
Why Computer Science Matters: Introducing Computer
Science using Scratch and TouchDevelop

Suresh K. Lodha
University of California

Santa Cruz
lodha@soe.ucsc.edu

Sonali Somyalipi
University of California

Santa Cruz
sonali@soe.ucsc.edu

ABSTRACT
Motivated to emphasize the importance of computer science
to society in an introductory computer science class and to
bring out the talents of a diverse group of learners, we uti-
lized TouchDevelop to allow experimentation with various
sensors on mobile platforms and Scratch for creative interac-
tive story telling. In addition to the traditional emphasis on
concepts, algorithms, hardware, and programming language
constructs, emphasis was placed on exposing and inviting
students to participate in answering the following question:
Why Computer Science Matters? This paper presents some
sample final projects using Scratch and Touchdevelop as well
as a brief summary of students’ efforts to expound on the
importance of computer science to society. Additional chal-
lenges of devising a flexible grading rubric to meet the needs
of the diverse student population are also discussed. Pre and
post course surveys were administered to measure the im-
pact. Although the overall rating of the course as a learning
experience decreased slightly from a prior rendering of the
course by the same instructor using C++, 33% of students
indicated that they are more likely to take additional com-
puter science courses as compared to 21% who are less likely.
Further experimentation and assessment is needed to eval-
uate a programming vs. non-programing introduction to
computer science. For a programming-based introduction,
streamlining of websites and grading rubric coupled with a
flexible learning experience to meet the diverse needs and ex-
pectations utilizing some combination of Scratch, TouchDe-
velop, C++, Processing or Python is likely to yield better
results although at the cost of requiring additional teaching
resources.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
[Curriculum, Literacy, Self-assessment]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE ’13 Denver, Colorado USA
Copyright 2013 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

General Terms
Human Factors, Languages, Experimentation

Keywords
Computer science education, computational thinking, mo-
bile devices, TouchDevelop, Scratch, non-majors, creativity
support tools, Twine

1. INTRODUCTION
The Department of Computer Science at the University

of California Santa Cruz has traditionally offered CMPS 10,
An Introduction to Computer Science class intended for non-
majors. The class has primarily been taught using a com-
bination of topics found in a traditional introductory book
such as An Invitation to Computer Science or Computer Sci-

ence Illuminated supplemented with programming exercises
using C++. The typical algorithms covered in the class
include searching (sequential and binary search) and sort-
ing (selection, insertion, and quicksort) algorithms. Typical
programming projects revolve around implementing some
aspects of these algorithms. The class has been taught us-
ing this methodology for the last ten years more or less with
little change. Roughly two-thirds of the students have con-
sistently rated the course in the category of very good or
excellent combined as an overall learning experience. Given
the ratings in lower division undergraduate course at our
institution, these ratings are acceptable not requiring any
urgent need to change or alter the course.

Yet the movements inspired by computational thinking
and AP CS principles course point the direction to deliver
a more compelling rendering of the course that motivates
students to appreciate the evolving role of computer science
and its importance in solving problems of interest to so-
ciety. This theme also emerges in conversations with the
undergraduate students who are much more interested in
media and mobile platforms. It appears that many students
merely tolerate this course but would be delighted to have
a more modern version that makes the subject interesting
and relevant.

Guided by this thinking, in recent years, some of our col-
leagues in the department has been championing different
renderings of the same course with perhaps emphases on
different topics or different programming languages. These
efforts have resulted in at least five different renderings of
the course in last one and a half years by four different in-
structors. In addition to the traditional approach described
before, one instructor chose to present a wider variety of

computer science topics at a higher level often using histori-
cal contexts and by creating compelling powerpoint presen-
tations. This was essentially a non-programming introduc-
tion to computer science with only two programming tasks
assigned – a drawing program using high level context-free
drawing software and an introductory programming assign-
ment using Scratch. Students reported a very high level of
satisfaction with this rendering of the course with 82 per-
cent evaluating the course in the category of very good or
excellent combined for its overall learning experience. This
finding is consistent with the findings by Cortina [6] who
reported increased enrollment and interest towards a non-
programming introductory computer science course at CMU
and those by Lee [13] who also reported success in offering
an introductory CS course without programming component
at Cornell University.

In spite of the great success of this model, subsequent
renderings of the course introduced different or additional
programming languages as essential vehicles to introduce
computer science. One of the these renderings utilized pro-

cessing as the language, the second utilized a combination
of C++ and Scratch, and the third one offered a choice be-
tween Scratch and TouchDevelop. This paper focuses on
describing the approach and outcomes of this final approach
employed recently.

2. BACKGROUND
Most disciplines require an introductory computer science

course as a part of general education. Many students take
this course because they are required to. Many others want
to understand the utility and relevance of computer science
to disciplines that they are pursuing. But almost everyone
wants to engage with emerging gadgets and media to have
fun and for social networking. They also want to use it on
the run, that is, when they are mobile, and in between tasks.
Major challenge in a traditional rendering of a computer
science course is that the preciseness and detail needed to
write computer programs correctly can be overwhelming to
the students and often distracting. Students are also mostly
unaware of the vast array of emerging applications to so-
ciety (such as Kiva, KickStarter, theCausemopolitan) that
computers have enabled through crowd-sourcing and mobile
applications. We have only one quarter to engage students
and endear them to computer science or empower them with
technology. How can we do this?

