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Abstract

Adaptive flight control systems using online-learning neural networks have great
promise for improving the safety of aircraft. However, these systems are difficult or
perhaps even impossible to certify using current methodology, yet it is required that the
systems be demonstrated to be safe. A recent approach considers the use of statistical
emulation to help understand the behavior of the system. We present a statistical
framework to model and predict the output of a function of multiple real variables in
which the output is itself a function of a real variable using statistical emulation. This
approach has the benefit that it carries statistical uncertainties with its predictions.
Through our model, we can assist NASA with development of their flight control
simulator.

Key words: computer modeling; treed Gaussian process; principal components anal-
ysis; Bayesian statistics

1 Introduction

During the last decade, loss of control in flight was responsible for 23% of the 87 fatal acci-

dents in the worldwide commercial jet fleet, and 37% of the 4774 onboard fatalities (Boeing

Commercial Airplanes, 2011). Adaptive flight control systems augur an even safer airspace,
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in which damage to an aircraft or unusual aerodynamic conditions need not lead to loss

of control if the aircraft has sufficient control authority. This paper examines a particular

automated flight controller, the Gen2 IFCS controller, being prototyped for F-15 fighter jets

in the Advanced Control Technology for Integrated Vehicles (ACTIVE) flight tests (Burken

et al., 2006; Smith et al., 2010). Like many adaptive control algorithms, it uses online learn-

ing neural networks (OLNNs) to approximate the aircraft and its environment (Jorgensen,

1997; Kim and Calise, 1997). However, the overall behavior of an online neural network is

notoriously hard to predict (Jacklin et al., 2004), so in order to be able to understand and

certify this adaptive control system, NASA engineers created a computer simulation of the

whole flight and flight controller interaction. In particular, NASA engineers want to know

when the controller will be successful and when it will fail, and they would also like to be

able to predict the flight behavior as the process moves toward a successful stabilization or

a loss of control.

The statistical problem of interest is to be able to predict the output of this simulator,

and hence predict the result of the flight in response to the control algorithm. We create

a statistical emulator, a computationally efficient statistical model that is used to approx-

imate the outcome of a computationally expensive simulation. The standard approach to

emulation in the literature is to use a Gaussian Process model (Sacks et al., 1989). As a

nonparametric model, it provides a large amount of flexilibity while still imposing a certain

degree of smoothness. Additional flexibility can be gained through extensions such as the

Treed Gaussian Process (Gramacy and Lee, 2008).

Our problem here goes well beyond the standard formulation of predicting a single scalar

output from multiple scalar inputs. Here we address the prediction of multiple variable-
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length functional outputs from multiple scalar inputs. While a few approaches exist in the

literature for predicting fixed-length functional outputs, the problem of predicting an output

whose length may depend on the inputs is more difficult. We thus build a new statistical

emulator for the NASA Gen2 IFCS adaptive control simulator with 11 input variables and

12 output variables, where each output variable is a function over time indicating some

aircraft configuration measurement such as an altitude angle. While the specific application

we explore in this paper is the Gen2 IFCS adaptive flight control system, we consider this

example to be representative of many similar problems in physics-based systems.

The problem of functional data prediction has received some attention in recent years.

Bayarri et al. (2007) addresses the problem of predicting functional data to emulate dy-

namic computer models using a wavelet basis. Conti and O’Hagan (2010) addresses the

problem of predicting functional data using an approach based on stationary Gaussian Pro-

cess model(GASP). What distinguishes our problem from the above problems is the the

fact that our outputs are not all the same length, and these lengths are unknown until the

simulator is actually run. GASP methodology does not scale easily and is computationally

infeasible in problems with high-dimensional, time-dependent or functional outputs (Higdon

et al., 2008).

Our approach for emulating the curves for a single output variable is to represent the

curves in an orthogonal basis which captures curve characteristics, and then to predict the

output curve for a new input by predicting the coefficients for the desired output curve’s

basis representation. We allow for the possibility of output curves whose length varies with

input. This may occur when a simulator fails to run to completion for some configurations of

inputs, and the time to failure depends on the input configuration. The use of a reduced basis
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representation allows for a fixed length representation of output curves and computational

tractability while retaining a high degree of fidelity.

When output curves can be grouped into a small set of clusters of similar curve length,

shape, and frequency content, we find that fitting distinct models for different classes of out-

put curves improves the prediction. Therefore, we add a class parameter to our statistical

model. Our complete model is built on top of statistical models for individual output func-

tions from input to class, input to output curve length, and input to each of the coefficients in

a reduced basis curve representation. The class function has a categorical output, while the

length and coefficient functions have real-valued outputs. We propose using non-stationary

Treed Gaussian Process (TGP) models for both modeling the class membership as well as

the mapping from inputs to outputs within a class.

We first consider predictions for multiple output variables by independently modeling

each output variable. We next address the problem of predicting multiple outputs simu-

taneously by proposing the use of Principal Components Analysis (PCA) to transform the

output variables so that correlations among the curves for the transformed variables is min-

imized. Then prediction can be done independently on the decorrelated variables using our

single output variable model. Transforming back to the original variables gives the jointly

predicted curves.

