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1 INTRODUCTION

Extreme value analysis plays a key role in the environmentalsciences. Extreme natural phe-

nomena, such as severe droughts, unusually low temperatures or torrential rains, are rare but

catastrophic events, which can result in large economic losses and high cost in human life.

Therefore, risk analysis to quantify the uncertainty associated with such extreme events is both

scientifically relevant and practically important for effective environmental policy making.

In extreme value analysis for environmental problems interest lies in very large or very

small values of variables associated with a physical process, which is typically recorded over

both time and space. Statistical inference and prediction for rare events is complicated by the

fact that observations corresponding to the center of the distribution, which are the most abun-

dant, carry little information about the tails. This implies particular challenges for the study

of dynamical variations of the process under study. For instance, rainfall records could show

a steady average behavior over time, while the amount of rainfall of the largest storms may be

increasing. Capturing also spatial dependence for processes observed at a number of monitoring

stations adds to the challenge for modeling and inference.

The literature on modeling extremes associated with independent and identically distributed

observations is fairly well developed; see, e.g., Kotz and Nadarajah (2000) and Coles (2001).

With the supporting theoretical results dating to Fisher and Tippett (1928), the traditional ap-

proach is to model blockwise maxima using the generalized extreme value distribution. An-

other commonly used approach involves modeling the exceedances over a given threshold us-

ing a generalized Pareto distribution (Pickands, 1975; Davison and Smith, 1990). The related

Bayesian literature comprises mainly parametric models (e.g., Coles and Powell, 1996; Stephen-

son and Tawn, 2004), an exception being Tressou (2008) wherenonparametric mixtures of

Pareto distributions are used to model threshold exceedances.

There is a relatively smaller collection of modeling methods for extremes from stochastic
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processes evolving over time and space, although this is an active research area in the more

recent literature. The Bayesian paradigm offers clear advantages in this setting, since it allows

exploration of flexible hierarchical model formulations and proper incorporation of full predic-

tive uncertainty. The main theme of Bayesian modeling approaches has been to extend in a

hierarchical fashion the parametric distributions used inextreme value analysis. In particular,

the observed block maxima or threshold exceedances are typically assumed to arise condition-

ally independent from the generalized extreme value or generalized Pareto distribution, respec-

tively, with temporally and spatially dependent parameters. Common approaches to introduce

the spatio-temporal dependence to the parameters include dynamic linear models (Huerta and

Sansó, 2007) and Gaussian processes (Cooley et al., 2007; Sang and Gelfand, 2009). The ap-

proach in Sang and Gelfand (2010) fits within the same framework, but relaxes the conditional

independence assumption in the first stage of the hierarchical model. Other more recent con-

tributions include copula-based semiparametric methods (Fuentes et al., 2012) and hierarchical

modeling based on max-stable processes (Reich and Shaby, 2012).

In this paper, we utilize the point process approach to analysis of extremes, an approach

that encompasses the more commonly used methods based on thegeneralized extreme value or

generalized Pareto distributions. This approach is based on a non-homogeneous Poisson process

(NHPP) model for the exceedances over a high threshold and the time of their occurrence. The

theoretical framework has been introduced by Pickands (1971), whereas applications can be

found in, e.g., Smith (1989), Coles and Tawn (1996), and Cooley and Sain (2010).

We build on the nonparametric modeling framework from Wang et al. (2011), where a mix-

ture model for the NHPP intensity was developed to overcome the restrictive aspects of the

standard parametric form, most notably, the homogeneity for the intensity of exceedance times.

Here, we focus on the time dimension under the bivariate NHPPapproach and study the practi-

cally important extension of spatial modeling for the exceedance time intensities. Our objective

is to retain inferential flexibility for the temporal intensity while incorporating nonparametric

3



spatial dependence into the modeling. To this end, we represent the NHPP density at each site

through a mixture of logit-normal kernels, and use a spatialDirichlet process for the mixing

distributions to drive the nonparametric (non-Gaussian and non-stationary) spatial dependence.

A prior probability model for the spatial surface of total exceedance intensities completes the

model specification. We develop methods for Markov chain Monte Carlo (MCMC) posterior

simulation, and for spatial interpolation of risk assessment quantities for high-level exceedances.

Our illustrative data analysis involves rainfall exceedances, using data from the Cape Floris-

tic Region located in the southwestern coastline of South Africa. The times of exceedances are

based on daily precipitation records from monitoring stations across South Africa between year

1950 to 1999. However, the proposed methodology is generally applicable to modeling and

spatial prediction of threshold exceedances from different types of environmental variables.

The outline of the manuscript is as follows. In Section 2, we develop the spatial nonparamet-

ric modeling approach, including an overview of the relevant background, details of the model

formulation, and methods for posterior inference. Section3 illustrates the methodology using a

simulated data example and the rainfall data. Finally, Section 4 concludes with discussion.

2 METHODS

We begin in Section 2.1 with a brief overview of the point process approach to analysis of ex-

tremes, and of a general framework for Bayesian nonparametric modeling under this approach.

Section 2.2 develops the nonparametric spatial model for extremes from environmental time

series. Implementation details regarding posterior simulation are discussed in Section 2.3.

2.1 Bayesian nonparametric point process modeling for extremes

Consider a sequence{Xj : j = 1, ..., r} of i.i.d. random variables with distribution functionF0,

where j denotes the period over which the observation onXj is collected. If we restrict atten-
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tion to the observations that fall above a given thresholdu, the original sample is thinned to

a bivariate point pattern, where each pair comprises the time and corresponding value of the

threshold exceedance. This point pattern yields a realization from a two-dimensional point pro-

cess{N(A) : A⊂ A = {1, . . . , r}× [u,∞)}. Pickands (1971) showed that the limiting form of this

point process asu→∞ is a bivariate NHPP with intensity functionσ−1
{

1+ξσ−1(y−µ)
}−1/ξ−1
+

,

wherez+ = max{z,0}. Here,µ, σ andξ are location, scale, and shape parameters, respectively,

andy is the argument for the threshold exceedance. The shape parameterξ is determined by the

tail behavior ofF0. In particular, ifF0 has polynomial tails thenξ > 0, in which case we say that

F0 is in the Fréchet domain of attraction.