First, there are opportunities to introduce computer sci-
ence without the use of programming languages. As far back
as in 2002, Lee [13] reported positive experience in intro-
ducing computer science using natural language processing,
information retrieval, and artificial intelligence at Cornell
University. More recently, Cortina [6] introduced computer
science to undergraduate students utilizing a flowchart simu-
lator Raptor rather than any programming language and re-
ported increased enrollment (although still with small class
sizes of around 40 as compared to our class size of 250) and
interest both from students and departments.

Then, there are several quite successful efforts using tai-

lored courses with focus on one specific sub-discipline. Forte
and Guzdial [9] reported encouraging outcomes with tai-
lored course on media computation at Georgia Institute of
Technology. Biology-themed courses have been popular at
Harvey Mudd College and Williams College [14]. An intro-
ductory computer science course focusing on artificial intel-

ligence is also offered at Williams College. Heavily tailored
courses such as introductory courses on computer graphics,
animation and virtual worlds, (or computer gaming) are also
being offered at UCSC and other institutions [16]. These
courses do not belong to similar category of courses such as
introductory computer science courses, and are typically not
meant to replace them.

Also, introductory computer science courses for engineers
are offered at several institutions [9, 10] and are not meant
as general education courses for students majoring in arts,
humanities, and social sciences. Although there were some
early efforts to offer introductory computer science courses
for artists and social scientists at UCSC, those courses are
no longer offered.

A strong need for general purpose introductory computer
science courses for broader audiences, say for students with
non-declared majors, or those likely to major in social sci-
ences, arts, and humanities remain. The question remains:
what do students want to learn? How to keep them engaged
and motivated?

2.1 Computational Thinking
Since Jeannette Wing [22] coined the term Computational

Thinking in 2006 arguing that it is comparable to mathemat-
ical, linguistic, and logical reasoning that must be taught to
all children, the movement to introduce computer science
in ways other than a traditional approach has gained mo-
mentum. As far back as in 1998, Joyce [11] and Ben-Ari [3]
advocated teaching computer science as a problem-solving
tool. A recent New York Times article [17] states that many
professors at various colleges including CMU, Wheaton Col-
lege, University of Maryland (Baltimore), Rutgers Univer-
sity, and Grinell College (Iowa) are introducing courses to
teach computational thinking to students. Hambrusch et
al. [10] use Python to teach computational thinking to non-
majors. Innovation by LeBlanc [17] in teaching computer
science to poets by analyzing large bodies of text and by
breaking large problems into small ones is certainly inspir-
ing.

What is computational thinking? Computational think-
ing is the mental activity in formulating a problem to admit
a computational solution that can be carried out by a hu-
man or a machine. The greatest emphasis in computational
thinking is on the abstraction process. Two workshops [7, 8]
on computational thinking have begun to define the nature
and scope of computational thinking and address pedagog-
ical aspects. Researchers are addressing the question as to
what is the right age to introduce computational thinking
in a curriculum – middle school, high school, or at the col-
lege level? The College Board, in collaboration with NSF, is
designing a new AP (Advanced Placement) course (in addi-
tion to the existing AP computer science course) that cov-
ers the fundamental concepts of computing and computa-
tional thinking (see www.csprinciples.org). Five universities
– University of North Carolina at Charlotte, University of
California at Berkeley (UCB), Metropolitan State College of
Denver, University of California at San Diego, and Univer-
sity of Washington at Seattle (UW)– have piloted different
versions of computational thinking courses. Of these, UW
is using processing as the programming language and UCB
is using a combination of Scratch and BYOB. Google has
launched a website (www.google.com/edu/computational-
thinking) on Computational Thinking and Computer Sci-

ence (www.csunplugged.org) unplugged teaches computer
science without the use of a computer.

How should this revolution in thinking about basic com-
puter skills ought to impact introductory computer science
courses at college level? Is programming language essential
for teaching an introductory course to non-majors? How
does computational thinking relate to students’ need for en-
gagement and enrichment with gadgets, media, and mobility
and impact of computers on society [5]?

2.2 Scratch Programming
Several institutions have adopted Scratch as one of the

programming languages [4] used early in an introductory
computer science course including courses at UCB and Har-
vard. There is also a robust discussion of pros and cons of
using alternatives such as Alice and Greenfoot [20].

We decided to use Scratch in combination with C++ in an
experimental version during Summer 2011 with a small class
size of 35 students. Students provided highly positive feed-
back because it allowed them to learn the programming lan-
guage rather quickly and captured their creativity. Buoyed
by this experience, in our current offering, we decided to use
Scratch as the only programming language for a significant
majority of students in a class of 140 students.