In Section 2, we discuss and show examples of the dynamic, variable-length NASA flight

simulator data which our method emulates, as well as background and motivation for the

NASA flight control application. In Section 3, we review the Gaussian Process and Treed

Gaussian Process models which form the building blocks for our emulation model. We also

discuss related models in the literature and provide some rationale for the modeling choices
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we have made, and we provide the full specification of our statistical model. In Section 4, we

discuss the resulting algorithm for implementing our statistical model, including a discussion

of the output curve classification criteria and a comparison of different classification methods

for our NASA flight simulator emulation problem, as well as some background material on

the different bases considered. In Section 5, we give prediction results for our method on the

NASA flight data with a comparison of results for different bases and different numbers of

classes. Finally, we conclude in Section 6 with discussions.

2 The NASA Flight Simulator Data

The Generation 2 NASA Intelligent Flight Control System (IFCS) uses machine learning

techniques to stabilize the aircraft under new and unexpected failure conditions (e.g., a

stuck rudder or damage to a wing), with the ultimate goal of providing increased safety for

the aircraft. This is accomplished through the use of an online-adaptive neural network in

the inner loop of the flight control system.

The IFCS adaptive flight control system utilizes online neural networks (OLNNs), one for

each of the axes: roll, pitch and yaw. In real time it tries to adapt the control signals in order

to retain good flight characteristics in the presence of sudden damage, slow degradation, or

new environmental situations.

A traditional flight control system receives stick inputs from the pilot and uses an aicraft

reference model to create desired commands. The deviation between the desired commands

and the aircraft’s sensor signals are used by a proportional-integral (PI) controller to cal-

culate desired rates in pitch, roll, and yaw axes. A dynamic inverse and actuator model
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then converts the rates into actual deflection commands for the surfaces. Our simulation

model uses a linearized model of the F-15 ACTIVE aircraft, a highly customized NASA jet

plane. This basic controller has been augmented by a neural network, which provides control

augmentation, i.e., the neural network’s output is added to the control command.

The aircraft’s sensor signals and outputs of the standard PI controller are sent to the

OLNN. The OLNN compares the PI controller output with the output from the linearized

plane reference model, which is the desired output response, and attempts to drive the errors

between the two outputs to zero by augmenting the command from the PI controller before

it is fed into the nonlinear dynamic inverse.

It is obvious that one of the main goals is to keep the aircraft stable in both the nominal

case and in the presence of damage. Many parameters of the IFCS, like gain parameters for

the PI controller, govern the behavior of the entire system. The adaptation learning gain has

a large effect on algorithm stability and learning convergence. The analysis of the parameters

that can yield a potentially unstable system is of particular importance. The IFCS online

adaptive system is highly nonlinear and therefore it is difficult to model. This is where

statistical emulation techniques are coming to play, helping to provide efficient learning of

the system one step further by building a statistical emulator that describes the system in

a simpler and more revealing manner, and providing similar outputs as the IFCS simulator

when the same set of inputs is provided.

In practice, we do not work directly with the control software and live airplanes, we

work instead with a computer simulation of the entire process (the airplane and the control

system). The simulator represents a complex, non-linear mapping from the input variables

to the output variables. The 11 input parameters for the simulator are: lateral stick gain,
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longtitudinal stick gain, rudder gain, damping coefficient, the three proportional gains in the

roll, pitch and yaw axes, controller gain in the yaw axis, and the three OLNN learning rates

in roll, pitch and yaw axes. The 12 output variables are: the six errors with respect to the

reference model for the roll, pitch and yaw axes (i.e., both proportional and integral errors

for each axis), altitude, roll, pitch and yaw rates, angle of attack, and sideslip angle. Each

input variable is a scalar, and each output variable is a function of time, with the value of

that output measured at a discrete set of times. In our case, the timeseries have a length of

at most 1901 time steps. For example, an input vector x ∈ R11 results in 12 output vectors

y(k) = (y
(k)
1 , y

(k)
2 , . . . , y

(k)
T ) ∈ RT , T ≤ 1901.

A given set of experimental conditions (altitude, pilot input, speed) was provided and

kept constant in our experiments. Sometimes the software is unable to adapt the control

successfully to maintain aircraft stability, and the simulator terminates prematurely, having

recorded fewer than the maximum number of measurements made during a successfully

controlled flight. The software failure typically manifests itself as numerical calculation

problems caused by one or more program variables becoming very large or going out of

expected bounds in the currently implemented control algorithms. The failure time T (which

is the last recorded sample for the output variables) varies with the input configuration x.

For many inputs x, the system successfully controls the aircraft and the maximum number

of samples T = 1901 for each output variable is recorded. Part of the control system seeks

to minimize the error between the current output variable configurations and the expected

configurations under a reference model. This often results in oscillatory behavior in the

output curves as the corrections are being made.

Figure 1 shows the outputs obtained with two different sets of inputs, x1 and x2, which
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correspond to examples of successful and failure runs respectively. For input configuration

x1 (top), all outputs stabilize after the initial excitation caused by pilot input (pilot input

happens around T=0) and online adaptation. After some initial oscillations, the curves

dampen and finally reach another stable state. The simulation ends successfully with T =

1901 time steps. For input configuration x2 (bottom), signal excitements do not decrease

over time. Rather, a high-frequency oscillation (caused by a bad adaptation of the network)

can be detected, leading to instability at around T = 380 time steps. When there is a failure,

all 12 outputs will always fail at the same time.
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Figure 1: Typical output time series for successful (top) and failure (bottom) runs.

