len(M) = j−i its length. We say that a position k is matched
by M if i ≤ k < j. For a position k matched by M , we let
M(n, k) = (n′, k−i+i′): thus, we think of matches as partial
functions between global positions that relate positions filled
by equal tokens. We denote by M(ρn, ρm) the set of all

https://sites.google.com/a/ucsc.edu/luca/the-wikipedia-authorship-project
https://sites.google.com/a/ucsc.edu/luca/the-wikipedia-authorship-project

matches between revisions ρn and ρm. We say that a match
M = (ρn[i : j] = ρn′ [i′ : j′]) is a sub-match of M ′ = (ρn[ß̂ :

ĵ] = ρn′ [ß̂′ : ĵ′]) if ß̂ ≥ i, ĵ ≤ j, and ß̂ − i = ß̂′ − i′; we
say that the sub-match is proper if at least one of the two
inequalities is strict.

Interesting matches. Our interest in matches is due
to the fact that a match between a later revision and and
earlier one may indicate that the content of the later revision
originated in the earlier one. Not all matches correspond to
a common origin of the content, however. For instance, in
English, the two-word sequence “such that” is very common,
and it would be unreasonable to assume that they have been
copied from an earlier revision whenever they appear in a
later one. In order to use matches to study authorship,
we need to distinguish fortuitous matches from those that
indicate shared origin. An in-depth approach would likely
require a probabilistic model of content structure, and of
how content propagates from one revision to the next. Such
a model could then be used to compute, for each revision
token, a probability distribution over the places where the
content might have originated.

We follow a simpler, discrete approach, where content is
attributed deterministically to a revision of origin. This
choice is motivated by two considerations. First, determin-
istic attribution leads to efficient algorithms that can scale
to very large bodies of content, such as the Wikipedia. Sec-
ond, users of authorship information generally expect a de-
terministic attribution. Wikipedia visitors and editors want
to know who wrote what; a probability distribution over
authors would contain more information than can be easily
presented. Copyright is based on deterministic, not proba-
bilistic attribution.

Consider a match M = (ρn[i : j] = ρk[i′ : j′]) between
two revisions ρn and ρk, with k < n. To decide whether to
attribute the sequence σ = ρ[i], ρ[i+ 1], . . . , ρ[j− 1] to ρn or
ρk, we use a rarity function γ : T ∗ 7→ IR+: intuitively, the
larger γ(σ) is, the more likely it is that the sequence σ in
ρn and ρk shares the same origin. We require that a rarity
functon γ satisfies the following two conditions:

• γ(∅) = 0: the rarity of the empty sequence is zero.

• For all σ ∈ T ∗ and all t ∈ T , we have γ(σ) < γ(σt):
longer sequence are strictly rarer than shorter ones.

A simple choice is γ(σ) = len(σ): the rarity of a sequence is
equal to its length. More sophisticated rarity functions can
be used: for instance, if we know the occurrence probability
pt of each token t, we can take γ(t0, t1, . . . , tm) =

∏m
i=0

1
pti

.

Rarity functions based on the occurrence frequency of multi-
token sequences could also be used.

Given a match M = (ρn[i : j] = ρk[i′ : j′]), we define
its interest γ(M) = γ(ρn[i], ρn[i + 1], . . . , ρn[j − 1]) to be
equal to the rarity of the matched sequence of tokens. We
define the interesting matches between revisions ρn and ρm,
according to the rarity function γ and threshold ∆, as the
set of matches of rarity at least ∆:

M(ρn, ρm | γ ≥ ∆) = {M ∈M(ρn, ρm) | γ(M) ≥ ∆} .

We note that if we choose γ = len, the set M(ρn, ρm |
len ≥ l) will consist of all matches between ρn and ρm that
have length at least l. Given a position 0 ≤ k < len(ρn)
of revision ρn, we denote by M[k](ρn, ρm | γ ≥ ∆) the
interesting matches between ρn and ρm that have interest

at least ∆ as measured by γ, and that match position k of
ρn.

Origin labeling. An origin labeling associates with each
token the revision where the token originated. Precisely,
an origin labeling Θ for a (finite or infinite) sequence ρ =
ρ0, ρ1, ρ2, . . . of revisions is a labeling that associates with
each global position (n, k) of ρ its origin Θ(n, k) ∈ IN, with
Θ(n, k) ≤ n. If Θ(n, k) = n, we say that the token ρn[k] is
new in ρn.

3. CONCEPTUAL ALGORITHMS
In some instances of revisioned content, such as Google

Docs, full information about the edit actions by each indi-
vidual user are available. In this case, the authorship can be
computed by observing directly the typing, cutting, pasting,
etc, performed by each editor. In many other instances, how-
ever, we can observe only the outcome of the editing process,
namely, the sequence of revisions produced by the various
users. This is the case for Wikipedia, and for code reposi-
tories, since the environments where users edit the code are
independent from the repositories. In these cases, we must
infer authorship after the fact, by comparing the result of
the editing with previous content. There is no a-priori cor-
rect way to infer authorship, as we cannot reconstruct the
mental process of the editors to tell whether they are copy-
ing or reinventing. One of the contributions of this paper
is to introduce the notion of earliest plausible attribution for
revisioned content, showing that it leads to plausible attri-
bution in practice. We remark that, even when the actions
of users are observable during editing, as in Google Docs,
we can never be sure whether editors are retyping a pas-
sage, copying it from paper, or reinventing it anew: earliest
plausible attribution can thus be a useful notion even when
edit actions are observable in detail. In this section we define
earliest plausible attribution and we compare it with other
attribution methods. The question of efficient implementa-
tion will be the subject of the next section.

3.1 Comparison with preceding revision
Algorithm A0 computes the origin of tokens in a revision

ρn by comparing the revision with the previous one in the
sequence. Given a sequence ρ = ρ0, ρ1, ρ2, . . . of revisions,
with ρ0 = ∅ as the initial empty revision, algorithm A0 com-
putes an origin labeling Θ for ρ proceeding inductively on
the revisions. The first revision ρ0, being empty, has a null
labeling. For each subsequent revision ρn, n > 0, algorithm
A0 computes all interesting matches with the preceding re-
vision ρn−1. Every unmatched token in ρn is assigned an
origin label of n. Each matched token is assigned the origin
label of the matching position in the previous revision; if
the token had multiple matches to different positions, the
token is assigned the minimum of the origin labels of the
corresponding positions.

One may conceive a variant algorithm, termed Algo-
rithm A0M, where only the most interesting match(es) for
each token are considered: the idea being that the longer
the match, the more likely it is to correspond to origin. Al-
gorithms A0 and A0M may yield different labelings, as illus-
trated in Figure 1. In the figure, we use sequence length as
the rarity function, together with a threshold of 3, so that
matches that are 3 or more tokens are considered interest-
ing. In labeling symbols b c in ρ3, Algorithm A0 considers

Algorithm A0 Matches with previous revision.

Input: A sequence ρ = ρ0, ρ1, ρ2, . . . , ρm of revisions, with
ρ0 = ∅, along with a rarity function γ and a threshold ∆.
Output: An origin labeling Θ for ρ.

1: for revisions n = 1, 2, 3, . . . do
2: for all positions 0 ≤ k < len(ρn) of ρn do

3: Let M̂ :=M[k](ρn, ρn−1 | γ ≥ ∆).

4: if M̂ = ∅ then
5: Θ(n, k) := n
6: else
7: Θ(n, k) := minM∈M̂Θ(M(n, k)).
8: end if
9: end for

10: end for

two interesting matches: (ρ3[0 : 3] = ρ2[0 : 43), involving a

b c, and (ρ3[1 : 6] = ρ2[4 : 9]), involving b c z z z. The
first match yields origin 1 1 for b c, the second 2 2. The
origin assigned by A0 is the least of these two, namely, 1

1. Algorithm A0M, on the other hand, considers only the
second match, as it is longer, and assigns to b c origin 2 2.

This example highlights why we prefer to consider all in-
teresting matches, rather than just the longest ones: even
though a b c in ρ3 matches a b c in ρ1, it is assigned origin
1 2 2 according to A0M. We take the point of view that a
match that is interesting (with a matched sequence of to-
kens that is sufficiently rare) denotes a common origin of
the content. If there is more than one interesting match for
a token position, we look at all such interesting matches as
possible explanations for the origin of the content, and we
err on the side of the oldest possible attribution, yielding
the min in line 7 of Algorithm A0.

Algorithm A0M Origin via most interesting matches with
previous revision.

Input: A sequence ρ = ρ0, ρ1, ρ2, . . . , ρm of revisions, with
ρ0 = ∅, along with a rarity function γ and a threshold ∆.
Output: An origin labeling Θ for ρ.

1: for revisions n = 1, 2, 3, . . . do
2: for all positions 0 ≤ k < len(ρn) of ρn do

3: Let M̂ :=M[k](ρn, ρn−1 | γ ≥ ∆).

4: if M̂ := ∅ then
5: Θ(n, k) = n
6: else
7: Let M̃ = arg maxM∈M̂ γ(M).
8: Θ(n, k) := minM∈M̃Θ(M(n, k)).
9: end if

10: end for
11: end for

3.2 Earliest plausible attribution
Algorithm A0 (and A0M) relies on comparisons with the

immediately preceding revision only. In many relevant ex-
amples of versioned content, content can be deleted from
one revision only to reappear several revisions later. For in-
stance, the content of Wikipedia pages is frequently deleted
by vandals. If authorship is determined via a comparison
with the immediately preceding revision only, then an edi-

ρ3: a1 b1 c1 z2 z2 z2

ρ2: a1 b1 c1 x2 b2 c2 z2 z2 z2

ρ1: a1 b1 c1

(a) A0

ρ3: a1 b2 c2 z2 z2 z2

ρ2: a1 b1 c1 x2 b2 c2 z2 z2 z2

ρ1: a1 b1 c1

(b) A0M

Figure 1: A sequence of revisions, with origin la-
beled according to algorithms A0 and A0M. We
represent each revision by its list of tokens, using
letters to denote tokens. The origin labels are com-
puted for a rarity function equal to sequence length,
and threshold of 3. We write above every token the
origin that the algorithm assigns to it.

tor who restores the contents of a Wikipedia page after it
is deleted would be attributed the authorship of all the re-
stored content. As these periodic acts of vandalism that de-
stroy most of a page’s content are common on the Wikipedia,
authorship algorithms that are based only on comparisons
with the immediately preceding revision will grossly mis-
attribute content, as we will show experimentally in Sec-
tion 5.

Our preferred algorithm for attribution of revisioned con-
tent, Algorithm A1, compares the latest revision with all
the previous revisions, looking for matches with any prior
content, rather than just content in the immediately pre-
ceding revision. We call this process earliest plausible attri-
bution, since the attribution it produces is the earliest that
is compatible with an explanation by interesting matches.
Figures 2 and 3 provides a comparison of algorithm A0 and
A1 in presence of a delete-and-restore attack, as common
on the Wikipedia, and of a more complex attack involving
content that is deleted, then gradually re-instated.

Algorithm A1 Origin via interesting matches with all pre-
ceding revisions.

Input: A sequence ρ = ρ0, ρ1, ρ2, . . . , ρm of revisions, with
ρ0 = ∅, along with a rarity function γ and a threshold ∆.
Output: An origin labeling Θ for ρ.

1: for revisions n = 1, 2, 3, . . . do
2: for all positions 0 ≤ k < len(ρn) of ρn do

3: Let M̂ :=
⋃

0<m<nM[k](ρn, ρm | γ ≥ ∆).

4: if M̂ = ∅ then
5: Θ(n, k) := n
6: else
7: Θ(n, k) := minM∈M̂Θ(M(n, k)).
8: end if
9: end for

10: end for

3.3 Tichy-based matching
One of the better-known algorithms for generating edit

differences between revisions is due to Tichy [13]. Since the
Tichy algorithm performs well in explaining the edit his-

ρ4: a4 b4 c4 x4 f4 g4 h4

ρ3: p3 q3

ρ2: a1 b1 c1 x2 f1 g1 h1

ρ1: a1 b1 c1 f1 g1 h1

(a) A0

ρ4: a1 b1 c1 x2 f1 g1 h1

ρ3: p3 q3

ρ2: a1 b1 c1 x2 f1 g1 h1

ρ1: a1 b1 c1 f1 g1 h1

(b) A1

Figure 2: A sequence of revisions, with origin la-
beled according to algorithms A0 and A1, with rar-
ity equal to length and threshold 3. This sequence
illustrates a delete-and-restore event, common on
the Wikipedia.

ρ6: a4 b4 c4 d4 e6 x6 w6 g6 h6 l6

ρ5: q3 r3 a4 b4 c4 d4 f5 g5

ρ4: p3 q3 r3 a4 b4 c4 d4

ρ3: p3 q3 r3

ρ2: a1 b1 c1 d1 e1 x2 f1 g1 h1 l1

ρ1: a1 b1 c1 d1 e1 f1 g1 h1 l1 m1

(a) A0

ρ6: a1 b1 c1 d1 e1 x2 w6 g1 h1 l1

ρ5: q3 r3 a1 b1 c1 d1 f5 g5

ρ4: p3 q3 r3 a1 b1 c1 d1

ρ3: p3 q3 r3

ρ2: a1 b1 c1 d1 e1 x2 f1 g1 h1 l1

ρ1: a1 b1 c1 d1 e1 f1 g1 h1 l1 m1

(b) A1

Figure 3: A sequence of revisions, with origin la-
beled according to algorithms A0 and A1, with rar-
ity equal to length and threshold 3. In this sequence,
content is first deleted and replaced with spam, then
almost entirely restored.

tory of Wikipedia [3], it is of interest to adapt it to origin
computation and compare it to A1. Given a revision ρn =
t0, t1, . . . , tm−1, the Tichy-based Algorithm A2 searches re-
visions ρ0, . . . , ρn−1 for the longest prefix of t0, t1, . . . , tm−1.
If this longest prefix is, say, t0, t1, . . . , tk, with k ≤ m − 1
and γ(t0, t1, . . . , tk) > ∆ for the chosen rarity function γ
and threshold ∆, then the algorithm fixes the origin of
t0, t1, . . . , tk in ρn according to the origin of the matching
tokens (taking the minimum, in case the longest prefix ap-
pears multiple times). The algorithm then proceeds search-
ing for the longest prefix of the remaining unlabeled portion
tk+1, tk+2, . . . , tm−1. If no longest prefix can be found, or
if the longest prefix from t0 has rarity below the threshold,
then t0 is labeled as having origin n, or Θ(n, 0) := n, and
the search continues from the remaining unlabeled portion
t1, t2, . . . , tm−1. The process continues until the whole of ρn
has been labeled according to its origin.

Figure 4 compares the origin labelings computed by Algo-
rithms A1 and A2. We see that Algorithm A2 attributes to
the tokens c d a m in ρ4 origins 2 2 4 4, even though these
tokens constituted the first revision ρ1. The attribution 1 1

1 1 computed by A1 seems more appropriate.

Algorithm A2 Origin via Tichy matching with all preced-
ing revisions.

[t] Input: A sequence ρ = ρ0, ρ1, ρ2, . . . , ρm of revisions,
with ρ0 = ∅, along with a rarity function γ and a threshold
∆.
Output: An origin labeling Θ for ρ.

1: for revisions n = 1, 2, 3, . . . do
2: k := 0
3: while k < len(ρn) do
4: Search in ρ0, . . . , ρn for the longest matching pre-

fixes of tk, tk+1, . . . , tlen(ρn)−1
. Let tk, . . . , tm

be the longest matched prefix, and let A =
{(n1, k1), . . . , (np, kp)} be the (possibly empty) set
of pairs where the longest matches occur.

5: if A 6= ∅ ∧ γ(tk, . . . , tm) ≥ ∆ then
6: for i ∈ {0, 1, . . . ,m− k} do
7: Θ(n, k + i) := min1≤j≤p Θ(nj , kj + i)
8: end for
9: k := m+ 1

10: else
11: Θ(n, k) := n
12: k := k + 1
13: end if
14: end while
15: end for

ρ4: a3 b3 c1 d1 a1 m1

ρ3: a3 b3 c2 d2 g2 h2

ρ2: c2 d2 g2 h2

ρ1: c1 d1 a1 m1

(a) A1

ρ4: a3 b3 c2 d2 a4 m4

ρ3: a3 b3 c2 d2 g2 h2

ρ2: c2 d2 g2 h2

ρ1: c1 d1 a1 m1

(b) A2

Figure 4: A sequence of revisions, as labeled by Al-
gorithms A1 and A2 with rarity equal to length and
threshold 3.

3.4 Properties
Given a sequence of revisions ρ0, ρ1, ρ2, . . . and two ori-

gin labelings Θ, Θ′, we write Θ ≤ Θ′ if Θ(n, k) ≤ Θ′(n, k)
at all positions n, k of the sequence; we write Θ < Θ′ if
Θ ≤ Θ′, and if there is at least a position (n, k) where
Θ(n, k) < Θ′(n, k). The following property establishes that,
among A0, A0M, and A1, Algorithm A1 computes the ear-
liest attribution and A0M the latest.

Property 1. Let ΘA0, ΘA0M , and ΘA1 be origin label-
ings computed by Algorithms A0, A0M, and A1 respectively
for a sequence of revisions. Then, ΘA1 ≤ ΘA0 ≤ ΘA0M .
Moreover, there are sequences of revisions for which each of
two above inequalities is strict.

Proof. The weak inequalities follow from the fact that,
in deriving the label of a token, the matches considered by
A0M are a subset of those considred by A0, which are in
turn a subset of those considered by A1. The fact that the
inequalities can be strict is witnessed by Figure 1 and 2.

If a revision occurs twice in the revision history, Algo-
rithm A1 assigns to the later occurrence of the revision an
origin labeling that is no greater than that of the first oc-
currence; the labeling can in fact be strictly smaller. This

ρ5: a3 b3 c1 d1 g2 h2

ρ4: a3 b3 c1 d1 a1 m1

ρ3: a3 b3 c2 d2 g2 h2

ρ2: c2 d2 g2 h2

ρ1: c1 d1 a1 m1

Figure 5: A sequence of revisions, as labeled by Al-
gorithm A1 with rarity equal to length and threshold
3. Note that ρ5 = ρ3, yet the origin labels for some
tokens in ρ5 are smaller than the corresponding ones
in ρ3.

property is not shared by algorithms that look back only one
revision, such as Algorithm A0.

Property 2. Consider a sequence of revisions
ρ0, ρ1, ρ2, . . ., and assume ρi = ρk for i < k. Let Θ be the
origin labeling computed by A1. Then, Θ(k, j) ≤ Θ(i, j) for
all 0 ≤ j < len(ρi), and there are cases where the inequality
can be strict.

Proof. The result follows from the fact that the matches
for position (i, j) are a subset of those for position (k, j).
The fact that the inequality can be strict is illustrated in
Figure 5.

4. EFFICIENT ALGORITHMS
In the previous section, we presented various conceptual

algorithms for attributing origin to versioned content. In
this section, we examine the question of efficient implemen-
tation for these algorithms.

Input size and change size. Given a sequence of re-
visions ρ = ρ0, ρ1, . . . , ρn, the input size for our attribution
algoirthms is |ρ| =

∑n
i=0 len(ρi) (assuming that tokens can

be represented in constant space). In revisioned content, it
is often the case that only a small portion of the content is
modified at each revision, so that consecutive revisions dif-
fer only in a few tokens. It is thus insightful to study the
performance of the algorithms not only as a function of the
size of the input, but also as a function of the size of the
change that occurred. To this end, given two consecutive
revisions ρ, ρ′, we define ∆(ρ, ρ′) =

∑m
i=1 |βi| +

∑m
i=1 |γi|,

where β1, . . . , βk and γ1, . . . , γm are the shortest sequences
so that we can write:

ρ = α0β1α1β2α2 · · ·βnαn
ρ′ = α0γ1α1γ2α2 · · · γnαn

In other words, we write ρ and ρ′ as composed of maximal
sequences of unchanged portions of text α0, . . . , αm, and of
portions β1, . . . , βm in ρ that will be replaced by sequences
γ1, . . . , γm in ρ′. We then define the change size change(ρ)
of ρ0, ρ1, . . . , ρn as change(ρ) =

∑n−1
i=0 ∆(ρi, ρi+1).

Summary size and one-revision update. Revisioned
content is produced, as the name implies, one revision at a
time. When computing the origin of the tokens in the newest
revision ρn, it would be impractical to read and re-process
all previous revisions ρ0, . . . , ρn−1. Practical algorithms rely
on a summary Sn−1 of ρ0, . . . , ρn−1, containing all the in-
formation that the algorithm needs to know about the pre-
ceding revisions to attribute later revisions. The algorithms

compute the origin labeling for ρn on the basis of Sn−1 and
ρn, producing as output both Sn and the origin labeling for
ρn. We refer to this computation as the one-revision update.
We will thus study how the summary size, and the running
time for the one-revision update depend on the input size
and change size.

4.1 Algorithm A3
Consier a fixed a rarity function γ and a rarity threshold

∆. We say that a sequence of tokens t1, t2, . . . , tn is mini-
mally interesting if γ(t1, t2, . . . , tn) ≥ ∆, and at least one of
γ(t2, . . . , tn) < ∆ or γ(t1, . . . , tn−1) < ∆ holds. When the
rarity function is simply the number of tokens, and the rar-
ity threshold ∆ is an integer, then the minimally interesting
sequences are the sequences consisting of ∆ tokens. We say
that a match M = (ρn[i : j] = ρn′ [i′ : j′]) is minimally inter-
esting if ρn[i], ρn[i+1], . . . , ρn[j−1] is minimally interesting.
To obtain an efficient implementation of Algorithm A1, we
start from the observation that in Step 3 of Algorithm A1,
we need to consider only minimally interesting matches.

Lemma 1. If in Step 3 of Algorithm A1 the set M̂ is
limited only to minimally interesting matches, the labeling
computed by the algorithm is unchanged.

Proof. For a token tk of ρn, let M be a match realizing
the minimum in Step 7 of Algorithm A1, and let ti, . . . , tj
be the matched sequence, with i ≤ k ≤ j. If M is minimally
interesting, the result holds. If M is not minimally interest-
ing, then both sub-matches for ti, . . . , tj−1 and ti+1, . . . , tj
are interesting, and tk belongs to one of them. Continuing
in this fashion, we can find a submatch M ′ of M that con-
tains tk and that is minimally interesting. Since tk would be
assigned the same origin under M or M ′, the result holds.

This result suggests implementing Algorithm A1 in terms
of a trie. A trie T is a tree whose edges are labeled with
tokens, and such that the edges outgoing from a node are
labeled by distinct tokens. We say that a sequence of tokens
t1, t2, . . . , tm belongs to the trie T , written t1, t2, . . . , tm ∈ T ,
if there is a path from the root labeled with the sequence,
and we use the sequence to refer to the node where the path
ends. If the sequence t1, t2, . . . , tm is minimally interesting,
we say that the corresponding node is minimally interesting.
If γ = len and ∆ is an integer, the minimally interesting
nodes are those at depth ∆ in the trie. We denote by ⊥
the empty trie consisting only of a root node, and we denote
by Ins(T ; t1, . . . , tm) the result of creating a path labeled by
t1, . . . , tm in T in the trie. In the implementation of A1, we
use tries to represent all the minimally interesting sequences
of tokens that have occurred in past revisions. Each mini-
mally interesting node t1, . . . , tm of the trie is labeled with
the origin k1, . . . , km = `(t1, . . . , tm) of the sequence of to-
kens t1, . . . , tm. This yields Agorithm A3.

Figure 6 illustrates the trie resulting after processing revi-
sions ρ1, ρ2, ρ3 as in Figure 4, for a rarity function equal to
length, and threshold 3. The leaf nodes are the minimally
interesting nodes. To save space in the trie, we omit the non-
interesting nodes that have a single child, concatenating the
labels of the edges leading into and out of such nodes.

The following theorem shows that Algorithms A3 and A1
compute the same origin labels.

Theorem 1. Algorithm A3 computes the same origin
labels as Algorithm A1.

root

c d d

3 3 2

a b c

3 2 2

b c d

1 1 1 1 1 1

a

2 2 2

 g a m

2 2 2

 g h

Figure 6: Trie resulting after processing revisions
ρ1, ρ2, ρ3 as in Figure 4.

Algorithm A3 Implementation of A1 in terms of tries.

Input: A sequence ρ = ρ0, ρ1, ρ2, . . . , ρm of revisions, with
ρ0 = ∅, along with a rarity function γ and a threshold ∆.
Output: An origin labeling Θ for ρ.

1: T := ⊥
2: for revisions n = 1, 2, 3, . . . do
3: for all positions 0 ≤ k < len(ρn) of ρn do
4: Θ(n, k) := n
5: end for
6: for all minimally interesting sequences tk, . . . , tm of

ρn do
7: if tk, . . . , tm ∈ T then
8: ik, . . . , im := `(tk, . . . , tm)
9: for all j ∈ [k, . . . ,m] do

10: Θ(n, j) := min{Θ(n, j), ij}
11: end for
12: end if
13: end for
14: for all minimally interesting sequences tk, . . . , tm of

ρn do
15: if tk, . . . , tm ∈ T then
16: `(tk, . . . , tm) := Θ(n, k), . . . ,Θ(n,m)
17: else
18: T := Ins(T ; tk, . . . , tm)
19: `(tk, . . . , tm) := Θ(n, k), . . . ,Θ(n,m)
20: end if
21: end for
22: end for

To state the proof of this theorem, consider a sequence
σ = t1, . . . , tk occurring at least once in a set of revisions
ρ0, . . . , ρm that has been labeled according to its origin by
Algorithm A1. For 1 ≤ j ≤ k, let pj be the minimum label
that token tj is assigned in any of these occurrences. We say
that p1, . . . , pk is the minimal labeling of σ in ρ0, . . . , ρm.

Proof. The proof proceeds by induction, using the
inductive hypothesys that, after processing revisons
ρ0, . . . , ρn, the trie T contains exactly all the minimally in-
teresting sequences occurring in ρ0, . . . , ρn, each labeled with
its minimal labeling in ρ0, . . . , ρn.

Assume that Algorithm A3 has processed ρ0, . . . , ρn−1 al-
ready, and is processing ρn.

First, we show that this inductive hypothesis implies that
algorithms A1 and A3 produce the same labeling. There are
two directions to the argument.

• Assume that Algorithm A1 assigns origin label p to
token ρn[k]. Let M = (ρn[i : j] = ρn′ [i′ : j′]) be the

minimally interesting match for which the minimum
in Line 7 is realized (this exists, due to Lemma 1). By
induction hypothesis, the trie T will contain the se-
quence ρn′ [i′ : j′] with its minimal labeling, in which
the token ρn[k] is labeled with origin p. Thus, Algo-
rithm A3 in Steps 3–13 will assign to ρn[k] an origin
no larger than p.

• Conversely, assume that Algorithm A3 assigns origin
p to token ρn[k]. Then, T must have contained a min-
imally interesting sequence ρn[j : l] = tj , . . . , tl−1, for
j ≤ k < l, where tk is labeled by p. By inducton
hypothesis, p is the minimal label of tk in all occur-
rences of tj , . . . , tl−1 in ρ0, . . . , ρn−1, indicating that
Algorithm A1 also labels ρn[k] with label no greater
than p.

Second, we show that once ρn is processed by A3, the
induction hypothesis holds also for ρ0, . . . , ρn. Consider a
minimally interesting sequence σ occurring in ρn (the situa-
tion of minimally interesting sequences not occurring in ρn
is unchanged). The arguments in the first part of this proof
ensure that once Steps 3–13 have terminated, the sequence σ
in ρn is labeled according to its minimal labeling. Steps 14–
21 ensure then that the sequence σ is present in the trie T ,
and is labeled in it according to its minimal labeling. This
completes the induction step.

The following theorem characterizes the time and space
requirements for Algorithm A3.

Theorem 2. If there is an integer M such that all token
sequences of length at least M are interesting, then given a
sequence ρ0, ρ1, ρ2, . . . of revisions, Algorithm A3 can per-
form a one-revision update for revision ρn using a summary
of size O(change(ρ0, . . . , ρn−1)), and in time O(len(ρn)).

Proof. Algorithm A3 uses as summary for ρ0, . . . , ρn−1

the trie Tn−1 resulting from the processing of these revisions.
To prove the space requirement, we can prove by induction
over n that |Tn| ≤ K · change(ρ0, . . . , ρn), for some fixed
K ≥ 0. Note that M is a bound for the length of any mini-
mally interesting sequence: in fact, any interesting sequence
σ longer than M has its leftmost M tokens, and rightmost
M tokens, also form interesting sequences, contradicting the
minimality of σ. Let K = M(M + 1)/2 be the maximum
number of sequences of length at most M that contain a
given position. Note that a single insertion or deletion go-
ing from ρn−1 to ρn affects at most K minimally interesting
sequences in ρn. Therefore, at most K · ∆(ρn−1, ρn) new
minimally interesting sequences are going to be inserted in
Tn−1 in order to obtain Tn. This leads to the space bound
for the summary.

To prove the time bound for the processing of ρn, it suf-
fices to note that there are at most len(ρn) minimally inter-
esting matches involving ρn, and that processing each one
of them (including accessing the trie for retrieving the mini-
mal labeling of any match) takes constant time (the trie has
depth at most K).

Note that the theorem implies that the processing of
a sequence ρ0, . . . , ρn of revisions can be done in time
O(|(|ρ0, . . . , ρn)).

If the rarity of a sequence of tokens is taken to be its
length, then trivially all sequences longer than the rarity

threshold are rare. Another case when the length of min-
imally interesting sequences of tokens is bounded is when
the rarity of a sequence of tokens t1, . . . , tk is computed
as γ(t1, . . . , tk) =

∏k
i=1

1
pki

for some token probabilities

0 ≤ pki ≤ 1, and if there is an upper bound c < 1 for
the probability of any token.

These results suggest that Algorithm A3 is optimal: it is
not possible to label a sequence of revisions in time less than
the input size, and it is not possible to label a new revision
storing less information about the past than all change that
has occurred (except if compression techniques are used;
such techniques can also be applied to the representation
of our trie summaries).

In large-scale implementations of origin analysis, the sum-
mary of a revision sequence cannot be stored permanently
in-memory: rather, it must be read from persistent storage
(such as a database) before the algorithm analyzes a new re-
vision, and written back to persistent storage once the anal-
ysis is done. If the time to read and write the summary is
included, then the time required for analyzing revision ρn of
sequence ρ0, ρ1, ρ2, . . . is in O(len(ρn) + change(ρ0, . . . , ρn)).

4.2 Tichy matching
The Tichy-based Algorithm A2 is defined in terms of

longest common matches. We can obtain an efficient imple-
mentation in terms of suffix trees, which provide the most
time efficient implementation of the longest common sub-
string problem [8]. A suffix tree is a tree-like data struc-
ture that can represent all the suffixes ai, ai+1, ai+2, . . . , am,
0 ≤ i < m, of a given string a0, a1, . . . , am; they can be con-
structed in time linear in the length of the string [15, 9, 14].
The construction of suffix trees can be adapted so that Sn−1

is a suffix tree representing all the suffixes of ρ0, ρ1, . . . , ρn−1;
see [8] for similar adaptations. This leads to Algorithm A2s.
The origin information can be associated with the suffix tree
in similar fashion to what was done for the trie; we omit the
details to conserve space. The drawback of this algorithm,
compared to A3, is that the size required by the summary
is proportional to the size of all previous revisions, rather
than to the change size. This because a change involving a
token in the middle of a revision of length m gives rise to
m/2 new suffixes on average, each of which corresponds to at
least one new suffix tree node. Figure 7 illustrates this: the
change from “deer” to “dear” gives rise to three new suffixes,
corresoponding to nodes 8, 9, and 10.

Theorem 3. Let M = |ρ0, . . . , ρn| and D =
change(ρ0, . . . , ρn). Algorithm A2s produces the origin la-
bels for revision ρn in time O(M); the time for labeling the
complete sequence ρ0, . . . , ρn is O(M2). There are some ex-
amples of input for which the running time for ρn exceeds
K ·D, for any K ≥ 0, so that the running time is not O(D).
The size of Sn is O(M), and is not in O(D).

Proof. The space and time results are a consequence
of the results on the construction of suffix trees [15, 9, 14,
8]. The existence of sequences in which the summary size
is proportional to the entire input size, rather than to the
change size, follows from the fact that changing a single
token in a revision of length m leads to the creation of a
number of new suffixes that is proportional tom (on average,
equal to m/2). These new suffixes must be represented in
the suffix tree, so that Sn is in O(|ρ0, . . . , ρn|) but not in
O(change(ρ0, . . . , ρn)).

 d e e r d e a r 0

3

 e

7

 d e

10

 a r

11

 r

12

 e r

4

 r

9

 a r e r

8

 a r

Figure 7: Suffix tree for two string “deer” and
“dear”. Solid edges correspond to both strings;
dashed edges correspond to “deer”; dotted edges
correspond to“dear”. We omit for clarity the unique
terminal symbols that are added to each string.

5. EXPERIMENTAL RESULTS
We have produced a robust, scalable implementation of

Algorithm A3 that can be applied to very large wikis, in-
cluding the English Wikipedia. Each revision is parsed in
a sequence of tokens, which consists of white-space sepa-
rated sequences of non-whitespace characters: tokens thus
loosely correspond to words. This tokenization step could
be improved by considering the structure of the MediaWiki
markup language. We do not use individual (unicode) char-
acters as our unit of tokenization, for two reasons. First,
using words as attribution units tends to produce more nat-
ural results, since contributors typically create or rearrange
content in word units; word-level attribution is also easier
to display via coloring or other visual cues. Second, using
individual characters as tokens would lead to a larger size
for the trie summary, as the trie would grow deeper.

The algorithm uses as rarity function the length of a token
sequence, and a configurable threshold. The algorithm does
not use a rarity function that depends on token (word) fre-
quency, chiefly to save space by avoiding the need to store
the frequency of a large number of words; we may revisit
this decision at a later time. For each wiki page P, the
algorithm stores in persistent storage the pair (n, Tn), con-
sisting of the index n of the last revision of P that has been
processed, along with the labeled trie Tn representing the
summary. When a new revision ρm for P is produced, with
m > n, the algorithm processes all revisions ρn+1, . . . , ρm:
there can be multiple revision to analyze, since the algo-
rithm may have been inactive at times (due to system main-
tenance), or indeed, it may not have run yet on the page.
Each of ρn+1, . . . , ρm is fed to the algorithm; the algorithm
computes and stores the origin of these revisions, and finally
stores (m, Tm) associated with page P.

The code, and a demo of this implementation
is available at https://sites.google.com/a/ucsc.edu/

luca/the-wikipedia-authorship-project, along with all
the data used for the experiments reported here. We pro-
vide experimental data computed on two revison datasets:

• Dataset A: articles with more than 200 revisions in files
wiki-00000066.xml.gz and wiki-00000193.xml.gz. The
dataset consists of 78k revisions in 75 articles.

• Dataset B: articles with at least 1000 revi-

https://sites.google.com/a/ucsc.edu/luca/the-wikipedia-authorship-project
https://sites.google.com/a/ucsc.edu/luca/the-wikipedia-authorship-project

Algorithm A2s Origin via Tichy matching with all preced-
ing revisions, implemented via suffix trees.

[t] Input: A sequence ρ = ρ0, ρ1, ρ2, . . . , ρm of revisions,
with ρ0 = ∅, along with a rarity function γ and a threshold
∆.
Output: An origin labeling Θ for ρ.

1: Let S0 be the empty suffix tree.
2: for revisions n = 1, 2, 3, . . . do
3: k := 0
4: while k < len(ρn) do
5: Search in Sn−1 for the longest matching prefixes

of tk, tk+1, . . . , tlen(ρn)−1
. Let tk, . . . , tm be the

longest matched prefix, and let i1, . . . , ik
6: if A = ∅ ∨ γ(tk, . . . , tm) ≥ ∆ then
7: for i ∈ {0, 1, . . . ,m− k} do
8: Θ(n, k + i) := min1≤j≤p Θ(nj , kj + i)
9: end for

10: k := m+ 1
11: else
12: Θ(n, k) := n
13: k := k + 1
14: end if
15: end while
16: Update Sn−1 by adding all the suffixes of of ρn, yield-

ing Sn.
17: end for

sions occurring in files wiki-00000066.xml.gz, wiki-
00000193.xml.gz, wiki-00000134.xml.gz and wiki-
00000384.xml.gz. The dataset consists in 50 revisions.

The above *.xml.gz files were chosen at random among the
first 1000 files obtained by splitting in 100-page portions
a 2010 dump of the English Wikipedia. Unless otherwise
noted, we provide results for a rarity function equal to
length, and threshold 4.

Content aging. In the editing of Wikipedia revisions, it
occasionally happens that vandals introduce vast amounts
of spurious content. This content is almost immediately re-
moved by editors or non-vandal users. Yet, since our algo-
rithms store a representation of the entire history of each
page, that spurious content would persist indefinitely in our
trie summary. This would offer an avenue to vandals for
severely impacting our performance. To limit this effects
of vandalism, our implementation discards content that has
not appeared in any recent revision: this is acceptable in
practice, since content that has been long removed from a
page is unlikely to be re-inserted. To this end, we label every
node of the trie T used in Algorithm A3 with the node age,
consisting of a pair (N,T). The integer N and the times-
tamp T represents, respectively, the most recent revision in-
dex and the most recent time when the node was traversed
by the algorithm. Once Algorithm A3 has processed a revi-
sion n produced at time Tn, and before writing back the trie
to persistent storage, we prune from the trie all the nodes
that have both n −N > ∆N and Tn − T > ∆T , where the
thresholds ∆N and ∆T are configurable. Table 8 compares
the difference in attribution and size arising from different
aging thresholds. The table was obtained from dataset A.

Attribution comparison among A0, A1, A2. Fig-
ure 9 plots the difference in the attributions computed by

attribution
difference trie size

∆N = 200, ∆T = 180 days 1.3 % 70 %
∆N = 100, ∆T = 90 days 2.1 % 55 %

Figure 8: Attribution difference, and trie size, for
various aging thresholds, as compared to no content
aging.

2 3 4 5 6 7
78
79
80
81
82
83
84
85
86
87

%
 o

f
m

is
tm

a
tc

h
e
s

A0 vs A1

2 3 4 5 6 7
Length rarity threshold

0

1

2

3

4

5

6

7

%
 o

f
m

is
tm

a
tc

h
e
s

A1 vs A2

Figure 9: Difference between attribution by A0,
A1 and A2 for length rarity function with various
threshold.

Algorithms A0, A1, and A2, for a rarity function equal to
token sequence length, and various values of rarity thresh-
old. These comparisons have been done without using any
age-driven pruning of trie nodes in Algorithm A1, to make
the comparison fair across algorithms. The figure gives the
tokens with different attribution, as percentage of the total
tokens, for dataset A. As we can see, Algorithm A1 com-
putes an attribution that is over 75% different from the one
computed by Algorithm A0. This is due to the fact that
Algotithm A0 considers new any content that is re-inserted
after a deletion. As an example, Figure 10 plots the size of
the revisions, and summary trie, for the Wikipedia article
on “Dance Dance revolution”; the frequent dips in revision
size correspond to content deletions by vandals. From Fig-
ure 9 we see also that the attribution difference between
algorithms A1 and A2 is of only a few percentage points,
when the length of minimally interesting matches is 3 or
more. The advantage of Algorithm A1 over A2 lies in its
efficient implementation.

Size of trie and suffix tree summaries. Figure 11
plots the ratio between the size of the trie serialized in Json,
and the average size of the last 10 revisions, for aging values
∆N = 100 and ∆T = 90 days and dataset B. We use the
average size of the last 10 revisions, rather than the size
of the last revision, to avoid very large spikes in the ratio
when the content of a revision is deleted by vandals. The
average ratio is approximately 10; the ratio can be reduced
to about 3 by compressing the trie serializations with gzip.
This is a very practical amount of storage, which is dwarfed
in the English Wikipedia by the amount of storage required
to store all revisions of every page.

0 500 1000 1500 2000 2500 3000
Revision number

101

102

103

104

105

106
S
tr

in
g
 l
e
n
g
th

 (
#

 o
f

sy
m

b
o
ls

)
Article "Dance Dance Revolution"

summary trie json
revision of the article

Figure 10: Length of revisions (in number of
charachters) of the article “Dance Dance Revolu-
tion” compare to length of json string with the trie
summary. Dips in the revision size indicate content
deletions due to vandalism.

0 200 400 600 800 1000
Revision number

100

101

102

R
a
ti

o

Figure 11: Ratio between the trie summary size and
the average size of the last 10 revisions.

In Figure 12 we compare the size of the trie summaries
used by Algorithm A3, with the size of the suffix tree sum-
maries used in implementing Algorithm A2. Dataset B was
used, and no content aging was applied, to make the com-
parison fair. The trie sizes are tied to the change between
revisions, and since we discard text that has been dead for
long, they tend to be a constant multiple of the revision size.
On the other hand, the suffix tree sizes are proportional to
the total size of past revisions.

Time performance. Figure 13 summarizes the time per-
formance of Algorithm A3, as a function of revision size. In
the figure, the algorithm time is the time required by steps
3–21, as well as content aging, of A3; the serialization time
is the time required for serializing and deserializing the trie
into json. As we see, these two times are of the same order
of magnitude, indicating that there is limited scope for im-
provement by optimizing the implementation of steps 3–21.
The figure was obtained using dataset A.

6. DISCUSSION
We have considered so far revisioned content that con-

sists in a single revisioned entity. Most revisioned content,
however, consists of multiple entities: a national Wikipedia
consists of a set of pages, each of which is versioned, and
a code repository similarly consists of multiple files, each
revisioned. Furthermore, in modern revisioning systems
such as git (http://git-scm.com), the various revisions
are organized in branches. Since code is commonly copied
across files, and to a lesser extent, content is moved across
Wikipedia pages, an origin analysis that spans a whole
repository is often desirable.

We can perform such repository-wide analysis with the
algorithms we discussed in this paper, by considering the

0 100 200 300 400 500 600
Revision number

102

103

104

105

106

107

N
u
m

b
e
r

o
f

n
o
d
e
s

suffix tree for A2
trie for A3

Figure 12: Size comparison between trie summaries
for A3 and suffix tree summaries for A2.

0 1000 2000 3000 4000 5000 6000 7000 8000
Average revision size (in words)

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
e
co

n
d
s

algorithm time
serialization time

Figure 13: Time performance of algorithm A3. Each
point in the plot represents an article, with the av-
erage revision size on the X axis. The times re-
quired by attribution computation, and trie serial-
ization and deserialization, are reported on the Y
axis.

stream of all revisions ρ0, ρ1, ρ2, . . . in the order they are
created, regardless of the entity (page, or file, or branch) to
which they belong. The content of each new revision will
be compared with all previous content, assigning origin via
matching with corresponding occurrences. The algorithms
could be improved by considering as more likely the matches
that relate different versions of the same entity, as compared
to matches that relate different entities. For software repos-
itories, which are of moderate size, and where revisions are
typically generated at low speed (even large industrial code
bases have intervals between revisions of several seconds),
such a global origin analysis would be feasible. In the En-
glish Wikipedia, however, several revisions per second may
be created. From our experimental data, the size of a global
summary would about ten times the cumulative size of the
most recent revisions of all pages, leading to a size of approx-
imately one terabyte. This size exceeds the RAM memory
easily available in a single, low-cost host. The design of a
system capable of comparing, in real time, every revision of
Wikipedia with the whole of its past history would be chal-
lenging, and the result expensive to operate. For this reason,
in our implementation we have opted to compare new revi-
sions only with the previous content of the page to which the
revisions belong. If required, we will address content moved
across pages via specialized tools.

7. REFERENCES
[1] B. Adler and L. de Alfaro. A content-driven

reputation system for the Wikipedia. In WWW 2007,
Proc. of the 16th Intl. World Wide Web Conference.
ACM Press, 2007.

[2] B. Adler, L. de Alfaro, I. Pye, and V. Raman.
Measuring author contributions to the Wikipedia. In

http://git-scm.com

WikiSym: International Symposium on Wikis, 2008.

[3] B. T. Adler. WikiTrust: Content-Driven Reputation
for the Wikipedia. PhD thesis, UC Santa Cruz, 2012.

[4] P. Buneman, S. Khanna, and T. Wang-Chiew. Data
provenance: Some basic issues. In FST TCS 2000,
Lect. Notes in Comp. Sci., pages 87–93.
Springer-Verlag, 2000.

[5] P. Buneman, S. Khanna, and T. Wang-Chiew. Why
and where: A characterization of data provenance. In
ICDT 2001: Intl. Conf. on Database Theory, volume
1973 of Lect. Notes in Comp. Sci., pages 316–330.
Springer-Verlag, 2001.

[6] A. Forte and A. Bruckman. Why do people write for
the Wikipedia? Incentives to contribute to
open-content publishing. In SIGGROUP 2005
Workshop: Sustaining Community, 2005.

[7] J. Freire, D. Koop, E. Santos, and C. Silva.
Provenance for computational tasks: A survey.
Computing in Science and Engineering, 10(3), 2008.

[8] D. Gusfield. Algorithms on Strings, Trees, and
Sequences. Cambridge University Press, 1997.

[9] E. McCreight. A space-economical suffix tree
construction algorithm. J. ACM, 23:262–272, 1976.

[10] L. Moreau, P. Groth, S. Miles, J. Vazquez-Salceda,
J. Ibbotson, S. Jiang, S. Munroe, O. Rana,
A. Schreiber, V. Tan, and L. Varga. The provenance
of electronic data. Communications of the ACM,
51(4), 2008.

[11] O. Nov. What motivates wikipedians? Comm. ACM,
50(11):60–64, 2007.

[12] Y. Simmhan, B. Plale, and D. Gannon. A survey of
data provenance in e-Science. ACM SIGMOD Record,
34(3), 2005.

[13] W. Tichy. The string-to-string correction problem
with block move. ACM Trans. on Computer Systems,
2(4), 1984.

[14] E. Ukkonen. On-line construction of suffix trees.
Algorithmica, 14:249–260, 1995.

[15] P. Weiner. Linear pattern matching algorithms. In
Proc. of the 14th IEEE Symp. on Switching and
Automata Theory, pages 1–11, 1973.

	Introduction
	Definitions
	Conceptual Algorithms
	Comparison with preceding revision
	Earliest plausible attribution
	Tichy-based matching
	Properties

	Efficient Algorithms
	Algorithm A3
	Tichy matching

	Experimental Results
	Discussion
	References