The Scratch programming language developed at the MIT
Media Lab offers a visually appealing environment allowing
novice programmers to learn programming without initially
having to write syntactically correct code. Users can cre-
ate games and interactive stories that are also animated.
Scratch programming depends on the inquisitiveness of the
learner and his/her capacity to explore and play with the
programming constructs. In the spirit of this philosophy,
the Scratch language is based on programming 2-D graph-
ical objects called sprites, set against a background called
the stage. Students write scripts with graphical blocks that
represent various programming constructs to animate the
sprites, make them interact amongst themselves, and change
their appearances. The Scratch application allows users to
import images and sounds, apart from creating their own
media, to make media-rich projects.

Scratch is clearly a programming language for beginners
as it has a minimal set of language blocks and command
set with an easy to use application interface. The color-
coded commands are categorized by their functionality and
are presented in panes on the same window. This way the
users are always looking at the commands and hence it is
highly probable that they can enhance their projects better
by using additional commands and constructs.

By not having distinct compile and edit phases, Scratch
programming is easier for users as they can change their
program while it is running and can test program fragments
to see what they do.

Scratch uses blocks which fit into each other like toy building-
bricks, only when their combination is meaningful and right.
This way Scratch does not have to post error messages.
There are several other mechanisms which make understand-
ing of constructs better and makes errors much less probable.
For instance, variables in Scratch are concrete and visible to
the users. The users can see the effects of any commands
they execute on variables. Also, the language has just three
data types which can be easily identified by the shapes of
parameter slots and function block shapes. Thus, incorrect
programs do not throw errors, but they do run, behaving in

unexpected ways though. This encourages the user to think
carefully and write programs that behave as he expects them
to.

Scratch programming also encourages sharing and learn-
ing across peers. The Scratch Website allows easy shar-
ing of projects, that makes collaboration and receiving feed-
back simple. Scratch also supports the 21st century learning
skills: information and communication skills, thinking and
problem-solving skills, and interpersonal and self-directional
skills [2].

2.3 TouchDevelop: Programming on a Phone
With the widespread use of smartphones, and their aug-

mented processing power, battery life and screen resolutions,
mobile devices like smartphones and tablets are increasingly
becoming the devices of choice for personal computing as
opposed to ordinary laptops and PCs. It is interesting to
see how mobile devices themselves can be used as platforms
to develop applications targeted to run on them. This will
encourage users to write scripts for themselves to automate
their tasks, or write small applications of their choice for fun
and productivity. Interestingly, this interface being more
exciting can also be used to invite beginners to learn pro-
gramming, as the results are more immediate,exciting and
practical.

The TouchDevelop language developed by Microsoft for
its Windows Phone[19] is such an environment, useful in de-
veloping applications and scripts, to be run on the Microsoft
Windows smartphones themselves. The only way to author
code in this language is via the touchscreen based code ed-
itor in the Windows phone and the resulting programs run
on the Windows phone with full access to the phone’s media,
sensors and cloud connectivity to storage and social network-
ing. The phone’s code editor provides touchscreen buttons
for the language’s syntax elements and built-in primitives
that in turn allow access to the phone’s media and sensors.

The TouchDevelop language which has properties drawn
from imperative, object-oriented and functional languages,
is a statically typed programming language. Scripts written
in the TouchDevelop language are composed of procedures
which are termed as ”actions” and have global variables.
There are also event-handler like elements which bind events
like button clicks, screen swipes, and screen taps to actions.
Actions are made up of statements, and expressions, where
expressions in turn are composed of literals and various op-
erators. Actions can also have local variables, invocations
to other actions, and multiple return values.

There are several data types in TouchDevelop and each
type exposes a set of properties, that can be accessed from
within actions. However, in order to keep programming
simple for beginners, there are some language limitations.
Some examples of such limitations are the absence of error-
handling and user-defined types.

3. COURSE OVERVIEW
The course began on a inquisitorial note seeking answers

from students as to ”Why” certain fields of study like As-
tronomy needed to be pursued. The answers unequivocal
and quite uniform. Astronomy helps us understand the
mysteries of the universe. Whereas answers to a parallel
question - ”Why the study of computer science needed to be
pursued?” proliferated into a wide array of correct but in-
complete responses. Most responses focused on stating the

usefulness of computers in hosting websites or social net-
working or telecommunications. Before proceeding into the
aspects of what the tenets of computer science are or how
these are realized as artifacts of say hardware or software,
the students were drawn to answer the question as to ”Why
computer science mattered?”. This methodology is also sup-
ported by the idea of teaching computer science in context
as discussed in detail by Cooper et.al [5]

The definition of computing as put forward by the AP
College Board, was used as the starting point for a dis-
cussion about why pursuing the study of computer science
mattered. The definition read as follows: ”Computing is the
development and use of computers and computer programs
to solve problems of importance to humans”. Not a single
response in a pre-course survey came anywhere close to this
definition of computer science. Students were then asked
to identify problems of importance to humans that could
or already were being solved by the application of com-
puter science. This question elicited responses surround-
ing the medical and robotic applications mostly. Several
examples of cutting-edge entrepreneurial efforts including
kiva, kickstarter, and theCausemopolitan, were presented.
Compelling applications of computers to society in various
aspects encompassing health, education, environment, en-
trepreneurship, social causes, global poverty were presented
and discussed. Students were assigned the task of creat-
ing a one page powerpoint presentation listing 3-5 appli-
cations of computer science providing concrete examples,
citing sources, and describing briefly how computers were
useful in the specific applications cited. This effort was con-
tinually kept up via the story building assignments delegated
to the students throughout the course. In story telling effort,
these applications were to be contextualized in the form of
a real or imagined individual who benefited from this appli-
cation and how it altered or impacted her or his life.