Some of the challenges in predicting the flight outputs include very different output
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Figure 2: Curve classes

lengths with a wide variety of frequencies. The basic shapes of output curves can vary quite

a lot. We observe that the output curves can be grouped into clusters of similar curve

length, shape, and frequency content. General appearance and frequency content of success

and failure curves are typically quite different (for example, the two runs in Figure 1). Some

examples of the failure curves for a single output variable are shown in Figure 2 below. When

the time to failure is about 250 time steps, the curves for different runs look similar to each

other as shown in the first column of Figure 2. When time to failure is between 350 to 500

time steps, the curves look similar to those shown in the second column of Figure 2.

Therefore, we have examined classification strategies using not just two classes (success

and failure) but also four classes, with classes defined by the ranges of the output length.

A histogram for time to failure, presented in Figure 2 (right), nicely supports our four-class

model. Two clusters are shown quite clearly in the histogram, the third class picks up the

remaining failure runs in the right tail. Finally class four (not shown) is comprised of the

sucessful runs. This histogram is the basis for setting our thresholds to (180, 280, 1900) time
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steps as discussed in Section 5, Table 4.1. Thus our approach will be to use a two-stage

model where we first classify a set of inputs into one of the four classes, and then perform

prediction for that class.

3 Statistical Emulation

The traditional emulation problem starts by considering the modeling of scalar-valued func-

tion y = f(x) with x ∈ Rp. A widely used statistical model for such a regression prob-

lem is a Gaussian process (GP) (Sacks et al., 1989; Kennedy and O’Hagan, 2001; Santner

et al., 2003). For inputs x ∈ Rp, a GP is formally a distribution on the space of functions

y : Rp → R such that the function values {y(x1), . . . , y(xn)} at any finite set of input points

x1, . . . ,xn have a multivariate Gaussian distribution. A particular GP is defined by its

mean function m(·) and its correlation function c(·, ·): y = f(·)|β, σ2, r ∼ N(m(·), c(·, ·)σ2).

Here we use a linear mean function, m(x) = xTβ and the Gaussian correlation function

c(x,x′) = exp{−(x − x′)TR(x − x′)}, where R = diag(r) is a diagonal matrix of p positive

roughness parameters r = (r1, . . . , rp). The smoothness of the Gaussian correlation function

is typically appropriate for computer simulators, but other classes of correlation functions

are possible, such as the Matérn family.

The stationarity of the GP model can limit its applicability. The Treed Gaussian Process

(TGP) model (Gramacy and Lee, 2008) is more flexible and overcomes this limitation by

subdividing the input space and modeling each region rν of the input space using a different

GP, thus leading to a non-stationary model. The TGP model includes a hierarchical model
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for the GP in region rν given in (Gramacy and Lee, 2008):

yν |βν , σ2
ν , Kν ∼ Nnν (Fνβν , σ

2
νKν), σ2

ν ∼ IG(ασ/2, qσ/2),

βν |σ2
ν , τ

2
ν ,W, β0 ∼ Np+1(β0, σ

2
ντ

2
νW ), τ 2ν ∼ IG(ασ/2, qσ/2),

β0 ∼ Np+1(µ,B), W−1 ∼ W ((ρV )−1, ρ),

(1)

where Nd, IG, and W indicate d-dimensional Normal, Inverse-Gamma, and Wishart dis-

tributions, respectively. Here yν is a vector of response values for the nν training inputs

Xν ∈ rν and Fν = (1,Xν). The correlation matrix Kν for region rν contains the values of

the correlation function c for pairs of training inputs: Kν(i, j) = c(Xi,Xj). The remaining

hyperparameters are given specified values.

The TGP subdivision process is hierarchical and done by recursively partitioning the

input space via a binary tree. The parameters defining the subdivision process are part of

the TGP statistical model and ultimately determine the number of regions in the subdivision.

A prior on the size of the subdivision tree T is specified through a tree generating process that

splits a leaf node ν with probability pSPLIT(ν, T ) = a(1 + qν)
−b, where qν is the depth of ν in

T and a and b are specified hyperparameters. See (Gramacy and Lee, 2008) for the complete

prior specification for the subdivision tree T and the TGP model fitting algorithm. The tree

itself can be fit simultaneously with the GP parameters in the leaves using Reversible Jump

Markov chain Monte Carlo.

As noted in the previous section, we can improve our predictive performance by first

separating the curves into four classes. To predict class membership we use an extension of

TGP called Classification TGP (CTGP) (Broderick and Gramacy, 2011). For predicting M

classes, the CTGP model introduces M latent variables Zm, m = 1, . . . ,M , to define class
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probabilities via the softmax function:

p(C(x) = m) =
exp(−Zm(x))∑M

m′=1 exp(−Zm′(x))
(2)

Each class function Zm(x) is modeled using TGP.

Within each class, we actually want to predict an output curve, not just a scalar response.

One approach for predicting output curves is to extend the GP model to functions y : Rp →

Rq, where the vector output y represents samples of a curve at q = T time points. In the

context of statistical emulation of a computer simulator, Conti and O’Hagan (2010) call

this the Multi-output (MO) emulator and provide the statistical model for q-dimensional

Gaussian Processes, which is analogous to the standard model. In addition to the MO

emulator, Conti and O’Hagan (2010) outline two other possible approaches for multi-output

emulation: Ensemble of single-output (MS) emulators and the Time Input (TI) emulator.