Note that the point process approach provides a comprehensive framework for extreme value

analysis, since it implies both the generalized extreme value distribution for blockwise maxima

and the generalized Pareto for the conditional distribution of threshold exceedances. Moreover,

it has the practically important advantage of using information about all data points above the

given threshold, rather than just one value per time period.However, a key restriction of the

parametric modeling framework arises from the form of the asymptotic NHPP intensity, which

is homogeneous in time, whereas recording threshold exceedances often induces clustering.

In Wang et al. (2011), we have extended the point process approach for modeling ex-

ceedances from a general stochastic process{Xt : t ∈ [0,T]} evolving over time and observed in

a (bounded) time interval. Hereinafter, we will use[0,1] to represent the time period of interest;

inference on the original time scale can be obtained throughstraightforward transformation. The

pairs{(ti,Yi) : i = 1, . . . ,n}, whereti is the time at which thei-th exceedance over thresholdu

occurred andYi ≡ Xti is the value of thei-th exceedance, are again taken to be a realization from

a NHPP with support onA = [0,1]× [u,∞). However, to provide more flexible inference than

the asymptotic parametric form, a nonparametric mixture model is formulated for the NHPP

intensity function,λ(t,y). The approach is based on methodology originally developedin Kot-

tas (2006) and Kottas and Sansó (2007) for temporal and spatial NHPP intensities, respectively,
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and more recently extended by Taddy and Kottas (2012) to marked NHPPs.

The model formulation utilizes the representation of a NHPPintensity function through a

density function and a parameter that defines the total intensity over the observation window.

Specifically,λ(·) = γ f (·), whereγ ≡
∫
A

λ(t,y)dtdy is the total intensity of exceedances, and

f (·) is a density function onA , which fully controls the shape of the intensity function. Hence,

a rich prior for the NHPP intensity can be constructed through a nonparametric mixture model

for the NHPP density,f (t,y)≡ f (t,y;G)=
∫

k(t,y | θ)dG(θ). Here,k(t,y | θ) is a kernel density

onA indexed by parameter vectorθ, andG is a random mixing distribution.

The choice of the Dirichlet process (DP) prior (Ferguson, 1973) for the mixing distribution

G results in a DP mixture model forf (t,y;G) yielding access to well established prior model

properties and methods for posterior simulation. We writeG∼ DP(α,G0) to denote that a DP

prior is assigned to random distributionG, whereG0 is the DP centering distribution andα

controls how closeG is to G0; large values ofα result in small variability in DP realizations.

The DP constructive definition (Sethuraman, 1994) is revealing of its structure and will also be

key for the later development of the nonparametric spatial model. According to this definition,

if G∼ DP(α,G0), G admits an (almost sure) representation of the form∑∞
l=1wl δϑl , where the

point masses,{ϑ1,ϑ2, . . .}, form an i.i.d. sample fromG0, and the corresponding weights arise

through a stick-breaking construction. Specifically,w1 = v1 and forl ≥ 2, wl = vl ∏r<l (1−vr),

where{v1,v2, . . .} is another i.i.d. sample from aBeta(1,α) distribution (also, independent of

the{ϑ1,ϑ2, . . .} sequence). The discreteness of DP realizations is an asset in the context of non-

parametric mixing for applications where clustering of theobservations is practically relevant as

in, e.g., density estimation, classification, and regression. In particular, the precision parameter

α controls the number of effective distinct mixture components (e.g., Escobar and West, 1995).

For instance, for density estimation problems with moderately large sample sizes,n, a useful

approximation to the prior expectation for the number of clusters is given byα log{(α+n)/α}.

Regarding the choice of the DP mixture kernel, care is neededto balance flexible inference
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and the implied tail behavior of the underlying stochastic process marginal distributions. Wang

et al. (2011) argue for a product kernel formk(t,y) = k1(t)k2(y), with a beta density fork1(t),

andk2(y) = σ−1
{

1+ξσ−1(y−u)
}−1/ξ−1

, for y ≥ u, i.e., a generalized Pareto density with

location parameter set to the threshold valueu. The DP mixing is with respect to both param-

eters of the beta kernel component, and the scale,σ > 0, and shape,ξ > 0, parameter of the

generalized Pareto component. Under this specification, itcan be shown that the corresponding

marginal distribution forXt belongs to the Fréchet domain of attraction, that is, the nonparamet-

ric mixture prior models an underlying stochastic process with heavy tailed behavior.

2.2 The modeling approach

The nonparametric mixture modeling framework outlined in Section 2.1 combines the appealing

features of the point process approach to extreme value analysis with the inferential power of

Bayesian nonparametric prior models. To our knowledge, theapproach proposed in Wang et al.

(2011) provides the first attempt to fully nonparametric modeling for extremes from a single

time series, with flexible resulting inference for the jointintensity of extremes, the marginal

intensity over time, and for different types of return levelcurves.

Here, we study more general spatio-temporal data structures involving threshold exceedances

from environmental processes observed at multiple spatiallocations over a certain time interval

(which, again, without loss of generality is transformed to[0,1]). More specifically, letS ⊂ R
2

be the geographic region under study, andsobs= (s1, . . . ,sm) themdistinct locations inS where

the process is observed. Hence, the full data set comprises{(ti(sj),Yi(sj)) : i = 1, ...,n j ; j =

1, ...,m}, wheren j ≡ nsj is the number of threshold exceedances at locationsj , ti(sj) is the time

at which thei-th exceedance occurred at locationsj , andYi(sj) is the value of that exceedance.

For such problems, it is of interest to explore spatial modeling extensions for the NHPP intensity

of extremes while retaining the flexibility of a fully nonparametric inference framework. This
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is a non-trivial extension and, in this work, we take the firststep in this direction by focusing on

the time dimension under the point process approach.

We therefore consider only the times of threshold exceedances{ti(sj) : i = 1, ...,n j} from

each observed spatial locationsj ∈ S , for j = 1, ...,m. Following the definition of the bivariate

NHPP assumed under the general approach, for any generic location s∈ S , the point pattern

{ti(s) : i = 1, ...,ns} is a realization from a temporal NHPP on[0,1]. The corresponding tem-

poral intensity function at locations is denoted byλs(t), where this is the appropriate marginal

of the bivariate NHPP intensityλs(t,y). Here, we seek to develop a nonparametric prior model

for {λs(t) : t ∈ [0,1]; s∈ S }, that is, for a collection of temporal NHPP intensities evolving

over (continuous) space. The key inferential objectives are twofold: to allow general time-

inhomogeneous shapes for the intensity of threshold exceedances at each specific spatial lo-

cation; and to enable flexible inference for these spatiallyvarying temporal intensities and for

implied risk assessment functionals. The implicit assumption is that of a smooth evolution of

the intensities across space, although the proposed model for the spatial dependence is nonpara-

metric relaxing both of the customary assumptions of Gaussianity and stationarity.

Regarding the choice of thresholdu, we view its specification as a component of scientific

or policy making considerations for the particular problemat hand. Hence, for any substantive

application of the methodology, the threshold would be chosen in consultation with the domain

experts. The threshold value can be site-specific, and this is how we envision the model to be

applied in general settings. Since the examples of Section 3involve a small geographic region,

we work with a constant threshold value across space for our illustrative data analyses, and

without loss of generality, retain the non-spatially varying notation for the threshold.

2.2.1 Mixture modeling for the temporal intensity of threshold exceedances

To build the prior model for{λs(t) : t ∈ [0,1]; s∈ S }, we follow the strategy discussed briefly

in Section 2.1. In particular, for any spatial locations∈ S , we utilize the decomposition of
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the intensity function into the total intensityγs and the NHPP density functionfs(t) on [0,1],

such thatλs(t) = γs fs(t). Here,γs =
∫ 1

0 λs(t)dt, whereγs < ∞ based on the NHPP definition

that imposes local integrability for the intensity function. Now, for any observed point pattern

{ti(s) : i = 1, ...,ns} of exceedance times at locations, the NHPP likelihood can be written as

L(λs(·))≡ L(γs, fs(·)) ∝ exp(−γs)γns
s

ns

∏
i=1

fs(ti(s)). (1)

The full likelihood requires an extension of (1) to include the data from all locations, but this

expression highlights the practical utility of the(γs, fs(·)) representation for the NHPP inten-

sity. Namely, it allows us to build the model for the spatially varying intensities through a

nonparametric prior model for spatially dependent densities. A prior model for the spatial sur-

face{γs : s∈ S } will also be needed, but owing to the factorization in (1), the estimation of its

parameters proceeds independently of the model for the NHPPdensities.

We propose a mixture model formulation for the spatially varying NHPP densities,fs(t)≡

f (t;Gs) =
∫

k(t | θ)dGs(θ), for t ∈ [0,1] and s∈ S . Here, k(t | θ) is the parametric kernel

density supported by the unit interval, andGs is the random mixing distribution indexed by

spatial locations. To meet our inferential goals, we need an appropriate kernel density that

enables general, possibly multimodal shapes for the mixture density at any location, as well

as a nonparametric prior model for the (uncountable) collection of mixing distributionsGS =

{Gs : s∈ S } that allows flexible inference for spatial interpolation ofthe intensity of extremes.

Regarding the mixture kernel, the Beta distribution (used in Kottas, 2006; Wang et al., 2011)

is a natural choice given the range of shapes the Beta densityachieves, and the fact that it is

directly bounded to[0,1]. However, the lack of a conditionally conjugate distribution for the

parameters of the Beta density makes implementation of posterior simulation challenging even

when modeling a single density with a nonparametric mixtureof Beta densities. This challenge

is exacerbated in terms of both modeling and implementationof inference in our context which
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involves a collection of spatially related densities. Hence, we work with a more convenient

modeling platform based on a logit-normal kernel,

k(t | θ,τ2) = (2πτ2)−1/2t−1(1− t)−1exp{−[log(t/(1− t))−θ]2/2τ2}, t ∈ [0,1]. (2)

Note that this density arises through the logistic transformation,t = exp(z)/(1+exp(z)), of a

N(θ,τ2) density forz. As discussed below, this provides a significant advantage in the formu-

lation of the nonparametric prior model forGS and in MCMC posterior simulation, since we

can work with a (spatially dependent) mixture of normals forthe logit-transformed exceedance

times. The potential drawback of the logit-normal kernel isthat it is susceptible to boundary ef-

fects due to the logit transformation, logit(t) = log(t/(1− t)), and the normal distribution tails.

However, in practice, the nonparametric mixture structureallows robust inference under both

kernel choices provided the data do not maintain high intensity at the edges of the observation

window; see, e.g., the empirical comparison in Taddy and Kottas (2012).

Now, for any spatial locations∈ S , the proposed mixture model for the density of threshold

exceedance times is expressed as

fs(t)≡ f (t;Gs,τ2) =

∫
k(t | θ,τ2)dGs(θ), t ∈ [0,1] (3)

wherek(t | θ,τ2) is given by (2). Therefore, the NHPP density is modeled with asemiparametric

mixture based on nonparametric mixing with respect to only the location parameter of the logit-

normal kernel. This mixture model formulation strikes a good balance between model flexibility

and computational feasibility. Location mixtures of logit-normals can capture non-standard

density shapes, including skewness or multimodality; however, this may come at the expense

of a larger number of mixture components than what would be needed under the model that

includes mixing also with respect to the scale parameter of the logit-normal kernel. Although it
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is possible to extend the spatial nonparametric model to include location-scale mixing, this more

general representation requires a more complex prior forGS and more complicated methods

for posterior simulation. The scale parameterτ2 of the kernel can be viewed as a bandwidth

parameter, which is estimated from the data based on an inverse-gamma prior.

2.2.2 The spatial nonparametric prior model

To build the spatial dependence in the prior model for the threshold exceedance time densities,

{ f (t;Gs,τ2) : s∈ S }, we use a spatial DP prior (Gelfand et al., 2005) for the collection of corre-

sponding mixing distributionsGS = {Gs : s∈ S }. The spatial DP defines a nonparametric prior

for the distribution of random fields, and it can thus be used to develop semiparametric models

for spatial or spatio-temporal data by replacing customaryGaussian process (GP) specifications

for spatial random effects distributions. Central to its development is the DP stick-breaking def-

inition discussed in Section 2.1. Under the standard model setting with DP priors, the locations

ϑl in the constructive definition are either scalar or vector valued, and thusG0 is supported by a

possibly multivariate, albeit finite dimensional, Euclidean space.

To model nonparametrically the distribution of a random field over regionS ⊂ R
2, G0 is

extended to a parametric stochastic processG0,S over the region of interest, a natural choice for

which is a GP (possibly after transformation of the spatial random effects parameters). Hence,

the (almost sure) representation for spatial DP prior realizations becomes

GS =
∞

∑
l=1

wl δϑl ,S

where theϑl ,S = {ϑl(s) : s∈ S } are independent realizations fromG0,S . We take a GP for

G0,S with constant mean functionζ, constant varianceη2, and isotropic exponential correlation

function, that is, Corr(ϑl (s),ϑl(s′) | ρ) = exp(−ρ||s−s′||), whereρ > 0 is the range parameter.

As discussed in Section 2.3, the full Bayesian model is completed with priors for the precision
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parameterα and for the GP hyperparameters,φ = (ζ,η2,ρ).

Therefore, the spatial DP prior model involves a countable mixture of GP realizations with

weights defined through stick-breaking as in the standard DPprior. Consequently, for any

finite set of spatial locations(s1, ...,sr), the spatial DP prior induces a DP prior for the finite

collection of mixing distributions(Gs1, ...,Gsr ); the centering distribution of this DP prior is the

r-dimensional normal induced by the GP used forG0,S . This is a key property of the spatial

DP prior with respect to both simulation-based model fittingand predictive inference for spatial

interpolation. Spatial DPs provide an illustration of dependent DPs (MacEachern, 2000) in

that they yield a stochastic process of random distributions, one at each location inS . These

distributions are dependent but such that, at each index value, the distribution is a univariate DP.

Hence, for any locations∈ S , the spatial DP prior yields a location DP mixture of logit-

normals following the formulation in (3). The DP mixture model interpretation is also valid for

any finite collection of locations, with the additional structure of spatial dependence induced to

the threshold exceedance time densities by the spatial dependence in the mixing distributions.

It is important to note that the spatial DP generates non-stationary spatial surface realizations

with non-Gaussian finite dimensional distributions, even when the centering GP is isotropic.

Moreover, ifGs andGs′ denote the marginal distributions at generic locationss ands′, then the

continuity of theϑl ,S (implied by the exponential correlation function ofG0,S ) yields that, as the

distance betweensands′ gets smaller, the difference betweenGs andGs′ gets smaller. Formally,

for anyε > 0, lim||s−s′||→0Pr(L (Gs,Gs′) < ε) = 1, whereL is the Lévy distance (MacEachern,

2000; Gelfand et al., 2005); see Guindani and Gelfand (2006)for a detailed study of smoothness

properties for spatial DP realizations. Hence, the level ofdependence betweenGs andGs′, and

thus betweenf (t;Gs,τ2) and f (t;Gs′,τ2), is driven by the distance between the spatial locations.

The practical implication is that in predictive inference for spatial interpolation, we learn more

from locationss′ nearbys than from more distant locations, a desirable property for densities

that are expected to evolve relatively smoothly across space.
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2.2.3 The spatial model for the total intensity of thresholdexceedances

To complete the model specification for the spatially dependent intensity functions, we turn

to a spatial probability model for the total intensity surface. Here, we work with a GP-based

hierarchical specification, using a GP prior for the log-intensity surface{β(s)= log(γs) : s∈ S }.

The first stage arises from the NHPP assumption, namely, the observed exceedance counts are

assumed Poisson distributed,n j | β j
ind.
∼ Poisson(exp(β j)), for j = 1, ...,m, whereβ j = log(γsj ).

The GP prior for{β(s) : s∈ S } is assumed to have constant meanλ, constant varianceκ2, and

exponential correlation function exp(−ψ||s−s′||). Finally, we place a normal prior N(mλ,S
2
λ)

on λ, an inverse gamma prior IG(aκ2,bκ2) (with meanbκ2/(aκ2 −1) providedaκ2 > 1) onκ2,

and a uniform prior Unif(0,bψ) on ψ. MCMC posterior simulation, as well as specification of

the hyperpriors forλ, κ2 andψ, is discussed in the Appendix.

We note that the exceedance counts will typically take smallto moderate values. If the

particular application involves also a small number of spatial locations (as for the data sets con-

sidered in Section 3), the relatively simple model specification discussed above is arguably a

suitable choice. For problems involving data from a large number of locations and/or where

physical information is available, more structured GP meanfunctions or non-stationary co-

variance functions can be entertained. The fact that the prior model for the total intensities is

specified independently of that for the NHPP densities is an asset in this respect.

2.3 Posterior simulation and inference for risk assessment

Inference for the intensity of extremes across space requires posterior simulation for: the ran-

dom mixing distributionGs over a number of spatial locationss, including interpolation at new

locations; the spatial DP prior hyperparameters; and the parameters of the GP-based spatial

model for the total intensity of exceedances.

In general, nonparametric Bayesian inference for related distributions (indexed by time,
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space, or covariate values) requires some form of replication, although imbalance in the repli-

cate responses can be handled. In the absence of replication, posterior simulation can be overly

sensitive to the prior specification and predictive inference at new index points will inevitably

fall back exclusively to the prior. In our context, the replication is provided by the set of thresh-

old exceedance times,{ti(sj) : i = 1, ...,n j}, at each observed sitesj , j = 1, ...,m.

However, in contrast to earlier applications of dependent nonparametric prior models to geo-

statistics problems, our observations are random times arising as the events of the underlying

NHPP at each site. This aspect of the data structure creates achallenge in matching the observed

times to form response vectors across sites. An option is to discretize the time interval under

study into time units specified such that at most one exceedance time is included in each time

unit from each location; the default choice would be the unitat which the data is recorded, e.g.,

a day for daily rainfall records. We can then construct time-ordered response vectors, of dimen-

sion between 1 andm, that include an entry for all sites for which there was an exceedance at the

specific time unit. For the hierarchical data model, thek-th response vector is assigned a vector

of mixing parameters,θk(sobs) = (θk(s1), ...,θk(sm)), where theθk(sobs) arise conditionally in-

dependent from the DP prior induced by the spatial DP at the vector of observed locationssobs.

This hierarchical model formulation is along the lines in Gelfand et al. (2005) and Kottas et al.

(2008) for independent and temporally dependent replicates, respectively.

Our data examples involve small exceedance counts over the time period of interest; with

daily records over 50 years, the realizedn j range roughly between 15 to 250. Hence, construct-

ing the replicates as discussed above results in response vectors with a very small number of

entries relative tom. We are thus working with data structures where replicationis present, but

there is essentially only a single observation at any location. Here, we apply the spatial DP

model under this scenario, where thei-th observation at thej-th location,ti(sj), is assigned a

vector of mixing parameters,θi j (sobs) = (θi j (s1), ...,θi j (sm)), from which onlyθi j (sj) is used

in the hierarchical model representation. A similar approach to implementing a dependent DP
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prior model for time series problems can be found in Rodriguez and ter Horst (2008).

More specifically, letzi j = logit(ti(sj)), for i = 1, ...,n j ; j = 1, ...,m, be the logit-transformed

observations. Then, the hierarchical model for the data canbe expressed as

zi j | θi j (sobs),τ2 ind.
∼ N(θi j (sj),τ2), i = 1, ...,n j ; j = 1, ...,m

θi j (sobs) | Gsobs

i.i.d.
∼ Gsobs, i = 1, ...,n j ; j = 1, ...,m

whereGsobs | α,φ ∼ DP(α,G0,sobs), that is, the DP prior induced by the spatial DP. There-

fore, G0,sobs is anm-variate normal distribution with mean vectorζ1m and covariance matrix

Σ = η2R(ρ), with Rj j ′(ρ) = exp(−ρ||sj − sj ′||), for j, j ′ = 1, ...,m. Here,1m denotes anm-

dimensional vector with all its elements equal to 1.

We use blocked Gibbs sampling (Ishwaran and James, 2001) forMCMC posterior simu-

lation. The approach is based on a truncation approximationto the DP prior forGsobs defined

throughGN
sobs

= ∑N
l=1 pl δϑl (sobs), where theϑl(sobs) = (ϑl(s1), ...,ϑl(sm)) are i.i.d. realizations

from G0,sobs, and the weightsp = {pl : l = 1, ...,N} are defined using the DP stick-breaking con-

struction subject to the constraintpN = 1−∑N−1
l=1 pl . The truncation levelN can be chosen to

any desired level of accuracy, using standard DP properties(e.g., Ishwaran and Zarepour, 2000);

N = 60 was used for both data examples of Section 3. Then, the model can be fit to the data

without the need to impute the mixing parameter vectorsθi j (sobs). To this end, we introduce

configuration variablesL = {Li j : i = 1, ...,n j; j = 1, ...,m}, whereLi j = l , for l = 1, ...,N, if

and only ifθi j (sobs) = ϑl(sobs). Hence, the hierarchical model for the data becomes

zi j | {ϑl(sobs)},Li j ,τ2 ind.
∼ N(ϑLi j (sj),τ2), i = 1, ...,n j ; j = 1, ...,m

Li j | p i.i.d.
∼ ∑N

l=1 pl δl (Li j ) i = 1, ...,n j ; j = 1, ...,m
(4)

whereϑl (sobs) | φ i.i.d.
∼ G0,sobs, for l = 1, ...,N, and the prior forp, given α, is a generalized

Dirichlet distribution (Ishwaran and James, 2001). The hierarchical model is completed with
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hyperpriors for the spatial DP parameters: an exponential prior for α, a normal prior N(mζ,S
2
ζ)

for ζ, an inverse gamma prior IG(aη2,bη2) for η2, and a uniform prior Unif(0,bρ) for ρ. More-

over, an IG(aτ2,bτ2) prior is assigned toτ2. The Appendix provides details on MCMC posterior

simulation for model (4), as well as on specification of the priors for its hyperparameters.

The resulting posterior samples can be used to extend the inference to spatial interpolation

based on a set ofM new locations,snew= (s̃1, . . . , s̃M). Spatial interpolation for the total intensity

surface{γs : s∈ S } proceeds through standard GP predictive computing based onthe implied

conditional normal distribution for(β(s̃1), ...,β(s̃M)) given(β(s1), ...,β(sm)). In Section 3, we

illustrate with posterior mean estimates for the{γs : s∈ S } surface.

GP predictive calculations are also central for spatial interpolation of the NHPP densities, in

conjunction with the spatial DP structure for the set of mixing distributions that includes the new

sites. Specifically, under the DP truncation approximation, GN
(sobs,snew)

= ∑N
l=1 pl δ(ϑl (sobs),ϑl (snew)),

where now the(ϑl(sobs),ϑl(snew)) arise independent from an(m+M)-variate normal distribu-

tion with mean vectorζ1m+M and covariance matrix with structure that extends the one in

G0,sobs. Hence, having obtained posterior samples for theϑl(sobs) (andp), the additional sam-

pling needed to complete the posterior realizations forGN
(sobs,snew)

is from M-variate conditional

normal distributions to imputeϑl (snew) givenϑl (sobs), for l = 1, ...,N.

With posterior samples for the mixing distribution available at any desired set of sites, we

can report different types of risk assessment inference. For any (observed or new) sites, point

estimates for the density or intensity of exceedance times can be obtained along with corre-

sponding uncertainty bands. This inference is immediate from the definition of the mixture

model for the NHPP density function,f (t;GN
s ,τ2) = ∑N

l=1 pl k(t | ϑl(s),τ2), or intensity func-

tion, γs f (t;GN
s ,τ2). Using the NHPP definition, we can compute risk surface estimates defined

through the probability of a specific number of threshold exceedances within any time interval

of interest. For both data examples of Section 3, we illustrate with the probability of at least one

exceedance in a given month across a number of years. Letting(t1, t2) denote the time inter-
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val of interest (e.g., a specific month), the risk surface probability of at least one exceedance is

given by 1−exp(−γs
∫ t2
t1

f (t;GN
s ,τ2)dt)= 1−exp{−γs∑N

l=1 pl (
∫ t2
t1

k(t |ϑl (s),τ2)dt)}, with each

integral term readily computed through a difference of two normal cdf values. Our illustration

represents an admittedly narrow example of risk assessment, since inference for the risk surface

probability is not accompanied by impact analysis and/or vulnerability evaluation. The results

presented here are merely meant to demonstrate the capacityof the nonparametric modeling ap-

proach for flexible inference which can potentially be placed in the context of a broader analysis

for problems that involve additional information for more general risk assessment.

3 DATA ILLUSTRATIONS

3.1 Synthetic data example

Our first illustration involves simulated data based on the same region and 25 observed sites

(Figure 1), time interval (years 1950 – 1999), and time unit (days) as the real data discussed

in Section 3.2. The times of exceedances at each site were generated using a two-state, time-

inhomogeneous Markov chain, with spatial structure introduced by making the transition prob-

abilities spatially dependent. Specifically, letνt(s) be an indicator variable such thatνt(s) = 1

if an exceedance occurs at timet and locations. Then, the data is simulated according to

Pr(νt(s) = 1 | νt−1(s) = k) = Φ(µk,t(s)), k∈ {0,1},

for t = 1, . . . ,T = 18,262, and a givenν0(s), whereΦ(·) denotes the standard normal cdf,

µ0,t(s) = 0.25sin(4πtT−1) + ε0(s), andµ1,t(s) = 0.25cos(4πtT−1) + ε1(s). Here,{εk(s) : s∈

S }, for k = 0,1, are independent realizations from an isotropic GP with mean−2.7, variance

1, and correlation function exp{−0.2||s−s′||}. The number of realized exceedances across the

25 sites ranges between 14 and 224. The true probability of noexceedances at sites during
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time period(t0+1, . . . , t0+R) can be expressed conditional on the state at timet0, in particular,

whenνt0(s) = 0, it is given by∏t0+R
t=t0+1{1−Φ(µ0,t(s))}, whereas ifνt0(s) = 1, it is obtained as

{1−Φ(µ1,t(s)}∏t0+R
t=t0+2{1−Φ(µ0,t(s))}.

Note that the synthetic data generating mechanism is completely unrelated to our statistical

model. Hence, this simulation example is used to illustratethe flexibility of the nonparametric

mixture model to reconstruct risk surfaces from general stochastic processes. In addition, the

simulation is intended to demonstrate that, despite its flexibility, the nonparametric model does

not overfit the data. Indeed, although the model can potentially capture non-stationary and

non-separable behavior, the underlying data generating process is stationary and separable.

We follow the strategy discussed in the Appendix to specify the model hyperpriors. Re-

garding the spatial DP parameters, we place a normal prior onζ with mean 0 and variance 10,

an IG(3,12) prior on η2, and a Unif(0,2.34) prior onρ. An exponential prior with mean 3 is

assigned to the spatial DP precision parameterα. For the GP-based model for the total intensity

surface, we assign a normal prior toλ with mean 3.74 and variance 10, an IG(2,0.52) prior to

κ2, and a Unif(0,2.34) prior to ψ. Finally, the scale parameterτ2 of the logit-normal kernel is

assigned an IG(3,3) prior. We observed significant prior-to-posterior learning for all the spatial

DP hyperparameters, and forτ2. As expected, given the nature of the observables for the total

intensity surface model and the small number of spatial locations, there was less learning for

parametersλ, κ2 andψ; nevertheless, posterior densities for these parameters were noticeably

concentrated relative to the corresponding prior densities.

Figure 2 shows an image plot of the true surface for the numberof exceedances, computed

from simulated data over a grid of sites, along with the model-based point estimate (posterior

mean) for the total intensity surface. Note that, even though the data generating process does not

imply that the exceedance counts at a given location follow aPoisson distribution, our model

provides reasonable estimates capturing the underlying spatial heterogeneity.

Figure 3 presents posterior mean estimates for the risk surface probability of at least one
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exceedance in the month of June in three given years (year 1954, 1964, and 1974). These maps

illustrate the ability of the model to capture both temporalor spatial heterogeneity. The point

estimates generated by the model tend to be smoother than thetrue surfaces, but capture very

well the patterns implied by the underlying stochastic process. To supplement the graphical

comparison results with a quantitative measure of model assessment, we report on the coverage

of 95% (equal-tail) credible intervals. Based on a grid of 601 spatial locations (including the 25

observed sites), the proportion of 95% credible intervals for the site-specific probability of at

least one exceedance that contain the corresponding true value is: 96.3% for June 1954, 93.3%

for June 1964, and 94.3% for June 1974. A potential concern for complex Bayesian nonpara-

metric models is that they may overfit the data with undesirable implications in prediction. In

this respect, the results above are encouraging, since the data arise from a stochastic mechanism

with simpler structure than what the spatial nonparametricmixture model can accommodate.

3.2 Rainfall precipitation data

Here, we present an illustration with rainfall exceedancesfrom data collected in the Cape Floris-

tic Region in South Africa. The Cape Floristic Region is located in the southwestern coastline

of South Africa covering roughly 90,000 km2. Although it is the smallest of the six recognised

floral kingdoms in the world, it has the highest diversity, density and endemism of the flora

species. The Cape Floristic Region has a semi-mediterranean climate pattern. In the west of

the region, around Cape town and Paarl, the climate is characterized by hot dry summers and

cool wet winters. Moving to the east, rainfall tends to be uniformly distributed over the year.

Because the entire region lies between the southwestern ocean and the northeastern L-shaped

mountain system, known as Cape Fold Mountains, the precipitation varies significantly. Specif-

ically, rainfall ranges from 300 – 500 millimeters in the lowlands and 1,000 – 3,300 millimeters

in the mountain areas. A previous analysis of annual rainfall maxima at 1,078 grid cells over the
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entire region is presented in Sang and Gelfand (2009). The raw data consists of the daily grid-

aggregated precipitation, obtained via certain interpolation techniques (Hewitson and Crane,

2005), based on records at monitoring stations across SouthAfrica between 1950 and 1999.

For an illustrative data example, and considering the topography of the region and the cli-

mate pattern discussed above, we work with a subregion of theCape Floristic Region. In par-

ticular, we select 25 sites (s1, ...,s25 in Figure 1) from the southwest coastline area including the

city of Cape Town and vicinity; the longitude and latitude ofthe specific subregion range from

(18.5,19.6) and(−33.4,−34.4), respectively. Moreover, in the interest of cross-validation for

spatial prediction, we consider 5 additional sites where data is available, but not used in fitting

the model; these sites are denoted bys̃1, ..., s̃5 in Figure 1. To assemble the final data set with

the times of exceedances at each site, we set the threshold tou = 350 millimeters. The range

for the number of exceedances across the 25 observed sites isfrom 14 to 241.

Given that the region and time interval are the same with the simulated data set, there are

similarities in the hyperpriors of the spatial DP model for the NHPP density and of the GP

model for the total intensity surface. In particular, we place a normal prior onζ with mean 0

and variance 10, an IG(3,12) prior onη2, a Unif(0,2.34) prior onρ, and an exponential prior

with mean 3 onα. Moreover, we assign a normal prior toλ with mean 3.95 and variance 10, an

IG(2,0.6) prior to κ2, and a Unif(0,2.34) prior to ψ. Finally, τ2 is assigned an IG(3,3) prior.

Regarding prior-to-posterior learning for the model hyperparameters, results were consistent

with the ones for the synthetic data discussed in Section 3.1.

The posterior mean and 95% uncertainty bands for the exceedance times density at the 25

monitoring sites are plotted in the top 5 rows of Figure 4, while the bottom row shows the pre-

dicted density at the five new sites shown in Figure 1. (Note that the bottom row panels include

the histograms of the exceedance times, although data at these 5 sites were not used in the model

fitting.) In general, the model captures well the heterogeneity of the rainfall exceedance times

across space. For the observed sites, the estimates become more accurate with larger number
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of realized exceedances. Nonparametric spatial interpolation is illustrated with the estimates at

the new sites, where predictive inference is more accurate when interpolating at locations that

have a number of monitoring sites nearby; for example, contrast the estimates at sitess̃4 ands̃5.

The posterior mean estimate for the total rainfall exceedance intensity is shown in Figure 5

(right panel); as a point of reference, the left panel of Figure 5 includes the image plot of the re-

alized number of exceedances at the 25 monitoring sites. Themodel estimates a larger intensity

of extremes in the central part of the region relative to the northwestern and southeastern parts.

Finally, we report inference for the risk surface probability of at least one exceedance in

a particular month at different years. Recall that the climate pattern in the studied region is

mediterranean with cool wet winters. Hence, we focus on months when large rainfall is to be

expected, and in particular, we choose the month of June. Figure 6 plots the posterior mean

estimates at twelve years covering all five decades. The nonparametric mixture model estimates

spatially varying risk surfaces with both intensity and shapes changing across years. The overall

pattern reveals higher probabilities of at least one exceedance over June in the center of the

studied region, with idiosyncratic features in certain years, such as the second mode more clearly

seen in June 1954 and again in June 1992.

4 DISCUSSION

We have developed a Bayesian nonparametric model for the analysis of extremes from environ-

mental variables observed over time and across a number of monitoring sites. The methodology

builds on the point process approach to extreme value analysis through a nonparametric mix-

ture model for the spatially varying intensities. The modeling approach allows general time-

inhomogeneous shapes for the intensity of threshold exceedances at each specific site, as well

as nonparametric spatial interpolation for practically important risk assessment functionals. A

posterior simulation algorithm to implement such inference has been designed. The model has
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been tested with a simulated data set and applied to rainfallexceedances recorded over a time

period of 50 years from a subregion of the Cape Floristic Region in South Africa.

Our data examples included a small number of sites given the relatively small size of the

geographic region under study. Moreover, the intention wasto demonstrate the capacity of the

spatial nonparametric mixture model to provide useful inference results under moderate sample

sizes. For extreme value analysis applications, the numberof observations from each site will

typically be small to moderate. However, one can envision practically important scenarios that

involve a large number of observed sites (at least, in the thousands). For such cases, standard

posterior simulation methods are not practical for implementation of the spatial DP mixture

model. Alternative cost-effective MCMC algorithms for large data sets (e.g., Guha, 2010) may

provide a platform for expanding the practical utility of the proposed methodology.
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APPENDIX. IMPLEMENTATION DETAILS

Here, we provide the details for MCMC posterior simulation from the spatial DP model for the

NHPP densities as well as the GP model for the total NHPP intensity surface. We also discuss

prior specification for the hyperparameters of these models.

Posterior simulation algorithms: Simulation from the posterior distribution of the spatial DP

model (4) is based on the blocked Gibbs sampler, including Metropolis-Hastings (M-H) steps.

In particular, model parameters are iteratively updated according to the following steps.
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• UpdatingLi j , i = 1, . . . ,n j ; j = 1, . . . ,m. EachLi j is drawn from a discrete distribution on

{1, ...,N} with probabilities proportional topl N(zi j | ϑl(sj),τ2), for l = 1, . . .N.

• Updatingα andp. The draws for these parameters are generic for any choice ofkernel in

the DP mixture model; details are given in Ishwaran and Zarepour (2000).

• Updatingϑl(sobs), l = 1, . . . ,N. Let n∗ be the number of distinct components in vectorL ,

andL ∗ = {L∗
k : k= 1, . . . ,n∗} the set of distinct elements. Ifl /∈ L∗, thenϑl (sobs) is drawn

from the normal centering distributionG0,sobs. If l ∈ L ∗, the posterior full conditional

for ϑl (sobs) is proportional to Nm(ϑl (sobs) | ζ1m,Σ)∏{(i, j):Li j=l}N(zi j | ϑl(sj),τ2), a form

which results in anm-variate normal distribution.

• Updating the centering GP parameters. The full conditionalfor ζ can be derived as a

normal distribution with mean
(

n∗1′mΣ−11m+S−2
ζ

)−1(

1′mΣ−1∑n∗
k=1 ϑL∗

k
(sobs)+mζS−2

ζ

)

and variance
(

n∗1′mΣ−11m+S−2
ζ

)−1
. Given their high posterior correlation, we update

η2 and ρ as a block with a joint random walk M-H step based on a bivariate normal

proposal distribution (on the log scale forη2 and the logit scale forρ/bρ). To achieve

good mixing, we estimate the proposal covariance matrix from the output of an initial

chain based on separate updates forη2 andρ, using a M-H step forρ and samplingη2

from its full conditional which is available as an inverse gamma distribution.

• Updatingτ2. The posterior full conditional forτ2 is an inverse gamma distribution with

shape parameteraτ2+0.5∑m
j=1n j and scale parameterbτ2+0.5∑m

j=1 ∑
n j
i=1(zi j −ϑLi j (sj))

2.

Turning to the model of Section 2.2.3 for the total intensitysurface, the MCMC posterior

sampling steps are as follows.

• Updatingβ j , j = 1, . . . ,m. The posterior full conditional for eachβ j is proportional to

exp(n jβ j −exp(β j))p(β j | {βr : r 6= j}), wherep(β j | {βr : r 6= j}) denotes the normal

distribution forβ j , conditional on{βr : r 6= j}, implied by the GP prior for{β(s) : s∈ S }.

Hence,β j can updated using slice sampling (as in Example 4 of Damien etal., 1999).

• Updating the GP prior parameters. The GP mean parameterλ is sampled from its normal

posterior full conditional distribution, whereas(κ2,ψ) are updated jointly with a M-H

step designed similarly to the one for(η2,ρ) discussed above.
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Convergence of the MCMC algorithms was assessed by visuallyinspecting the trace plots asso-

ciated with various parameters of interest, as well as by computing standard diagnostic criteria.

For instance, for the spatial DP model hyperparameters, theR statistic values (Gelman and Ru-

bin, 1992) were below 1.1 after 40,000 iterations. All inferences are based on 3,000 posterior

samples obtained after discarding the first 50,000 iterations and thinning the remaining 150,000

every 50 observations. Both MCMC algorithms were implemented in the C programming lan-

guage. The code for the spatial DP mixture model executed at arate of 1,500 iterations per

minute on a 2 GHz Intel Core 2 Duo laptop with 2 GB memory.

Prior specification: We follow an approach along the lines in Gelfand et al. (2005)to spec-

ify the priors for the hyperparameters of the spatial DP model. In general, we center the normal

prior for ζ at 0, and set the shape parameter of inverse gamma priors to small values that yield

large (possibly infinite) prior variance. Then, working with a single component of the spatial

DP mixture model, the marginal variance for the response on the logit scale can be decomposed

into a sum of three terms involving the prior mean ofτ2, the prior mean ofη2, and the prior

variance ofζ. Hence, with a rough guess at the range of the logit-transformed exceedance times,

we can complete the prior specification forζ, η2 andτ2. To specify the Unif(0,bρ) prior for

ρ, we use therange of dependenceinterpretation of this parameter for the centering GP of the

spatial DP prior. In particular, under the exponential correlation function, 3/ρ is the distance

between sites that yields correlation 0.05. The range of dependence is usually assumed to be a

fraction of the maximum interpoint distance (say,dmax) over the geographic region under study.

Hence, since 3/bρ < 3/ρ, we specifybρ such that 3/bρ = cdmax, for c≤ 1; c= 1 was used as a

conservative choice for the data examples of Section 3. Finally, the roleα plays in controlling

the number of distinct mixture components (as discussed briefly in Section 2.1) can be used to

guide the choice of its exponential prior.

A similar prior choice strategy can be used for the GP-based model for the total intensity

surface. The approach is the same for the correlation parameter ψ. Here, the marginal mean

and variance for the site-specific exceedance counts can be expressed in terms of theλ andκ2

parameters, using the first two moments of the lognormal distribution (induced forγs by the GP

prior model). Hence, the prior means for these parameters are specified through proxies for the

center and range of the number of exceedances across the region.
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Figure 1: Geographic map of the southwest coastline area subregion of the Cape Floristic Region in
South Africa. The map shows the 25 spatial locations (s1, ...,s25) which comprise the observed set
of sites for the data examples of Section 3, and the 5 new sites(s̃1, ..., s̃5) used for prediction of the
exceedance times density.

28



18.6 18.8 19.0 19.2 19.4 19.6

−
3

4
.4

−
3

4
.2

−
3

4
.0

−
3

3
.8

−
3

3
.6

−
3

3
.4

longitude

la
ti
tu

d
e

18.6 18.8 19.0 19.2 19.4 19.6

−
34

.4
−

34
.2

−
34

.0
−

33
.8

−
33

.6
−

33
.4

longitude

la
tit

ud
e

Figure 2: Synthetic data example. Image plot of the true surface for the number of exceedances (left
panel) and the posterior mean of{γs : s∈ S } (right panel).
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Figure 3: Synthetic data example. True surface (left panels) and posterior mean estimate (right
panels) for the probability of at least one exceedance in themonth of June for year 1954, 1964, and
1974 (from top to bottom).
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Figure 5: Precipitation data. Image plot of the observed number of exceedances at the 25 monitoring
sites (left panel) and the posterior mean estimate of{γs : s∈ S } (right panel).
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Figure 6: Precipitation data. Posterior mean estimate for the risk surface probability of at least one
exceedance in the month of June for twelve years.
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