Gradually, students were introduced to a more granular
definition of computing which said ”Computing skills in-
clude the ability to write programs, represent and manip-
ulate data/data sets, and to give directions to make a com-
puter do what you want”. This definition lays down the
foundations for teaching a novice what programming is and
why programs are necessary artifacts in computer science.

The next discussion was about how solving problems us-
ing computers required communicating the known solution
to the computer as one would to a child in middle-school.
This analogy was used primarily to introduce the notion of
pseudocode.

Abstraction was realized as an important pedagogical tool
in the lectures as good pedagogy requires the instructor to
keep initial facts, models, and rules simple and only expand
and refine them as the student gains experience[23]. So,
easy to understand analogies were often used to convey es-
sential programming constructs during the lectures. For eg.
Variables were as traditionally done, compared to boxes,
and using this model students were taught variable naming
conventions, the notion of variables storing values, and se-
mantics of an assignment operation. In parallel, the idea
of variables being available in more than one type, namely
-as numbers, logical variables and character strings was also
made known, with the information of what basic operations
each of these variable types supported.

For purposes of simplicity and in the interest of abstrac-
tion, pseudocode written was always meant to be read in se-

quence. In later lectures, students were introduced to condi-
tional statements like IF-THEN-ELSE. Looping constructs
like FOR and DO-WHILE were also taught as means of
performing repeated tasks without having to write redun-
dant code. With these students were also instructed to use
techniques like tracing pseudocode in order to understand
and comprehend given snippets of pseudocode. Good pro-
gramming practices like commenting code were also taught.
Cryptic smart programs, for example repeated subtraction
to compute GCD, without appropriate comments, could be
a burden rather than an asset. Additional components of
the class are described next.

3.1 Story Telling Using Twine
Interactive-text based stories are not only a good medium

to bring out students’ creativity and logical thinking, but
also are a good way to stretch their imagination and knowl-
edge. Since, the students were required to build stories
whose central theme was - ”Computer Science”, they were
encouraged to look up and learn the history and advances of
computer science in order to build a strong plot. Twine[12] is
an easy to use desktop utility to create interactive texts, that
students used during the course to create and compile their
stories. The software enabled them to organize their story
graphically in a node based flowchart. Here, each piece of
text is represented within a node, and lines link these nodes,
showing the routes the reader might take through the story.
This flowchart representation could be exported and com-
piled into a a single web page. Twine also allowed inclusion
of conditional text. Figure 1 shows a snapshot of a sample
Twine window with a student’s story in the flowchart format
on the left and in the web-page format on the right.

3.2 Programming Assignments in Scratch
The Scratch programming assignments were modeled as

interactive story scenes. The students were required to cre-
ate an animation sequence with appropriate objects(sprites),
backgrounds and sound clips. The assignments were mod-
eled in such a way that, the students incrementally learnt to
write code to enable the program to accept user inputs via
the mouse and/or the keyboard and to make the objects re-
act to these inputs. They also programmed the sprites to re-
act upon collisions with other sprites. Animation sequences
were achieved by way of loops and conditional statements.
A sample assignment requirement is illustrated in Figure 2.
The final project using Scratch was to create an interactive
story using images, sounds, collisions, several sprites, focus-
ing on Why Computer Science matters?

3.3 Programming Assignments in TouchDevelop
The first assignment was an introduction to the interfaces

offered by the Windows phone. The student was required to
write code to enable the user to input his name and take a
picture of him using the front camera and read out a welcome
message using the text-to-speech engine of the phone. The
students designed a pedometer as the second assignment,
to count the number of steps they took using the phone’s
sensors. They also generated real-time charts of distance
they covered against the time they spent. They also used the
geo-location interfaces to calculate the distance between two
coordinates. The third and final assignment was to come up
with an interactive story scene sequence, using the graphic
interfaces of the phone. The final project was to design

Figure 1: Twine tool window showing nodes comprising the interactive story (left) which is then compiled
and represented in a html document (right)

Figure 2: Scratch programming assignment description of sprites and interactivity using mouse and keyboard

a utility or an interactive story on why Computer Science
Matters.

Figure 3 illustrates some sample TouchDevelop program-
ming assignment output screens programmed by the stu-
dents using the Microsoft Windows Phone.

3.4 Flexible Grading Rubric
Students were given an option to choose between Scratch

and TouchDevelop. Clearly, TouchDevelop presented a more
difficult learning curve and we did not want to require ev-
ery student to work with TouchDevelop. This decision was
guided by the constraint that Microsoft could provide only
a small number of Windows Phone for a class consisting of
140 students. Initially 21 students chose to use TouchDe-
velop and one student switched to Scratch after one week.
Points for programming whether in Scratch or in TouchDe-
velop were the same for all students.

Flexibility in grading rubric was introduced because some
students did not appear keen on developing their stories fur-
ther in Twine while some others did not seem very interested
in probing why computer science matters. Yet some others
appeared to be very keen in exploring either specific com-
puter science topics such as Turing Machines or questions
such as what kind of computer science curriculum is needed
for a 21st century learner. In order to motivate the students
and channel their talents into topics of their choice, students
were given the flexibility to choose between these options:
create a powerpoint presentation on why computer science
matters, or create an interactive story using Twine, or cre-
ate a research paper on a computer science topic with prior
approval from the instructor.

Students were initially a bit surprised with the flexibil-
ity in choosing the task. However, most students welcomed
this approach because it allowed them to work on a task of
their choice. We feel that it clearly improved the final out-
comes. However, reporting of these grades to students be-
came tricky because some of these tasks were graded ahead
of others. This created confusion because some students re-
ceived grades out of 65 while others were receiving grades
only out of 55 and did not allow computation of averages and
medians consistently across the whole class. In the hind-
sight, clearly grades should have been reported only after
all the work was graded for the whole class irrespective of
their chosen option. However, due to constrained resources
for such a large class, this approach would have introduced
undue delay in reporting timely grades on assignments that
could help students to improve their next submissions.

3.5 Course WebSites: eCommons and Piazza
eCommons platform was used to allow students to share

ideas so that they can work in groups while working on
interactive story telling projects or programming projects.
But the platform appeared clumsy and difficult to use. So,
we introduced Piazza as an additional website where stu-
dents could post their interactive stories and view the sto-
ries posted by others. In addition, since eCommons is not
accessible to the outside world and we wish to disseminate
the information on our course, we also used a regular course
website. These three websites clearly became overwhelming
and confusing because students did not know which site to
use for what purpose. This feedback was provided strongly
in mid-quarter. Support for Piazza was suspended immedi-
ately thereafter and this decision was greeted with cheers.

4. FINAL PROJECTS
Now we describe the outcomes of some final projects in

scratch, touchdevelop, powerpoint presentations on why com-
puter science matters, interactive story using twine, and re-
search papers.

4.1 Why CS Matters
One of our major themes while teaching this introduc-

tory course to computer science was to expose students to
the emerging applications of computer science and to en-
courage them to appreciate the role played by computer
science in defining a better world. Assignments designed
to achieve this goal required students to provide concrete
examples from the real world where computer science has
played a significant role in making a difference to society.
The evidence for these examples had to be presented in one
of the several ways: a link, an image, a video, sounds, with
descriptive text.

Students highlighted the influence of technology on teach-
ing methods by discussing and bringing out examples. They
thought it was important how documents of relevance are
now accessible and searchable. They cited multiple web-
sites and enterprises which had helped distance education
come a long way, eventually making the distance between
the instructor and pupil virtually irrelevant. Many exam-
ples were brought forth indicating towards the impact of
artificial intelligence algorithms on a variety of fields like
the stock markets, hospital management, modern surgery,
warfare and space exploration.

It was clear that students appreciated the spread of the
immense communication network by way of the Internet.
They cited websites which were helping source funds as loans
and donations from across the world for deprived sections
of the society. Assistive technologies that have flourished
with the pervasiveness of sensors able to detect location and
motion were mentioned as well.

4.2 Research Papers
Majority of students chose to create powerpoint presen-

tations on why computer science matters. Only a handful
but dedicated students chose research topics of their inter-
est. Turing machine and computer-assisted proofs were the
chosen technically oriented topics. One student discussed
the role of computers in solving the Four Color Conjecture.

Topics for research papers included: Online introductory
computer science courses, and the needs of a 21st century
learner. In a critique of online classes, a student wrote that
one-to-one learning that occurs in a tutoring environment
cannot be substituted with online classes.

Many students chose to write about the inspiring innova-
tors of today and one chose to write about the computer sci-
ence awards. Entrepreneurs such as Salman Khan for Khan
Academy, Ben Silbermann for Pinterest, Gossy Ukanwokwe
for Students’ Circle were chosen. One student researched
works of award winning computer scientists Luis Von Ahm
and Hal Abelson.

Additional topics include open source software, mobile
platforms, and the role of computer technology in creating a
greener economy. Overall, the quality of research papers was
excellent and reflected the commitment of students towards
excellence. Many of the students who chose this option re-
ceived an A or an A+ because their performance in other
areas were also equally strong or stronger.

Figure 3: Solution screens for the three TouchDevelop programming assignments

4.3 Interactive Story Telling
After the initial assignment on story telling in which the

whole class participated, only a small number of students
chose to develop their story further in Twine. As in the
case of research papers, these students put in tremendous
amount of effort and developed compelling stories that pre-
sented ethical dilemmas surrounding the use of computer
technology to very promising science fiction stories.

We received several excellent storylines that were created
with a strong theme - ”the influence of computer science on
the society”. Students didn’t limit themselves to the cur-
rent advancements of the field but built for themselves a
burgeoning world of technology, where the science flourished
and was more pervasive than ever before. These stories care-
fully weighed the pros and cons of technology, its usage, its
consequences with humanity at the center point. Simulta-
neously, they presented the vastness and infinite potential
that the field had to offer. The outlines of these stories pre-
dominantly dealt with the growing intrusiveness of electronic
gadgets and software. There were several accounts written,
describing the changing security scenarios with upcoming
cyber-security challenges. These stories were expressed via
Twine and some of them were further articulated using ei-
ther Scratch or TouchDevelop programs.

4.4 Programming Projects in Scratch
The quality of final projects using Scratch varied as ex-

pected. Some of the best projects had very detailed story-
lines with handcrafted images and sounds made with great
care. Most stories brought characters and props to life with
handmade images associated with sprites. Almost all the
submissions met the technical requirements where students
designed interactive Scratch programs involving mouse and
keyboard initiated user inputs. Figures 4, 5, 6, and 7 are
some screens of the programs created by the students as
final projects for the course.

4.5 Programming Projects in TouchDevelop

Figure 4: A story about how a lonely kid learns and
later uses computer science to keep himself enter-
tained and informed.

Figures 8, 9, 13, 11, 10, and 12 are some sample phone
screen-shots belonging to the final projects demonstrated
by students who programmed using the TouchDevelop lan-
guage. The projects harnessed several interfaces exposed
by the phone. In addition to using traditional program-
ming constructs like variables, control flow statements, con-
ditional statements, methods and loops, the students also
extensively used the sensors and the phone data to make
their programs interactive and useful.

5. SURVEY OUTCOMES AND FEEDBACK
There were 140 students enrolled in the class. Freshmen,

sophomore, junior, and senior accounted for 43%, 26%, 17%,
and 12% respectively of the class. 68% students were males
and 32% students were females. 42% students were asian,
35% were white, 20% were hispanic or latino.

Figure 5: An account of how a family vacation is
saved from mishaps thanks to artificial intelligence
applications in aviation.

Figure 6: A story highlighting the social importance
of online publications like blogs.

Figure 7: An entertaining remake of the movie -
”The Matrix”

Figure 8: An alarm clock that requires the user to
find his way through a maze to stop the alarm from
ringing.

Figure 9: An audio-visual aid to learn new japanese
words using flash cards with english equivalent
words, pictures and pronunciation aid.

Figure 10: An interactive story of kids lost in the
dark of the forest, and found thanks to geolocation
technologies.

Figure 11: An app that helps school students to
track and share real time locations of their school
bus.

Figure 12: An interactive story highlighting the
huge economic change brought about by introduc-
tion of mobile phones in the fishing community of
south-coastal India

Figure 13: A game where the user needs to steer
the sprites to the right doors to win.

30% students belonged to social sciences division, 30%
students were undeclared, 14% students were pursuing en-
gineering, 14% sciences, 9% humanities, and 4% arts.

In response to the question on reason for taking the course,
23% students indicated that this was a required general ed-
ucation course, 40% indicated that it was a course required
for the major, and 27% took the class because they were
interested in the course. The students were administered
a pre-course and a post-course survey, both designed along
the lines of the AP CS Student survey published by College
Board[1]. The pre-course survey helped us know how the
students defined computing and what they thought a person
skilled in computing could do. The survey asked questions
that revealed patterns of technology use by students, and
brought out their attitudes towards computer science.There
were also questions that helped us know the students’ com-
fort level and familiarity with logic and mathematics, and
any previous experiences they had with computers. Lastly
we asked questions to ascertain the demographics of the au-
dience to the course.

62% of students had never taken any computer science
courses prior to taking this class while 11% had less than
one year experience, and 18% students had taken one year of
computer science prior to taking the class already. Similarly,
about 10% students indicated that they had learned CS on
their own for a year, 15% for less than a year, and 67% had
not learnt CS on their own prior to taking this class.

87% students use mobile devices for texting and talking in
comparison to 48% for social networking and 48% for video
or music. Surprisingly, 30% students indicated that they had
never played a video game. Also, interestingly, about 40%
students stated that they use mobile devices for coursework
or creative work at least once a week. This provides an
opportunity to draw these students into TouchDevelop.

The post-course survey again asked how the students de-
fined computing and what they thought a person skilled in
computing could do. Next, their attitudes towards computer
science were gauged again, with questions concerning their
comfort and interest in learning computing concepts. They
then self rated their abilities in using a computer in their
day-to-day activities, solving logic problems, writing com-
puter programs and solving problems with computer sci-
ence, while effectively analyzing the social implications of
computing.

In addition to these pre- and post-course survey, university-
sponsored evaluation of the course and the instructor were
recorded anonymously. Further a focused questionnaire was
administered to students who chose TouchDevelop.

Results

Prior to the course most students said that learning com-
puter science would help them to fix their personal comput-
ers, help them build websites and get them a job. Many
indicated that they would be able to write programs. After
the course, many of these reasons remained, but new rea-
sons were added more prominently. Students expressed con-
fidence in continuing programming with TouchDevelop and
Scratch and also stated they expect to learn programming
with other languages and start using other software pack-
ages. By the end of the course, 84% of the students said
they could now see, how they could apply their knowledge
of computer science to solve problems of human importance.

In response to the question, ”if someone were to ask you
things using or requiring ”computing”, which things would

you be thinking about”, the responses in percentages were as
follows: (i) using computer applications like Word, GIMP,
Blender, Photoshop: 79%, (ii) developing a webpage: 70%,
(iii) using online social media: 60%, (iv) searching for data
for a research paper on the web:56%, (v) searching for an-
swer to some non-school related question:56%, (vi) fixing
computer problems:64%, and (vii) solving a problem of im-
portance to humans using computer science:84%.

In response to the question ”I had a strong desire to take
this course”, 37% students somewhat or strongly agreed,
42% were neutral, and 21% students somewhat or strongly
disagreed. The results of ”I gained a good understanding
of the course content” is strikingly similar: 46% reported
strongly or somewhat agreed, 37% remained neutral, and
18% somewhat or strongly agreed.

Although the overall rating of the course as a learning
experience decreased slightly from a prior rendering of the
course by the same instructor using C++, 33% of students
indicated that they are more likely to take additional com-
puter science courses as compared to 21% who are less likely.

Students’ Feedback on Scratch and TouchDevelop We also
administered a survey to get student feedback on the lan-
guages and platforms used in the class. The students an-
swered questions regarding their experiences using TouchDe-
velop on the Microsoft Windows phones/Scratch Program-
ming. The students who chose TouchDevelop Programming
said that they had a richer programming experience with
phone sensors, and structured programming constructs. Us-
ing TouchDevelop programming they could create phone ap-
plications that were practically useful. However, learning
to use the limited phone interface to input code involved a
slightly longer learning curve.

On the other hand, students who learnt programming with
Scratch learnt basic programming constructs as well as could
use rich multi-media content like graphic images and sound
clips in the programs they wrote. The Scratch Programming
language provided to them an intermediate platform for ex-
pressive story telling and game design. The learning curve
for Scratch was acknowledged to be much shorter than that
of TouchDevelop.

6. DISCUSSION AND FUTURE WORK
Students greeted an earlier offering of the introductory

CS class with little programming language at UCSC with
very high ratings. Since these type of courses have been
successful at other institutions as well, we need to firm up
this approach and identify components – topics, use of guest
lectures, use of powerpoint presentations – that can create a
meaningful learning experience for students. It will be useful
to determine how well they were engaged with or motivated
by the class. A well designed pre- and post-survey can begin
to capture these elements.

The tailored courses such as introduction to computer
graphics or animation using high level software packages
such as Maya have been also tremendously successful. A
newly introduced course on social networks also seems to
be popular. It is worth contemplating introduction of other
tailored lower division computer science courses such as com-
putational biology, computational finance, computational
photography, computational media, or computational gad-
gets. An interesting proposition, given the emphasis on so-
cial causes at our campus, would be a course on computa-
tional social science (with focus on social issues). Experience

at other institutions suggest that these tailored courses are
likely to be well received by students.

This brings us back to our key question: what about
general-purpose introductory computer science course with
programming component? Students have been giving ac-
ceptable but not outstanding evaluations to the traditional
offering of the course using C++. Nevertheless, as stated
before, focused discussions with students suggest that this
may not be the ideal way to offer the class with its tradi-
tional focus on searching, sorting, algorithms without much
introduction or exposure to current gadgets and media. Our
recent experiments with using Scratch seem to have been
very successful, although the data is limited only to a sum-
mer session, and therefore, not conclusive. We also need
to address the question whether scratch is powerful enough
to convey the depth of computer science concepts. On the
other hand, initial experimentation with the use of process-

ing or TouchDevelop have received lower overall learning ex-
perience scores from students. However, course evaluation
results do not separate the experience based on program-
ming language from other components of the course. It ap-
pears that other aspects of the course such as flexible grading
scheme, multitude of course web sites, and attempt to cover
additional material such as Twine etc. could have been over-
whelming. Focused informal conversation with TouchDe-
velop students indicated that many of them were very satis-
fied and in fact proud of their final projects. Similarly, final
projects in Scratch during Summer 2011 and during Spring
2012 also produced several very strong projects. Other insti-
tutions are also using Python to teach computer science for
non-majors and have reported success informally. More pre-
cise or component-wise evaluation of course will be needed to
assess which programming language or which aspects of the
course are most compelling and interesting to the students.

In summary, the key goal of introductory computer science
courses should be to engage and motivate students. Non-
programming introduction to computer science and tailored
computer science courses appear to be doing a better job of
achieving this goal. Our course succeeded in communicating
the importance of computer science in solving problems of
importance to society. Further research is needed to deter-
mine which programming languages or combinations should
or could be used for introductory computer science course.

7. ACKNOWLEDGMENTS
We would like to thank the undergraduate tutoring staff-

Carmelo Herrera, Christopher Taylor, Steven Butkus, Michael
Okuma, Wyatt Sanders, Brice Gatelet, and Zane Mariano
for their dedication, knowledge and creative exchange of
ideas on curriculum design and delivery. We also express
our gratitude to Siddhant Chandgothia for assisting us with
TouchDevelop applications and presentation. We would like
to thank Jim Whitehead, Marilyn Walker, Charlie McDowell
for helpful discussions on redesigning the curriculum for the
introductory computer science class at UCSC. We are also
grateful to James Davis, Christopher Yonge, Jim White-
head and Linda Werner for guest lectures. We also wish
to acknowledge our gratitude and appreciation to Microsoft
researchers- Nikolai Tillman, Peli de Halleux, Arjmand Samuel,
and Kent Foster for sharing their knowledge on TouchDe-
velop and to Microsoft for their generous support. Most of
all we are very thankful to the students of CMPS10 Spring
2012 class for their contribution and creativity in their final

projects on Twine, Scratch, and TouchDevelop which made
this teaching effort extremely worthwhile. In particular, we
want to acknowledge the final projects on TouchDevelop by
Joshua Becker, William Barakatt, Christian Lopez Pena,
Christopher Mimilis, Nicholas Dahl, Sung Yong Jin, Mario
Avilla, Charles Hoffman, Alexander Mitchell, Miles Kropf
and Maxwilliam Chao; final projects in Scratch by Jason Al-
varez, Johnson La, Keesha Bush-Trennery, Andrew Goldsby,
Abraham Gonzales and Seok Won Kim; final projects on
Twine - Jaspreet Dayal, Anthony Moreno, Lawrence Saguilig,
Alexander Tanner; final projects on Why CS Matters by
Shadie Nimri, Gina Kim, and Craig Collins.

8. REFERENCES
[1] College board. http://about.collegeboard.org/.

[2] Partnership for 21st century skills.
http://www.p21.org, 2011.

[3] M. Ben-Ari. Constructivism in computer science
education. ACM SIGCSE Bulletin, 30(1):257–261,
1998.

[4] G. Carmichael. Adding computer science to an
introductory computing class for non-majors.
http://gailcarmichael.com/sites/default/files/,
sigcse2011paper.pdf, 2011.

[5] S. Cooper and S. Cunningham. Teaching computer
science in context. ACM Inroads, 1(1):5–8, Mar. 2010.

[6] T. J. Cortina. An introduction to computer science for
non-majors using principles of computation. In
Proceedings of the 38th ACM technical symposium on

Computer Science Education, SIGCSE ’07, pages
218–222, New York, NY, USA, 2007. ACM.

[7] N. R. Council. Report of a Workshop on the Scope and

Nature of Computational Thinking. National
Academies Press, 2010.

[8] N. R. Council. Report of a Workshop of Pedagogical

Aspects of Computational Thinking. National
Academies Press, 2011.

[9] A. Forte and M. Guzdial. Motivation and nonmajors
in computer science: identifying discrete audiences for
introductory courses. Education, IEEE Transactions

on, 48(2):248–253, 2005.

[10] S. Hambrusch, C. Hoffmann, J. T. Korb, M. Haugan,
and A. L. Hosking. A multidisciplinary approach
towards computational thinking for science majors.
SIGCSE Bull., 41(1):183–187, Mar. 2009.

[11] D. Joyce. The computer as a problem-solving tool: a
unifying view for a non-majors computing course. In
Proceedings of the 29th ACM technical symposium on

Computer Science Education, SIGCSE ’98, pages
63–67, New York, NY, USA, 1998. ACM.

[12] C. Klimas. Twine. http://gimcrackd.com/etc/src/.

[13] L. Lee. A non-programming introduction to computer
science via nlp, ir, and ai. In Proceedings of the

ACL-02 Workshop on Effective tools and

methodologies for teaching natural language processing

and computational linguistics - Volume 1, ETMTNLP
’02, pages 33–38, Stroudsburg, PA, USA, 2002.
Association for Computational Linguistics.

[14] R. Libeskind-Hadas. Computational thinking courses
for non-majors.
http://www.cs.hmc.edu/ hadas/IntroCourses.html,
2012.

[15] M. Resnick, J. Maloney, A. Monroy-Hernández,
N. Rusk, E. Eastmond, K. Brennan, A. Millner,
E. Rosenbaum, J. Silver, B. Silverman, and Y. Kafai.
Scratch: programming for all. Commun. ACM,
52(11):60–67, Nov. 2009.

[16] S. H. Rodger. Introducing computer science through
animation and virtual worlds. In Proceedings of the

33rd ACM technical symposium on Computer Science

Education, SIGCSE ’02, pages 186–190, New York,
NY, USA, 2002. ACM.

[17] R. Stross. Computer science for the rest of us.
http://www.nytimes.com/2012/04/01/business/computer-
science-for-non-majors-takes-many-forms.html, Mar.
2012.

[18] N. Tillmann, M. Moskal, J. de Halleux, and
M. Fahndrich. Touchdevelop: programming
cloud-connected mobile devices via touchscreen. In
Proceedings of the 10th SIGPLAN symposium on New

ideas, new paradigms, and reflections on programming

and software, ONWARD ’11, pages 49–60, New York,
NY, USA, 2011. ACM.

[19] N. Tillmann, M. Moskal, J. de Halleux, M. Fähndrich,
and T. Xie. