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1 INTRODUCTION

Extreme value analysis plays a key role in the environmestignces. Extreme natural phe-
nomena, such as severe droughts, unusually low tempesatuterrential rains, are rare but
catastrophic events, which can result in large economisesnd high cost in human life.
Therefore, risk analysis to quantify the uncertainty asged with such extreme events is both
scientifically relevant and practically important for effiee environmental policy making.

In extreme value analysis for environmental problems egkties in very large or very
small values of variables associated with a physical pmyoghkich is typically recorded over
both time and space. Statistical inference and predictomafre events is complicated by the
fact that observations corresponding to the center of thieillition, which are the most abun-
dant, carry little information about the tails. This im@iparticular challenges for the study
of dynamical variations of the process under study. Foraims, rainfall records could show
a steady average behavior over time, while the amount ofalaof the largest storms may be
increasing. Capturing also spatial dependence for presessserved at a number of monitoring
stations adds to the challenge for modeling and inference.

The literature on modeling extremes associated with inadeéget and identically distributed
observations is fairly well developed; see, e.g., Kotz adidtajah (2000) and Coles (2001).
With the supporting theoretical results dating to Fishet &ippett (1928), the traditional ap-
proach is to model blockwise maxima using the generalizéceme value distribution. An-
other commonly used approach involves modeling the exceedaover a given threshold us-
ing a generalized Pareto distribution (Pickands, 1975;d0vand Smith, 1990). The related
Bayesian literature comprises mainly parametric modeds,(€oles and Powell, 1996; Stephen-
son and Tawn, 2004), an exception being Tressou (2008) wiwrparametric mixtures of
Pareto distributions are used to model threshold exceedanc

There is a relatively smaller collection of modeling metiddr extremes from stochastic



processes evolving over time and space, although this istreaesearch area in the more
recent literature. The Bayesian paradigm offers clear rtdgges in this setting, since it allows
exploration of flexible hierarchical model formulationgdgeroper incorporation of full predic-
tive uncertainty. The main theme of Bayesian modeling aptes has been to extend in a
hierarchical fashion the parametric distributions useextieme value analysis. In particular,
the observed block maxima or threshold exceedances aeatlypassumed to arise condition-
ally independent from the generalized extreme value orrgdéimed Pareto distribution, respec-
tively, with temporally and spatially dependent paramet€&€ommon approaches to introduce
the spatio-temporal dependence to the parameters includierdc linear models (Huerta and
Sans0, 2007) and Gaussian processes (Cooley et al., 280§ ;a8d Gelfand, 2009). The ap-
proach in Sang and Gelfand (2010) fits within the same framleviout relaxes the conditional
independence assumption in the first stage of the hieraicimodel. Other more recent con-
tributions include copula-based semiparametric methedsr{tes et al., 2012) and hierarchical
modeling based on max-stable processes (Reich and Shalf), 20

In this paper, we utilize the point process approach to amlyf extremes, an approach
that encompasses the more commonly used methods basedgentralized extreme value or
generalized Pareto distributions. This approach is base@hon-homogeneous Poisson process
(NHPP) model for the exceedances over a high threshold antiihtle of their occurrence. The
theoretical framework has been introduced by Pickandsi(l 9¥hereas applications can be
found in, e.g., Smith (1989), Coles and Tawn (1996), and €oahd Sain (2010).

We build on the nonparametric modeling framework from Waingl.g(2011), where a mix-
ture model for the NHPP intensity was developed to overcdmeréstrictive aspects of the
standard parametric form, most notably, the homogeneitthiintensity of exceedance times.
Here, we focus on the time dimension under the bivariate N&jifffoach and study the practi-
cally important extension of spatial modeling for the exdaaece time intensities. Our objective

is to retain inferential flexibility for the temporal intahgswhile incorporating nonparametric
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spatial dependence into the modeling. To this end, we reptése NHPP density at each site
through a mixture of logit-normal kernels, and use a sp&idkthlet process for the mixing
distributions to drive the nonparametric (non-Gaussiahraon-stationary) spatial dependence.
A prior probability model for the spatial surface of totalceedance intensities completes the
model specification. We develop methods for Markov chain tddbarlo (MCMC) posterior
simulation, and for spatial interpolation of risk assessigeantities for high-level exceedances.
Our illustrative data analysis involves rainfall exceeds) using data from the Cape Floris-
tic Region located in the southwestern coastline of SouticAf The times of exceedances are
based on daily precipitation records from monitoring stagiacross South Africa between year
1950 to 1999. However, the proposed methodology is gegeaglplicable to modeling and
spatial prediction of threshold exceedances from diffetygres of environmental variables.
The outline of the manuscript is as follows. In Section 2, wealop the spatial nonparamet-
ric modeling approach, including an overview of the reléuzackground, details of the model
formulation, and methods for posterior inference. SecBidtustrates the methodology using a

simulated data example and the rainfall data. Finally,i8eet concludes with discussion.

2 METHODS

We begin in Section 2.1 with a brief overview of the point ggsg approach to analysis of ex-
tremes, and of a general framework for Bayesian nonparanmetrdeling under this approach.
Section 2.2 develops the nonparametric spatial model fsemes from environmental time

series. Implementation details regarding posterior st are discussed in Section 2.3.

2.1 Bayesian nonparametric point process modeling for exémes

Consider a sequendej : j =1,...,r} of i.i.d. random variables with distribution functid,

where | denotes the period over which the observatiorkXpis collected. If we restrict atten-
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tion to the observations that fall above a given threshplthe original sample is thinned to
a bivariate point pattern, where each pair comprises the &imd corresponding value of the
threshold exceedance. This point pattern yields a reaiz&tom a two-dimensional point pro-

cess{N(A):Aca={1,...,r} x[u,e)}. Pickands (1971) showed that the limiting form of this

—1/8-1

point process as— « is a bivariate NHPP with intensity functiarm* {1+ o L(y—p) }+ :

wherez, = max{z 0}. Here,p, 0 andg are location, scale, and shape parameters, respectively,
andy is the argument for the threshold exceedance. The shapma@iag is determined by the

tail behavior offy. In particular, ifFp has polynomial tails the& > 0, in which case we say that

Fo is in the Fréchet domain of attraction.

Note that the point process approach provides a compretedngmework for extreme value
analysis, since it implies both the generalized extremeevdistribution for blockwise maxima
and the generalized Pareto for the conditional distrilmuibthreshold exceedances. Moreover,
it has the practically important advantage of using infdioraabout all data points above the
given threshold, rather than just one value per time pertéowever, a key restriction of the
parametric modeling framework arises from the form of thergstotic NHPP intensity, which
is homogeneous in time, whereas recording threshold eaoceed often induces clustering.

In Wang et al. (2011), we have extended the point processoapprfor modeling ex-
ceedances from a general stochastic pro¢¥sst < [0, T|} evolving over time and observed in
a (bounded) time interval. Hereinafter, we will 4yéel] to represent the time period of interest;
inference on the original time scale can be obtained thratrgightforward transformation. The
pairs{(t,Y;) :i =1,...,n}, wheret; is the time at which théth exceedance over threshald
occurred and; = X;, is the value of thé-th exceedance, are again taken to be a realization from
a NHPP with support om = [0,1] x [u,»). However, to provide more flexible inference than
the asymptotic parametric form, a nonparametric mixturgehds formulated for the NHPP
intensity functionA(t,y). The approach is based on methodology originally develapé&abt-

tas (2006) and Kottas and Sans6 (2007) for temporal anchspdPP intensities, respectively,



and more recently extended by Taddy and Kottas (2012) to edad#dPPs.

The model formulation utilizes the representation of a NHiftBnsity function through a
density function and a parameter that defines the total sitienver the observation window.
Specifically,A(-) =y f(-), wherey= [, A(t,y)dtdy is the total intensity of exceedances, and
f(-) is a density function or, which fully controls the shape of the intensity functiorerdte,

a rich prior for the NHPP intensity can be constructed thtoagionparametric mixture model
for the NHPP densityf (t,y) = f(t,y;G) = [k(t,y| 8)dG(0). Herek(t,y| B) is a kernel density
on 4 indexed by parameter vectBy andG is a random mixing distribution.

The choice of the Dirichlet process (DP) prior (Fergusory,3)9or the mixing distribution
G results in a DP mixture model fdr(t,y; G) yielding access to well established prior model
properties and methods for posterior simulation. We w&te DP(a, Gp) to denote that a DP
prior is assigned to random distributi@ whereGg is the DP centering distribution arwd
controls how closé is to Gg; large values oftr result in small variability in DP realizations.
The DP constructive definition (Sethuraman, 1994) is rengalf its structure and will also be
key for the later development of the nonparametric spat@eh According to this definition,
if G~ DP(a,Gp), G admits an (almost sure) representation of the fgnth, wid,, where the
point masses(d1,9>,...}, form an i.i.d. sample fronGp, and the corresponding weights arise
through a stick-breaking construction. Specifically,= vi and forl > 2, wj = v [, (1—w),
where{vi,Vvo,...} is another i.i.d. sample fromBeta(1,a) distribution (also, independent of
the{d1,9>,...} sequence). The discreteness of DP realizations is an agket¢ontext of non-
parametric mixing for applications where clustering of thservations is practically relevant as
in, e.g., density estimation, classification, and regogsdin particular, the precision parameter
a controls the number of effective distinct mixture compasde.g., Escobar and West, 1995).
For instance, for density estimation problems with modgyaiarge sample sizes, a useful
approximation to the prior expectation for the number ostéus is given by log{(a +n)/a}.

Regarding the choice of the DP mixture kernel, care is netalbdlance flexible inference



and the implied tail behavior of the underlying stochastmcess marginal distributions. Wang
et al. (2011) argue for a product kernel foktt,y) = ki (t)ko(y), with a beta density fok; (t),
andky(y) = 0*1{1+EO*1(y—u)}_1/E_1, for y > u, i.e., a generalized Pareto density with
location parameter set to the threshold valudhe DP mixing is with respect to both param-
eters of the beta kernel component, and the seate,0, and shape§ > 0, parameter of the
generalized Pareto component. Under this specificaticanitoe shown that the corresponding
marginal distribution foiX; belongs to the Fréchet domain of attraction, that is, thgacamet-

ric mixture prior models an underlying stochastic procesh tveavy tailed behavior.

2.2 The modeling approach

The nonparametric mixture modeling framework outlinedéct®n 2.1 combines the appealing
features of the point process approach to extreme valugsasalith the inferential power of
Bayesian nonparametric prior models. To our knowledgeafipoach proposed in Wang et al.
(2011) provides the first attempt to fully nonparametric elody for extremes from a single
time series, with flexible resulting inference for the jointensity of extremes, the marginal
intensity over time, and for different types of return legatves.

Here, we study more general spatio-temporal data strigiivelving threshold exceedances
from environmental processes observed at multiple sdatiations over a certain time interval
(which, again, without loss of generality is transformedad]). More specifically, lets  R?
be the geographic region under study, asd= (s, .. ., Sm) themdistinct locations ins where
the process is observed. Hence, the full data set compfisés;),Yi(sj)) :i=1,...,nj; j =
1,...,m}, wheren; = ng, is the number of threshold exceedances at locagjioi(s;) is the time
at which thei-th exceedance occurred at locatgnandY;(s;) is the value of that exceedance.
For such problems, itis of interest to explore spatial modegdxtensions for the NHPP intensity

of extremes while retaining the flexibility of a fully nongemnetric inference framework. This



is a non-trivial extension and, in this work, we take the #ts{p in this direction by focusing on
the time dimension under the point process approach.

We therefore consider only the times of threshold exceeslafigs;) :i =1,...,n;} from
each observed spatial locatiepe s, for j = 1,...,m. Following the definition of the bivariate
NHPP assumed under the general approach, for any genesitiolos € s, the point pattern
{ti(s) : i =1,...,ns} is a realization from a temporal NHPP @ 1]. The corresponding tem-
poral intensity function at locatiosis denoted bys(t), where this is the appropriate marginal
of the bivariate NHPP intensitys(t,y). Here, we seek to develop a nonparametric prior model
for {As(t) 1t € [0,1];s€ s}, that is, for a collection of temporal NHPP intensities euud)
over (continuous) space. The key inferential objectivestamofold: to allow general time-
inhomogeneous shapes for the intensity of threshold exceed at each specific spatial lo-
cation; and to enable flexible inference for these spatialying temporal intensities and for
implied risk assessment functionals. The implicit assuompis that of a smooth evolution of
the intensities across space, although the proposed nadbEfspatial dependence is nonpara-
metric relaxing both of the customary assumptions of Gangtyi and stationarity.

Regarding the choice of threshaldwe view its specification as a component of scientific
or policy making considerations for the particular problanihand. Hence, for any substantive
application of the methodology, the threshold would be ehaa consultation with the domain
experts. The threshold value can be site-specific, andglisw we envision the model to be
applied in general settings. Since the examples of SectiondBve a small geographic region,
we work with a constant threshold value across space forlstrative data analyses, and

without loss of generality, retain the non-spatially vagynotation for the threshold.

2.2.1 Mixture modeling for the temporal intensity of threshold exceedances

To build the prior model fo{As(t) : t € [0,1]; s€ s}, we follow the strategy discussed briefly

in Section 2.1. In particular, for any spatial locatisk s, we utilize the decomposition of
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the intensity function into the total intensity and the NHPP density functiofy(t) on [0, 1],
such that\s(t) = ys fs(t). Here,ys = fol)\s(t)dt, whereys < o based on the NHPP definition

that imposes local integrability for the intensity funectioNow, for any observed point pattern

{ti(s) : 1 =1,...,ns} of exceedance times at locatisrthe NHPP likelihood can be written as
Ns

L(As(-)) = L(Ys, fs(+)) O exp(—ys)Ye® rl fs(ti(s)). 1)
=

The full likelihood requires an extension of (1) to includhe tdata from all locations, but this
expression highlights the practical utility of thies, fs(-)) representation for the NHPP inten-
sity. Namely, it allows us to build the model for the spatiaarying intensities through a
nonparametric prior model for spatially dependent deesitA prior model for the spatial sur-
face{ys:se€ s} will also be needed, but owing to the factorization in (1§ #stimation of its
parameters proceeds independently of the model for the Nid¢RBities.

We propose a mixture model formulation for the spatiallyyimg NHPP densitiesfs(t) =
f(t;Gs) = [K(t | 8)dGs(B), for t € [0,1] ands e 5. Here,Kk(t | ) is the parametric kernel
density supported by the unit interval, a@d is the random mixing distribution indexed by
spatial locatiors. To meet our inferential goals, we need an appropriate kelerwsity that
enables general, possibly multimodal shapes for the maxdiensity at any location, as well
as a nonparametric prior model for the (uncountable) codlie®f mixing distributionsG; =
{Gs:s€ s} that allows flexible inference for spatial interpolatiortioé intensity of extremes.

Regarding the mixture kernel, the Beta distribution (useldattas, 2006; Wang et al., 2011)
is a natural choice given the range of shapes the Beta deawdifgves, and the fact that it is
directly bounded td0,1]. However, the lack of a conditionally conjugate distributifor the
parameters of the Beta density makes implementation oépossimulation challenging even
when modeling a single density with a nonparametric mixtd®eta densities. This challenge

is exacerbated in terms of both modeling and implementatiamference in our context which



involves a collection of spatially related densities. Henee work with a more convenient

modeling platform based on a logit-normal kernel,
k(t | 8,7%) = (2rm?) Y211 —t) Lexp{—[log(t/(1—1)) —6]%/21%}, t€[0,1]. (2)

Note that this density arises through the logistic tramefition,t = exp(z)/(1+ exp(z)), of a
N(8,T?) density forz. As discussed below, this provides a significant advantaged formu-
lation of the nonparametric prior model f@&; and in MCMC posterior simulation, since we
can work with a (spatially dependent) mixture of normalstfa logit-transformed exceedance
times. The potential drawback of the logit-normal kerneht it is susceptible to boundary ef-
fects due to the logit transformation, log@it= log(t/(1—t)), and the normal distribution tails.
However, in practice, the nonparametric mixture structll@ws robust inference under both
kernel choices provided the data do not maintain high inty@as the edges of the observation
window; see, e.g., the empirical comparison in Taddy andasq2012).

Now, for any spatial locatioe € s, the proposed mixture model for the density of threshold

exceedance times is expressed as
fo(t) = (t; Go,T2) = / K(t | 6,12)dGs(B), t € [0,1] @3)

wherek(t | 8,T?) is given by (2). Therefore, the NHPP density is modeled witkraiparametric
mixture based on nonparametric mixing with respect to dmyivcation parameter of the logit-
normal kernel. This mixture model formulation strikes agbalance between model flexibility
and computational feasibility. Location mixtures of legitrmals can capture non-standard
density shapes, including skewness or multimodality; h@rethis may come at the expense
of a larger number of mixture components than what would lexleé under the model that

includes mixing also with respect to the scale parametdrefdgit-normal kernel. Although it
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is possible to extend the spatial nonparametric model tadedocation-scale mixing, this more
general representation requires a more complex prioSfoand more complicated methods
for posterior simulation. The scale parametéof the kernel can be viewed as a bandwidth

parameter, which is estimated from the data based on arsgngarmma prior.

2.2.2 The spatial nonparametric prior model

To build the spatial dependence in the prior model for theghold exceedance time densities,
{f(t;G,1%) :s€ 5}, we use a spatial DP prior (Gelfand et al., 2005) for the ctithe of corre-
sponding mixing distribution&; = {Gs: s€ s }. The spatial DP defines a nonparametric prior
for the distribution of random fields, and it can thus be usedevelop semiparametric models
for spatial or spatio-temporal data by replacing custon@ayssian process (GP) specifications
for spatial random effects distributions. Central to itselepment is the DP stick-breaking def-
inition discussed in Section 2.1. Under the standard magtéhg with DP priors, the locations
9, in the constructive definition are either scalar or vectdued, and thu§sg is supported by a
possibly multivariate, albeit finite dimensional, Euckaespace.

To model nonparametrically the distribution of a randomdfieVer regions ¢ R?, Gy is
extended to a parametric stochastic pro€ags over the region of interest, a natural choice for
which is a GP (possibly after transformation of the spaaaldom effects parameters). Hence,

the (almost sure) representation for spatial DP prior zatibns becomes

(35 = ZW| 519|_’5
|=

where thed, ; = {9/(s) : sc s} are independent realizations froBy ;. We take a GP for
Go s with constant mean functiofy constant variancg?, and isotropic exponential correlation
function, that is, Cor,(s),3(s) | p) = exp(—p||s—S||), wherep > 0 is the range parameter.

As discussed in Section 2.3, the full Bayesian model is cetedlwith priors for the precision
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parameten and for the GP hyperparametegss= (2,n?,p).

Therefore, the spatial DP prior model involves a countalildure of GP realizations with
weights defined through stick-breaking as in the standardpfiét. Consequently, for any
finite set of spatial locationgsy, ..., S ), the spatial DP prior induces a DP prior for the finite
collection of mixing distribution$Gs, ..., Gs ); the centering distribution of this DP prior is the
r-dimensional normal induced by the GP used®pr;. This is a key property of the spatial
DP prior with respect to both simulation-based model fittng predictive inference for spatial
interpolation. Spatial DPs provide an illustration of degent DPs (MacEachern, 2000) in
that they yield a stochastic process of random distribgtiome at each location ). These
distributions are dependent but such that, at each indereytide distribution is a univariate DP.

Hence, for any locatios € s, the spatial DP prior yields a location DP mixture of logit-
normals following the formulation in (3). The DP mixture nebdhterpretation is also valid for
any finite collection of locations, with the additional stture of spatial dependence induced to
the threshold exceedance time densities by the spatiahdepee in the mixing distributions.
It is important to note that the spatial DP generates naotesiay spatial surface realizations
with non-Gaussian finite dimensional distributions, evdremwthe centering GP is isotropic.
Moreover, ifGs andGy denote the marginal distributions at generic locatisasds, then the
continuity of thed, ; (implied by the exponential correlation function®§ ;) yields that, as the
distance betweesiands’ gets smaller, the difference betweBnandGy gets smaller. Formally,
for anye > 0, limys_g||0Pr(£ (Gs,Gs) < €) = 1, wherec is the Lévy distance (MacEachern,
2000; Gelfand et al., 2005); see Guindani and Gelfand (2fa0@)detailed study of smoothness
properties for spatial DP realizations. Hence, the levelegdendence betwe&® andGy, and
thus betweeri (t; Gs, 1%) andf (t; Gy, T?), is driven by the distance between the spatial locations.
The practical implication is that in predictive inferencg §patial interpolation, we learn more
from locationss' nearbys than from more distant locations, a desirable property torsities

that are expected to evolve relatively smoothly acrossespac
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2.2.3 The spatial model for the total intensity of thresholdexceedances

To complete the model specification for the spatially depemndntensity functions, we turn
to a spatial probability model for the total intensity seda Here, we work with a GP-based
hierarchical specification, using a GP prior for the logeimgity surfacd3(s) =log(ys) :s€ S }.
The first stage arises from the NHPP assumption, namely,itbereed exceedance counts are
assumed Poisson distributexl,| 3; ne. Poissoliexp(B;)), for j = 1,...,m, whereBj = log(ys;).
The GP prior for{B(s) : s€ s} is assumed to have constant m@amonstant variance?, and
exponential correlation function egpy||s—/||). Finally, we place a normal prior (h:h;\,g\z)

on A, an inverse gamma prior I@,2,b,2) (with meanb, /(a2 — 1) provideda,. > 1) onk?,
and a uniform prior Unif0, by) on Y. MCMC posterior simulation, as well as specification of
the hyperpriors fol, k2 andy, is discussed in the Appendix.

We note that the exceedance counts will typically take smoathoderate values. If the
particular application involves also a small number of gpp&dcations (as for the data sets con-
sidered in Section 3), the relatively simple model spedificadiscussed above is arguably a
suitable choice. For problems involving data from a largenbar of locations and/or where
physical information is available, more structured GP meaictions or non-stationary co-

variance functions can be entertained. The fact that thee prodel for the total intensities is

specified independently of that for the NHPP densities issaetan this respect.

2.3 Posterior simulation and inference for risk assessment

Inference for the intensity of extremes across space regjpiosterior simulation for: the ran-
dom mixing distributionGs over a number of spatial locatiossincluding interpolation at new
locations; the spatial DP prior hyperparameters; and tmanpeters of the GP-based spatial
model for the total intensity of exceedances.

In general, nonparametric Bayesian inference for relaisttiloutions (indexed by time,
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space, or covariate values) requires some form of rephicatilithough imbalance in the repli-
cate responses can be handled. In the absence of repliqadsterior simulation can be overly
sensitive to the prior specification and predictive infeeeat new index points will inevitably
fall back exclusively to the prior. In our context, the regliion is provided by the set of thresh-
old exceedance time§ti(sj) :i=1,...,n;}, at each observed sigg, j = 1,...,m.

However, in contrast to earlier applications of dependenparametric prior models to geo-
statistics problems, our observations are random timeggras the events of the underlying
NHPP at each site. This aspect of the data structure createdlange in matching the observed
times to form response vectors across sites. An option isstoatize the time interval under
study into time units specified such that at most one exceed@me is included in each time
unit from each location; the default choice would be the ahivhich the data is recorded, e.g.,
a day for daily rainfall records. We can then construct tondered response vectors, of dimen-
sion between 1 anah, that include an entry for all sites for which there was areexiance at the
specific time unit. For the hierarchical data model, kil response vector is assigned a vector
of mixing parameter®y(Sops) = (0k(S1), ---, Ok(Sm) ), Where theBy(Sops) arise conditionally in-
dependent from the DP prior induced by the spatial DP at thovef observed locatiorngys
This hierarchical model formulation is along the lines inf@ed et al. (2005) and Kottas et al.
(2008) for independent and temporally dependent repbcagspectively.

Our data examples involve small exceedance counts oveimtieepieriod of interest; with
daily records over 50 years, the realizgdange roughly between 15 to 250. Hence, construct-
ing the replicates as discussed above results in respoos@avavith a very small number of
entries relative tan. We are thus working with data structures where replicas@resent, but
there is essentially only a single observation at any loocatiHere, we apply the spatial DP
model under this scenario, where thth observation at thg-th location,t;(s;j), is assigned a
vector of mixing parameter$);j (Sobs) = (6ij(S1), ---, 6ij(Sm)), from which only6;j(s;j) is used

in the hierarchical model representation. A similar apphot implementing a dependent DP
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prior model for time series problems can be found in Rodrgared ter Horst (2008).
More specifically, let;j = logit(ti(sj)), fori =1,...,n;j; j =1,...,m, be the logit-transformed

observations. Then, the hierarchical model for the datdbeaexpressed as

ind. : .

| 8ij(sope) 2 " N(Bij(5).1D), i=1..n;j=1..m
i.i.d. : :

Bij(Sobs) | Gsype G i=1,..,n;j=1..m

whereGg,. | a,@ ~ DP(a,Gog,,.), that is, the DP prior induced by the spatial DP. There-
fore, Go s, IS anm-variate normal distribution with mean vectft,, and covariance matrix

2 =n?R(p), with R;j:(p) = exp(—p||sj — sy), for j,j’ = 1,....m. Here, 1y denotes amt

dimensional vector with all its elements equal to 1.

We use blocked Gibbs sampling (Ishwaran and James, 200M@MC posterior simu-
lation. The approach is based on a truncation approximatidhe DP prior forGs,, . defined
throughGY = SN.p O, (sspe)» Where thed (sops) = (d1(s1), -, D1(Sm)) are i.i.d. realizations
from Gg s,,» and the weightp = {p, : | =1,...,N} are defined using the DP stick-breaking con-
struction subject to the constraipt = 1 — lez‘ll pi. The truncation levelN can be chosen to
any desired level of accuracy, using standard DP prop€gigs Ishwaran and Zarepour, 2000);
N = 60 was used for both data examples of Section 3. Then, thelmadée fit to the data
without the need to impute the mixing parameter vec8yr&ops). To this end, we introduce
configuration variables = {Lj; :i=1,...,n;; j =1,...,m}, whereL;; =1, for | = 1,...,N, if

and only if8;j (Sobs) = 91 (Sobs). HeNce, the hierarchical model for the data becomes

Zj | {91(sopg)}, Lij, 12 " N@L(sj),1?), i=1..n;j=1..m @
Lij | p LLd. Z|N:1p|5|(Lij) i=1..n;j=1..m

where 3 (Sops) | (pi'irifj' Gos,e for I =1,...,N, and the prior fomp, givena, is a generalized

Dirichlet distribution (Ishwaran and James, 2001). Thedrighical model is completed with
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hyperpriors for the spatial DP parameters: an exponential for a, a normal prior Nmz,Sf)

for {, an inverse gamma prior @2, b,2) for n2, and a uniform prior Unffo, by) for p. More-
over, an IGa., b,2) prior is assigned to?. The Appendix provides details on MCMC posterior
simulation for model (4), as well as on specification of thensrfor its hyperparameters.

The resulting posterior samples can be used to extend theeimde to spatial interpolation
based on a set ™ new locationssh,ew= (51, - - -, 5v). Spatial interpolation for the total intensity
surface{ys: s € s} proceeds through standard GP predictive computing baségeomplied
conditional normal distribution fofB(51), ..., (3u)) given (B(s1),-..,B(Sm)). In Section 3, we
illustrate with posterior mean estimates for fhyg: s€ s } surface.

GP predictive calculations are also central for spati@rmlation of the NHPP densities, in
conjunction with the spatial DP structure for the set of mgxdistributions that includes the new
sites. Specifically, under the DP truncation approxima@iﬁ)b&%ew) = Z|N:1 P1O(3 (Sop9),91 (Snew))
where now the 3| (Sops), I (Snew)) arise independent from am-+ M)-variate normal distribu-
tion with mean vecto 1. and covariance matrix with structure that extends the one in
Go s, HeNce, having obtained posterior samples fordh&ons) (andp), the additional sam-
pling needed to complete the posterior realizationﬁégmsnew) is from M-variate conditional
normal distributions to imput® (Shew) givend (Sops), forl =1,...,N.

With posterior samples for the mixing distribution avalaht any desired set of sites, we
can report different types of risk assessment inferenceafp (observed or new) sit point
estimates for the density or intensity of exceedance tinaesbe obtained along with corre-
sponding uncertainty bands. This inference is immediaimfthe definition of the mixture
model for the NHPP density functiori(t; GY,1?) = S|\, pik(t | 9(s),7?), or intensity func-
tion, ysf (t; GY, 12). Using the NHPP definition, we can compute risk surface egésmdefined
through the probability of a specific number of thresholdemdances within any time interval
of interest. For both data examples of Section 3, we illtstnath the probability of at least one

exceedance in a given month across a number of years. Létiing) denote the time inter-

16



val of interest (e.g., a specific month), the risk surfacéphility of at least one exceedance is
given by 1—exp(—ys i f (t; GY, 1%)dt) = 1—exp{—ys 3 [L, P (JZK(t | 81(s),T)dt)}, with each
integral term readily computed through a difference of twonmal cdf values. Our illustration
represents an admittedly narrow example of risk assesssiroe inference for the risk surface
probability is not accompanied by impact analysis and/dnetability evaluation. The results
presented here are merely meant to demonstrate the capgitigynonparametric modeling ap-
proach for flexible inference which can potentially be pthitethe context of a broader analysis

for problems that involve additional information for morergral risk assessment.

3 DATA ILLUSTRATIONS

3.1 Synthetic data example

Ouir first illustration involves simulated data based on thme region and 25 observed sites
(Figure 1), time interval (years 1950 — 1999), and time uddy§) as the real data discussed
in Section 3.2. The times of exceedances at each site wesraed using a two-state, time-
inhomogeneous Markov chain, with spatial structure intiei by making the transition prob-
abilities spatially dependent. Specifically, lgfs) be an indicator variable such thats) =1

if an exceedance occurs at timand locatiors. Then, the data is simulated according to
Pr(ve(s) = 1] vt-1(s) =K) = ®(U(s)), ke {01},

fort=1,...,T =18 262, and a givervg(s), where®(-) denotes the standard normal cdf,
Hot(s) = 0.25sin4mtT 1) + go(s), andpy ¢ (S) = 0.25co$41tT 1) + €1(s). Here,{ek(s) :s€

s}, for k= 0,1, are independent realizations from an isotropic GP witame2.7, variance

1, and correlation function eXp-0.2||s— S||}. The number of realized exceedances across the

25 sites ranges between 14 and 224. The true probability @xneedances at siteduring
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time period(to+1,...,to+ R) can be expressed conditional on the state at tyria particular,
whenvy,(s) =0, it is given by|‘|§°:+tf+1{1— ®(Mot(s))}, whereas ifuy,(s) =1, it is obtained as
{1 (i (9} MLy {1~ Plhoe(9))}-

Note that the synthetic data generating mechanism is caetplenrelated to our statistical
model. Hence, this simulation example is used to illustiiageflexibility of the nonparametric
mixture model to reconstruct risk surfaces from generattsstic processes. In addition, the
simulation is intended to demonstrate that, despite itsdfikity, the nonparametric model does
not overfit the data. Indeed, although the model can potgntiapture non-stationary and
non-separable behavior, the underlying data generatmgeps is stationary and separable.

We follow the strategy discussed in the Appendix to spedig model hyperpriors. Re-
garding the spatial DP parameters, we place a normal prigrwith mean 0 and variance 10,
an 1G(3,12) prior onn?, and a Unif0, 2.34) prior onp. An exponential prior with mean 3 is
assigned to the spatial DP precision parametdfor the GP-based model for the total intensity
surface, we assign a normal priorXavith mean 374 and variance 10, an [(@,0.52) prior to
k2, and a Unif0,2.34) prior to Y. Finally, the scale parametet of the logit-normal kernel is
assigned an 1G3, 3) prior. We observed significant prior-to-posterior leagfar all the spatial
DP hyperparameters, and fof. As expected, given the nature of the observables for ttaé tot
intensity surface model and the small number of spatialtiong, there was less learning for
parameter,, k2 and); nevertheless, posterior densities for these parametes noticeably
concentrated relative to the corresponding prior derssitie

Figure 2 shows an image plot of the true surface for the nurmbexceedances, computed
from simulated data over a grid of sites, along with the mdmeded point estimate (posterior
mean) for the total intensity surface. Note that, even thdbg data generating process does not
imply that the exceedance counts at a given location folld®oeson distribution, our model
provides reasonable estimates capturing the underlyiatigdpeterogeneity.

Figure 3 presents posterior mean estimates for the rislasirobability of at least one
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exceedance in the month of June in three given years (yed;, 1954, and 1974). These maps
illustrate the ability of the model to capture both tempanakpatial heterogeneity. The point
estimates generated by the model tend to be smoother tharuéhsurfaces, but capture very
well the patterns implied by the underlying stochastic pesc To supplement the graphical
comparison results with a quantitative measure of modelssssent, we report on the coverage
of 95% (equal-tail) credible intervals. Based on a grid af 6Qatial locations (including the 25
observed sites), the proportion of 95% credible intervaisiie site-specific probability of at
least one exceedance that contain the corresponding tlueiga 96.3% for June 1954, 93.3%
for June 1964, and 94.3% for June 1974. A potential concarndmplex Bayesian nonpara-
metric models is that they may overfit the data with undeg&rabplications in prediction. In
this respect, the results above are encouraging, sincathadse from a stochastic mechanism

with simpler structure than what the spatial nonparametiiture model can accommodate.

3.2 Rainfall precipitation data

Here, we present an illustration with rainfall exceedaricms data collected in the Cape Floris-
tic Region in South Africa. The Cape Floristic Region is l@thin the southwestern coastline
of South Africa covering roughly 90,000 KmAlthough it is the smallest of the six recognised
floral kingdoms in the world, it has the highest diversitynsiégy and endemism of the flora
species. The Cape Floristic Region has a semi-meditematignate pattern. In the west of
the region, around Cape town and Paarl, the climate is ctesiized by hot dry summers and
cool wet winters. Moving to the east, rainfall tends to befarmly distributed over the year.
Because the entire region lies between the southwesteam@rel the northeastern L-shaped
mountain system, known as Cape Fold Mountains, the pratigit varies significantly. Specif-
ically, rainfall ranges from 300 — 500 millimeters in the llewds and 1,000 — 3,300 millimeters

in the mountain areas. A previous analysis of annual rdinfakima at 1,078 grid cells over the
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entire region is presented in Sang and Gelfand (2009). Melada consists of the daily grid-
aggregated precipitation, obtained via certain intejpmiatechniques (Hewitson and Crane,
2005), based on records at monitoring stations across 2duta between 1950 and 1999.

For an illustrative data example, and considering the toggiyy of the region and the cli-
mate pattern discussed above, we work with a subregion d#pe Floristic Region. In par-
ticular, we select 25 sitesy(, ..., Sp5 in Figure 1) from the southwest coastline area including the
city of Cape Town and vicinity; the longitude and latitudetioé specific subregion range from
(18.5,19.6) and(—33.4,—34.4), respectively. Moreover, in the interest of cross-valwlafor
spatial prediction, we consider 5 additional sites wheta @aavailable, but not used in fitting
the model; these sites are denotedshy..,S; in Figure 1. To assemble the final data set with
the times of exceedances at each site, we set the threshold 80 millimeters. The range
for the number of exceedances across the 25 observed ditesid4 to 241.

Given that the region and time interval are the same with itnellsted data set, there are
similarities in the hyperpriors of the spatial DP model fbe tNHPP density and of the GP
model for the total intensity surface. In particular, wegalaa normal prior or{ with mean O
and variance 10, an I3, 12) prior onn?, a Unif(0,2.34) prior onp, and an exponential prior
with mean 3 ora. Moreover, we assign a normal priorXavith mean 3.95 and variance 10, an
IG(2,0.6) prior to k2, and a Unif0,2.34) prior to Y. Finally, T2 is assigned an I(3, 3) prior.
Regarding prior-to-posterior learning for the model hyyz@ameters, results were consistent
with the ones for the synthetic data discussed in Section 3.1

The posterior mean and 95% uncertainty bands for the exoeedames density at the 25
monitoring sites are plotted in the top 5 rows of Figure 4,levthe bottom row shows the pre-
dicted density at the five new sites shown in Figure 1. (Naaétte bottom row panels include
the histograms of the exceedance times, although datasat Fhetes were not used in the model
fitting.) In general, the model captures well the heteroggré the rainfall exceedance times

across space. For the observed sites, the estimates becomaccurate with larger number
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of realized exceedances. Nonparametric spatial intetipalés illustrated with the estimates at
the new sites, where predictive inference is more accurhnvinterpolating at locations that
have a number of monitoring sites nearby; for example, eshthe estimates at sit&sandss.
The posterior mean estimate for the total rainfall exceedamtensity is shown in Figure 5
(right panel); as a point of reference, the left panel of Fegaincludes the image plot of the re-
alized number of exceedances at the 25 monitoring sitesniue| estimates a larger intensity
of extremes in the central part of the region relative to thethwestern and southeastern parts.
Finally, we report inference for the risk surface probapibf at least one exceedance in
a particular month at different years. Recall that the clen@attern in the studied region is
mediterranean with cool wet winters. Hence, we focus on honthen large rainfall is to be
expected, and in particular, we choose the month of Juneuré&ig plots the posterior mean
estimates at twelve years covering all five decades. Thearanpetric mixture model estimates
spatially varying risk surfaces with both intensity andgschanging across years. The overall
pattern reveals higher probabilities of at least one exaeesl over June in the center of the
studied region, with idiosyncratic features in certainrgeauch as the second mode more clearly

seen in June 1954 and again in June 1992.

4 DISCUSSION

We have developed a Bayesian nonparametric model for thesaaf extremes from environ-
mental variables observed over time and across a numberrafoniag sites. The methodology
builds on the point process approach to extreme value dsdly®ugh a nonparametric mix-
ture model for the spatially varying intensities. The maatplapproach allows general time-
inhomogeneous shapes for the intensity of threshold exeeed at each specific site, as well
as nonparametric spatial interpolation for practicallypartant risk assessment functionals. A

posterior simulation algorithm to implement such inferehas been designed. The model has
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been tested with a simulated data set and applied to rag¥e#éedances recorded over a time
period of 50 years from a subregion of the Cape Floristic &egi South Africa.

Our data examples included a small number of sites givenelagivrely small size of the
geographic region under study. Moreover, the intention iwakemonstrate the capacity of the
spatial nonparametric mixture model to provide usefulremee results under moderate sample
sizes. For extreme value analysis applications, the numib@bservations from each site will
typically be small to moderate. However, one can envisi@tfically important scenarios that
involve a large number of observed sites (at least, in theghnds). For such cases, standard
posterior simulation methods are not practical for implatagon of the spatial DP mixture
model. Alternative cost-effective MCMC algorithms fordardata sets (e.g., Guha, 2010) may

provide a platform for expanding the practical utility oEtproposed methodology.
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APPENDIX. IMPLEMENTATION DETAILS

Here, we provide the details for MCMC posterior simulaticonfi the spatial DP model for the
NHPP densities as well as the GP model for the total NHPP sitiesurface. We also discuss
prior specification for the hyperparameters of these models

Posterior simulation algorithms: Simulation from the posterior distribution of the spatid D
model (4) is based on the blocked Gibbs sampler, includingdgelis-Hastings (M-H) steps.
In particular, model parameters are iteratively updatedating to the following steps.
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e UpdatingLij,i=1,...,nj;j =1,...,m. EachL;j is drawn from a discrete distribution on
{1,...,N} with probabilities proportional t@N(zj | 9(sj),t?), for| =1,...N.

e Updatinga andp. The draws for these parameters are generic for any cholcerioél in
the DP mixture model; details are given in Ishwaran and Zare(2000).

e Updatingd (sops), | =1,...,N. Letn* be the number of distinct components in vedtor
andL* = {L; :k=1,...,n"} the set of distinct elements.lIf L*, thend, (Sops) is drawn
from the normal centering distributioBos,,.. If | € L*, the posterior full conditional
for 91 (sobs) is proportional to W(81 (Sobs) | {1m, Z) [M¢(i,j):L;=1} N(Zj | 91(s)),1?), aform
which results in am-variate normal distribution.

e Updating the centering GP parameters. The full conditidoal can be derived as a
normal distribution with mear(n*lfnfllm-i— §2> - (1;112*12E*:18|_;(Sobs) - mg$2>
and variance(n*lfnz_llqu%z) _1. Given their high posterior correlation, we update
n? andp as a block with a joint random walk M-H step based on a bivariarmal
proposal distribution (on the log scale fgf and the logit scale fop/by). To achieve
good mixing, we estimate the proposal covariance matrimnftbe output of an initial
chain based on separate updatesiforandp, using a M-H step fop and sampling)?
from its full conditional which is available as an inversergaa distribution.

e Updatingt?. The posterior full conditional for? is an inverse gamma distribution with
shape parameter. +0.5y 4 nj and scale parametep +0.55 5. (7 —9L,(s)))2

Turning to the model of Section 2.2.3 for the total intensityface, the MCMC posterior
sampling steps are as follows.

e UpdatingBj, j = 1,...,m. The posterior full conditional for eadBy is proportional to

exp(njBj —exp(Bj))P(Bj | {Br:r # j}), wherep(Bj | {Br : r # j}) denotes the normal
distribution for;, conditional on{, : r # j}, implied by the GP prior foff3(s) : s€ s }.
Hence3; can updated using slice sampling (as in Example 4 of Damiah,et999).

e Updating the GP prior parameters. The GP mean parammétesampled from its normal
posterior full conditional distribution, wheredg?, ) are updated jointly with a M-H
step designed similarly to the one fay?, p) discussed above.
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Convergence of the MCMC algorithms was assessed by visuaipecting the trace plots asso-
ciated with various parameters of interest, as well as bypudimg standard diagnostic criteria.
For instance, for the spatial DP model hyperparameter$} gtatistic values (Gelman and Ru-
bin, 1992) were below 1.1 after 40,000 iterations. All iefeces are based on 3,000 posterior
samples obtained after discarding the first 50,000 itanatamd thinning the remaining 150,000
every 50 observations. Both MCMC algorithms were impleradni the C programming lan-
guage. The code for the spatial DP mixture model executedrateaof 1,500 iterations per
minute on a 2 GHz Intel Core 2 Duo laptop with 2 GB memory.

Prior specification: We follow an approach along the lines in Gelfand et al. (2G05pec-

ify the priors for the hyperparameters of the spatial DP mddegeneral, we center the normal
prior for { at 0, and set the shape parameter of inverse gamma priorsatbvattues that yield
large (possibly infinite) prior variance. Then, working lw# single component of the spatial
DP mixture model, the marginal variance for the responséeiagit scale can be decomposed
into a sum of three terms involving the prior meantéf the prior mean ofi2, and the prior
variance of. Hence, with a rough guess at the range of the logit-tramsfdrexceedance times,
we can complete the prior specification farn? andt?. To specify the Unifo, be) prior for

p, we use theange of dependendaterpretation of this parameter for the centering GP of the
spatial DP prior. In particular, under the exponential e@tion function, 3p is the distance
between sites that yields correlation 0.05. The range oéul@gnce is usually assumed to be a
fraction of the maximum interpoint distance (Sdyax) over the geographic region under study.
Hence, since B, < 3/p, we specifyb, such that 3, = cdnay, forc < 1;c=1 was used as a
conservative choice for the data examples of Section 3.lIinlae rolea plays in controlling
the number of distinct mixture components (as discussadiypin Section 2.1) can be used to
guide the choice of its exponential prior.

A similar prior choice strategy can be used for the GP-basedeinfor the total intensity
surface. The approach is the same for the correlation paeagie Here, the marginal mean
and variance for the site-specific exceedance counts caxpbessed in terms of the andk?
parameters, using the first two moments of the lognormaiibligton (induced forys by the GP
prior model). Hence, the prior means for these parametersgacified through proxies for the
center and range of the number of exceedances across tha.regi
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Figure 1: Geographic map of the southwest coastline araagioln of the Cape Floristic Region in
South Africa. The map shows the 25 spatial locatiais. (, S»5) which comprise the observed set
of sites for the data examples of Section 3, and the 5 new (&tes., %) used for prediction of the
exceedance times density.
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Figure 3: Synthetic data example. True surface (left pareeigl posterior mean estimate (right

panels) for the probability of at least one exceedance imibth of June for year 1954, 1964, and
1974 (from top to bottom).
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Figure 4: Precipitation data. Posterior mean (red solig)land 95% interval estimates (blue dashed
lines) of the exceedance time density functions at the 28rgbd sites (top 5 rows) and at 5 new
sites (bottom row). Each panel indicates the corresporghiegedance count and shows a histogram
of the observed exceedance times.

31



latitude

< ~
© o
T i
© ©
d d S
@« «©
% 1 %
1 L
2 .
o 8 o
5 4 . <
™ (%]
1 1
< <
™ (3]
! 50 o ! o o
o Oe Ne
7/
< <
< < 20 ~ / \
™ (%]
! T T T T T T | T T T T T T
18.6 18.8 19.0 19.2 19.4 19.6 18.6 18.8 19.0 19.2 19.4 19.6
longitude longitude
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Figure 6: Precipitation data. Posterior mean estimatehirisk surface probability of at least one
exceedance in the month of June for twelve years.
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