In the MS approach, each of the T curve values are predicted independently using T single-

output emulators. On the other hand, the TI approach adds the time parameter t to the

input x and builds one, single-output emulator for y(x, t) : (Rp × R) → R. The MO

emulator is the simplest from the computational perspective with a computational load

that is comparable to a single-output GP emulator in which the bottleneck is n× n matrix

inversion for n training inputs S. The MS method uses T single-output GP emulators and

thus has a computational burden T times more than that of the MO method. A naive

implementation of the TI emulator would require nT times the computation of the MO

emulator as the training samples are now S × {1, . . . ,M}, but the structure of the problem

allows the required nT × nT matrix inversions to be done via n × n and T × T matrix

inversions. Of course, this is still more computation than required by the MO emulator.
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Using a linear mean specification, the mean functions for the MO and MS methods are the

same, but the mean function for the TI method is more restrictive because it assumes a

mean function m(x, t) = β0 + βTx x + βtt that is linear in t, where the coefficient vector is

decomposed as β = (β0, βx, βt)
T , although a different mean function can be used for the TI

emulator that results in an equivalent mean function as the linear mean for the other two

methods. More differences arise in the correlation structure of predictions. The MS method

estimates different roughness parameters r for each output time. This allows the most

flexibility, but is unrealistic for computer model emulation because of the lack of correlation

over time. The MO and TI methods estimate a single r for all times. The MO method allows

more generality in the covariance between different outputs ft1(x1) and ft2(x2) at different

locations x1 and x2, with the TI method constraining it to an exponentially decreasing

squared time difference.

In practice, we find that the stationary modeling assumption can often be overly restric-

tive. Instead of using GPs, we use TGPs. However, the above methods are not as easily

adapted to TGP models, so we consider a different approach. The size and multivariate

nature of the data lead to computational challenges in implementing the framework.

To overcome these challenges, (Higdon et al., 2008) makes use of basis representations

(e.g., principal components) to reduce the dimensionality of the problem and speed up the

computations required for exploring the posterior distribution. However, the success of their

approach largely depends on whether or not the simulator can be efficiently represented

with the GP model on the basis weights. This is apparent in the principal component

decomposition, which partitions nearly all of the variance in the first few components. These

systems also tend to exhibit smooth dependence on the input settings. In contrast, more
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chaotic systems seem to be far less amenable to a low-dimensional description such as the PC-

basis representations used here. Also, system sensitivity to even small input perturbations

can look almost random, making it difficult to construct a statistical model to predict at

untried input settings. This approach also has the issue of extrapolating outside the range

of experimental data. The quality of such extrapolative predictions depends largely on the

trust one has for the discrepancy term at tried experimental conditions applicable to a new,

possibly far away, condition. Because of our variable length outputs, we can end up in

somewhat of an extrapolation situation when predicting curves that are longer than the

related training samples.

In our approach to predicting one output variable curve, we represent the output curve

y ∈ RT in terms of a linearly independent set of D orthogonal curves B ∈ RT×D: y
.
= Bc.

We use orthogonal curves which measure different curve characteristics so that the basis

coefficients in c = (ci) ∈ RD are uncorrelated. Then we model the coefficients ci, i =

1, . . . , D, independently using D TGP models. By changing the curve representation, we

can use an MS approach without being subject to the criticism of not modeling correlations

between the outputs. Now the multiple output values being modeled are not values of

the curve at distinct time points but rather the coefficients in a basis representation of the

curve. In addition to the MS advantages of simplicity and flexibility of modeling correlations

of the same coefficient output value over different inputs x, the MS implementation can be

parallelized by running each single output emulator, both fitting and prediction, in parallel.

In many applications, using D � T orthogonal curves will suffice to accurately represent

output curves and the use of a good basis provides a substantial data reduction. Another

advantage of our basis representation approach is that it allows us to have a fixed size output
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representation D for applications which have output curves whose lengths T vary with input

x.

In the case of variable length output curves, modeling the output curve y(x) requires

modeling both the length T (x) as well as the T (x) curve values at different times. In the

NASA flight simulator application, we found that the output curves for a single output

variable could be grouped into a small set of clusters of similar curve length, shape, and

frequency content. Fitting distinct models for different classes of output curves improves the

predictive performance. Therefore, we add a class parameter C to our statistical model. We

allow for different bases to be used for different classes and so the basis matrix BC is now

indexed by the class C. Our model must now be able to predict the class C from the input

x and the prediction of the output curve y is now conditioned on the determined class C(x).

The details of the class criteria for the NASA application are given in Section 4.1. We found

that a CTGP model for C(x) gave the best classifier accuracy.

4 Implementation

We have so far kept the modeling description somewhat generic. In this section we fill in

the model details. Once the model is fully specified, we then need to fit the model. We

may separate our data into a training set used to fit the model, and a hold-out test set used

to verify the accuracy. To fit our full model, we use the training data to first fit a CTGP

classifier C(x). Next we train a TGP model to fit the curve length T (x), conditional on the

class. Finally, we fit additional TGP models for the coefficients of a basis representation of

y(x)
.
=

∑D
i=1 cibi.
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4.1 Classification

Learning models for different classes offers the possibility of high quality prediction in a

given class, because the learning method can focus just on the variance within that class.

In contrast, if we apply our method to all data as one class, then the variance among a

larger group needs to be captured and the prediction may not be as good. However, the

disadvantage of the multi-class strategy is that classification errors may lead to errors in

curve prediction.

We hypothesized that there was structure in the data that we could exploit in order to

improve our predictions. In particular we observed that the output curves could be grouped

into sets of clusters of similar curve length, shape, and frequency content. We examined

several classification strategies, including classifying into just two classes of success and

failure runs. We found that a four-class solution which breaks out three different groups

of failures offers the best balance between improved prediction within classes and tolerable

error in predicting the class. As discussed previously, the histogram in Figure 2 is the basis

for setting our thresholds to 180, 280, and 1900 time steps. Our data set consists of a total

of 967 runs obtained from the simulator. We randomly split the 967 runs into 637 training

examples and 300 test examples, using the training data to fit the models and the test data

to evaluate classifier performance. Table 4.1 shows the total number of simulation runs in

each of the four classes.

Our initial experiments focused on two-class classification into failure and success. Using

CTGP resulted in an 11.8% error rate. In comparison, a nearest neighbor classifer had a

43.9% error rate, and a support vector machine classifier had a 19.4% error rate. Given this
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Class Length # Runs

failure1 0 < T ≤ 180 257

failure2 180 < T ≤ 280 241

failure3 280 < T ≤ 1900 71

success T = 1901 398

Total 967 runs 967 runs

Table 1: Class membership of the available data.

success with CTGP, we applied it to the four-class problem. This resulted in a 27% error

rate, which is somewhat high, but as we will see in Section 5.2, the errors that are made

often still allow good curve prediction, as the curves that are difficult to classify tend to have

shapes that are somewhat similar to curves in more than one class.

4.2 Handling Variable-length Output Curves

In this work, we face a fundamental challenge of output curves with different lengths. Con-

sider the fitting step of our emulation strategy for a particular class. Suppose that the upper

limit in flight length that defines a given class is Tmax. For example, for the failure2 class

Tmax = 280. The basis B ∈ RTmax×D for a class will have vectors of length Tmax to accomo-

date the longest curves in the class. However, some curves in a class will have lengths less

than Tmax. So how should we determine the coefficients c ∈ RD for a training curve y of

length T < Tmax? The linear system Bc = y has too many rows on the left hand side or too

few entries on the right hand side depending on how you look at it.
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One option is to remove the bottom Tmax − T rows from the bottom of B to match

the length T of training output y. Learning the D functions from inputs x to coefficients

ci computed in this way from the training data resulted in terrible predictions. At first we

thought this was due to the destruction of orthogonality when cropping the basis vectors. We

had carefully chosen B to have orthogonal columns in an effort to make independent learning

and prediction of the coefficients ci a plausible strategy. The new columns in the truncated

B will not be orthogonal. But the prediction results did not improve when we repeated the

experiment after re-orthogonalizing the truncated basis vectors. Truncating the basis vectors

seems flawed in that we are using different Bs for training outputs of different lengths and

then trying to learn x → c = B−1y. Shorter curves will lead to different coefficients than

longer curves, because they are not needing to fit the missing end segment. This discrepancy

can lead to unstable behavior in the coefficients, resulting in poor predictive performance.

A second option is to extend the training output curve y by padding it with an extra

Tmax−T elements to bring its length up to Tmax. This is not ideal since it requires making up

data at the end of y. By breaking the prediction problem into classes, the amount of padding

needed is reduced in comparison to solving with a single class (which requires Tmax = 1901

to accomodate the success curves). We increase the length of training vectors y to Tmax by

repeating the last element in y. Once we have predicted the coefficient vector cnewpred for a new

input xnew, the predicted output curve ynew
pred = Bcnewpred has length Tmax. In our testing phase,

we know the true length T for the test case and we truncate ynew
pred to length T for comparison

with the true output curve ynew.

A third option for determining the coefficients when the basis vectors are longer than the

curve being fit is to truncate the basis vectors but then place a zero-mean Normal prior on
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the basis coefficients to shrink the coefficients toward zero. This strategy avoids the need to

extend curves to have the same length as the basis vectors. As mentioned earlier (option one),

simply truncating the basis vectors to the curve length and then doing an unconstrained least

squares fit gave terrible results. Instead, we put a zero-mean Normal prior (with variance

10) on the coefficients in the truncated problem to bias the fitted coefficients toward zero

and keep them from becoming too large. This shrinkage induces enough stability to enable

good predictions.

4.3 Bases

We considered several different bases with which to represent output curves, of which we

present three in this section. The length N of each basis vector corresponds to the length of

the curves being represented. A true basis would require N basis vectors. This representation

would be too large for our output curves, for example requiring 600 basis vectors for failure

and failure3 classes and 1901 basis vectors for the success class. Thus we keep only the most

important D � N basis vectors for representing the training data, where the reduced basis

dimension D is a parameter chosen to balance the size and accuracy of our representation.

For ease of discussion, we refer to reduced bases as simply bases. In the bases we consider,

we can obtain very good fits for relatively small dimensions such as D = 15 or D = 25; we

use D = 25 in the rest of this paper.

The Principal Components Analysis (PCA) basis for a given dimension D is an orthonor-

mal, training data-dependent basis that identifies the D basis vectors that capture the most

variance in the data using a PCA decomposition. Suppose the ntrain training data out-
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put curves are placed into the columns of a matrix Y ∈ RN×ntrain . Then subtract off the

mean output curve µ ∈ RN×1 from each of the columns of Y to obtain the centered data

Yc ∈ RN×ntrain . If Yc = UΣV T is a Singular Value Decomposition (SVD) of Yc, then the

columns of U ∈ RN×N form an orthonormal basis for the centered output curve data. As-

suming the singular values are ordered from largest to smallest as usual, the reduced PCA

basis is B = U [, 1:D] and explains
∑D

i=1 σ
2
i /
∑min(N,ntrain)

i=1 σ2
i of the variance in the output

curves Y . The first five PCA basis vectors for output variable 8 success class is shown in

Figure 3. The number for each basis curve in the legend refers to the additional fraction of
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PCA basis for output8 success class

 

 
1: 0.461679
2: 0.195029
3: 0.121289
4: 0.072491
5: 0.034855

Figure 3: PCA basis (first five basis vectors) for output variable 8, success class; the legend

shows the fraction of variance explained by each of the bases.
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the variance in the data that is explained by using that basis curve.

The Fourier basis for a given dimension D = 2K + 1 is an orthonormal basis over the

interval [0, 1] containing sines and cosines with frequencies 1, . . . , K as well as a constant

function. That is, the continuous Fourier basis contains the 2K + 1 basis functions:

b0(t) = 1 t ∈ [0, 1]

b2f−1(t) = sin(2πft) f = 1, . . . , K, t ∈ [0, 1]

b2f (t) = cos(2πft) f = 1, . . . , K, t ∈ [0, 1].

Because we have discrete data in our application, for a class defined by a maximum flight

length Tmax, the continuous Fourier functions are sampled at times ti = (i − 1)/(Tmax − 1)

where i = 1, . . . , Tmax, to form the discrete Fourier basis used for that class. The more basis

functions D that are used, the higher the frequencies in the data that can be accurately

represented. In our particular application, D = 25 is sufficient to capture the observed

frequencies.

The Daubechies wavelets (Jensen and la Cour-Harbo, 2003) are a family of orthogonal

wavelets characterized by a maximal number of vanishing moments for given support. Each

wavelet has a number of zero moments or vanishing moments equal to half the number of

coefficients. For example, D2 (the Haar wavelet) has one vanishing moment, D4 has two,

etc. A vanishing moment limits the wavelet’s ability to represent polynomial behavior or

information in a signal. Daubechies wavelets are used in solving a broad range of problems,

e.g., self-similarity properties of a signal or fractal problems, signal discontinuities.
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4.4 Multiple Outputs

Thus far we have discussed predicting the curves for a single output variable. But computer

models may have multiple outputs, and, in fact, the NASA flight simulator has 12 output

variables. The complete NASA flight simulator data set y(v,x, t) is indexed by output

variable v, simulator input parameters x ∈ R11, and output time t. There may be correlations

over the output variables v which can be used to improve prediction results over all variables.

As for the single curve case y(x, t), we could view the problem as modeling a single scalar-

valued function by appending time t and output variable v to the input parameters x and

design a correlation structure that accounts for correlations over v. Another possibility is to

jointly model the 12 output functions R11 → RT , where once again a non-diagonal covariance

structure that captures correlations among the output variables could be used to improve

prediction. As in the single output curve case, we suggest a simpler possible solution that

allows independent prediction. The idea is to use PCA to transform the output variables so

that correlations among the curves for the transformed variables is minimized, then predict

independently on the decorrelated variables using our proposed single output variable model,

and finally transform back to the original variables to obtain the final predicted curves. In

this approach we essentially split the modeling task into two pieces: data decorrelation and

independent prediction instead of a single joint prediction model that accounts for correlation

among the output variables. The proposed approach for effective handling of multiple output

variables has the practical advantages of being simpler and allowing prediction to be done

in parallel for different output variables.
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5 Results

In this section, we report results of our method for output curve prediction using perfect

classification in Section 5.1 and then using the good, but not perfect CTGP classification

results. Given a test input x, we first assume knowledge of its true length T (x) and we use

a model trained for similar lengths in order predict the output curve y(x). We then remove

this assumption and predict using our full multi-stage model. Errors in classification can

lead to larger prediction errors because an incorrect class may be used for prediction. We

will compare the errors with perfect and CTGP classification to see how much classification

errors cost us in terms of prediction accuracy.

5.1 Output Curve Prediction Results

Let xi denote the test inputs with true output curves yi ∈ RT (xi) and predicted output curves

ypred
i ∈ RT (xi). We use the standard deviation σi for the true output curve yi to standarize

errors across different output curves and different output variables. The error ev,c for output

variable v and class c with the set of test output curves Sv,c is given by

ev,c =

∑
i∈Sv,c

||ypred
i −yi||1
σi∑

i∈Sv,c T (xi)
. (3)

The true and predicted output curves yi and ypred
i are for the given output variable v, but

we leave out the dependence on v to simplify the error formula 3. The sums of 3 are over the

total number of output curve values predicted, thus making the reported error an average

over all predicted points.

To test the effectiveness of the shrinkage idea as a way to avoid padding the curve data

(the third option described in Section 4.2), we did an experiment using each of the bases
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with dimension D = 25 with all the coefficients ci having the same prior ci ∼ N(0, σ2
c ) for

all the output variables. We predicted the output curves from the first ten output variables

using 4 classes. The results for the PCA basis for σ2
c = 10 are shown in Figure 2. Results

for the other bases were comparable.

Except for output variable 7 (with function values near 20000) where the shrinkage ap-

proach fails, the resulting prediction errors are quite similar between the padding and shrink-

age cases. Because of the difficulties with variable 7 (shared by all the bases), we use the

padding approach for the rest of this paper.

Table 3 shows that for our 4-class model, all three types of bases are suitable to represent

the curves. This comparison assumes that the actual (perfect) classification of each run

into one of the three failure classes or success is known. Figure 4 shows how the prediction

error differs between the different output variables and different bases. The predictors’

performance is worst for failure class 3, because failure class 3 contains by far the fewest

number of training data. The PCA basis gives the best overall performance, and this result

was consistent across other divisions of training and test datasets. Thus we focus on PCA

going forward. Some representative predictions using the PCA basis with dimension D = 25

for output variable 8 can be seen for the 3 failure classes and the success class in Figure 5.

5.2 Output Curve Prediction Results Using CTGP Classification

In this section we work with the more realistic setting of not knowing the classification in

advance, and we give curve prediction results using CTGP to determine which output class

model is applied. Examples of predicted curves for output variable 8 are shown in Figure 6.
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pad truncate + prior

outvar failure1 failure2 failure3 success

1 0.480 0.513 1.280 0.404

2 0.687 0.458 0.907 0.449

3 0.280 0.342 0.649 0.514

4 0.516 0.369 1.036 0.480

5 0.709 0.610 1.268 0.530

6 1.235 1.080 0.493 0.446

7 0.135 0.102 0.150 0.687

8 0.246 0.153 0.719 0.167

9 0.387 0.578 1.023 0.169

10 0.368 0.510 0.909 0.320

failure1 failure2 failure3 success

0.525 0.536 1.117 0.403

0.737 0.428 0.758 0.439

0.277 0.297 0.686 0.498

0.548 0.396 0.990 0.469

0.604 0.562 1.033 0.517

1.037 0.886 0.506 0.440

256.411 49.443 43.411 23.513

0.617 0.204 0.761 0.192

0.475 0.551 1.009 0.185

0.439 0.527 0.764 0.316

Table 2: Output curve predicition errors using curve padding versus a combination of basis

truncation with a zero-mean Normal prior on the coefficients. The PCA basis of dimension

D = 25 is used. The shrinkage parameter σ2
c = 10 is used. See the text for details of the

error measure.
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failure1 failure2 failure3 success

Daubechies wavelets

mean 0.5402 0.5132 0.8498 0.3389

std 0.4019 0.3501 0.3289 0.1455

Fourier

mean 0.5613 0.5052 0.8244 0.4066

std 0.3577 0.3113 0.3357 0.1527

PCA

mean 0.4647 0.4508 0.7839 0.3184

std 0.3290 0.2927 0.3379 0.1497

Table 3: Prediction error (mean and std) for 4 class model and different bases with perfect

classification.

In these figures, the black curve is the ground truth curve and is plotted for the correct

number of time steps T (x) for test input x. The red (lighter) curve is the predicted curve

using the model for the correct class C(x), and it is plotted for the maximum length T
C(x)
max

that defines the class C(x). If CTGP incorrectly predicted the class, then the blue (darker)

curve is the predicted curve using the model for the incorrectly predicted class Cpred(x) and

it is plotted for the maximum length T
Cpred(x)
max of that class. In the title for each test plot

there is an indication of whether the CTGP classifier predicted the correct class or not, and

the incorrect class prediction is given for classification errors.

The red (lighter) prediction curve for the correct class is always at least as long as the
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Figure 4: Output curve predicition errors for different bases, output variables, and classes in

the 4 class strategy. The basis dimension is D = 25 for all bases (PCA: solid line, wavelet:

dotted line, Fourier: dashed line)

black ground truth curve because the true length T (x) must be less than or equal to T
C(x)
max

in order for x to be in the class C(x). (Note that this is different from the plots in Figure 6,

in which we truncated the predicted curve to the known correct length T (x).) For tests in

which CTGP predicts the wrong class Cpred(x), the predicted blue curve may be shorter or

longer than the black ground truth curve. In the second example in the right column of

Figure 6, the correct class is failure2 with T
failure1
max = 580, but the input was incorrectly
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Output Variable 8, Class failure1 Output Variable 8, Class: failure2
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Output Variable 8, Class failure3 Output Variable 8, Class: success
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Figure 5: D = 25 PCA-based predictions: Output variable 8: (upper left) class failure1,

(upper right) class failure2, (lower left) class failure3, (lower right) class success.
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(a) Output Variable 8, Class failure1 (b) Output Variable 8, Class: success
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CORRECT Predicted Class!
Run #777: output #8:alpha (black), Predicted (red) [dim=25], nTrain=360
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CORRECT Predicted Class!
Run #836: output #8:alpha (black), Predicted (red) [dim=25], nTrain=360
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CORRECT Predicted Class!
Run #873: output #8:alpha (black), Predicted (red) [dim=25], nTrain=360
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CORRECT Predicted Class!
Run #874: output #8:alpha (black), Predicted (red) [dim=25], nTrain=360
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CORRECT Predicted Class!
Run #880: output #8:alpha (black), Predicted (red) [dim=25], nTrain=360
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CORRECT Predicted Class!
Run #883: output #8:alpha (black), Predicted (red) [dim=25], nTrain=360
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INCORRECT Predicted Class=failure3, Correct=success
Run #921: output #8 (black), Predicted from correct class (red), wrong class (blue)
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CORRECT Predicted Class!
Run #874: output #8:alpha (black), Predicted (red) [dim=25], nTrain=360
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CORRECT Predicted Class!
Run #880: output #8:alpha (black), Predicted (red) [dim=25], nTrain=360
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CORRECT Predicted Class!
Run #883: output #8:alpha (black), Predicted (red) [dim=25], nTrain=360
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INCORRECT Predicted Class=failure3, Correct=success
Run #921: output #8 (black), Predicted from correct class (red), wrong class (blue)
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Figure 6: Predicted Output variable 8 curves using CTGP classification. D = 25 PCA-based

predictions: (left) class failure1 and (right) class success.
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classified as success with T success
max = 1901 so that the predicted curve is much longer. In the

last example in the lower right of Figure 6, the correct class is success with T success
max = 1901

but the predicted class was failure3 with T
failure3
max = 600 so that the predicted curve is

shorter.

In Figure 6, we see more examples of excellent curve predictions using the correct output

class predicted by CTGP. We also see something quite interesting in the examples with

incorrect classification: the predicted output curve using the model from an incorrect class

is typically quite good near the beginning of the flight run and often does reasonably well

over a significant fraction of the true output curve. As expected, the predicted curve using

the correct class is usually better than the one using the incorrect class. There are some tests

for which the predictions are very similar using the correct and incorrect classes. Finally,

there are even a few tests in which the predicted output curve is slightly better using the

incorrect class.

Table 4 shows the prediction error when the class is considered unknown and predicted

with CTGP. Error rates are quite similar to those in Table 3, showing that little is lost when

estimating the class with CTGP.

failure1 failure2 failure3 success

PCA with CTGP classification

mean 0.4613 0.4875 0.7488 0.3350

std dev 0.2917 0.2784 0.2869 0.1436

Table 4: Prediction error (mean and standard deviation) for PCA and 4 class CTGP classi-

fication.
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Finally, we turn to the full multivariate output problem from Section 4.4. Let y(i, v, t)

denote the value of output curve v at time t for run i (for input xi). Let Yt be a matrix of

size 12×Nt, where Nt is the number of output curves that have length greater than t. Row

number k of Yt contains the row vector [y(i1, k, t)...y(iNt , k, t)] where i1, ..., iNt are indices

of the run numbers. So Yt contains output curve values at time t, and each row contains

data from different output variables. Form Y = [Y1|Y2|...|Y1901] of size 12 × N , where N is

the sum of all the Nts. Each row contains all the curve values for output variable k. We

performed PCA on Y to obtain a transformed matrix Ŷ , which gives a transformed set of

curves ŷ(i, v, t). Thus we generated a transformed set of curves for all output variables that

are uncorrelated and for which the strategy of predicting each output variable independently

makes more sense. Then we predict the transformed output variable curves independently

and transform back to the original output curve space to get the final curve predictions for

the original output variables. The results are presented in Figure 7. While our fits do not

match exactly, the get quite close in shape and structure, and provide a sufficient fit for

understanding the behavior of the controller.

6 Conclusions

In this paper, we discussed a statistical method for emulating an advanced and highly non-

linear system, and applied it to a real problem in aircraft control. Instability and loss of

control can occur when controller parameters are badly selected. Due to the large number

of parameters in the controller, it is extremely hard to see which parameter settings yield a

stable control system for a given pilot input, and which ones lead to instability after some
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(a) Output Variable 8 (b) Output Variable 2
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Figure 7: Predicted Output Curves for correlated multiple output curves

time. Statistical emulation can be a highly useful tool for understanding of the simulator.

We employ a two-stage approach where cases are classified based on their inputs. We

then use TGP to predict the output time-series curves using a sequence of orthogonal de-

compositions. Future research will include the extension of the methodology presented in

this paper to other, more complex prediction problems such as incorporating pilot inputs.

For safety-critical systems, like the NASA IFCS aircraft control system, the ability to

predict the system behavior is necessary for ensuring reliable operation and aircraft safety.

Classical control theory can provide an answer for simple systems (fixed-gain, non-adaptive

control systems), but modern control systems are typically of such a high complexity that

they cannot be studied analytically. Hence, mechanisms to learn the behavior of such a

system treated as a black box are needed for safety assurance. We can see from our analysis

that learning the behavior of this complex system is possible within a certain accuracy. Once

trained, prediction can be generated much more efficiently compared to system simulation.

Efficient in-flight prediction of the aircraft dynamic behavior can help answer questions such
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as: will the system stay within given boundaries; will the system experience oscillations and

of which type (damped, undamped); will the system remain stable. Research on advanced

fault detection and vehicle health management will benefit from our approach.
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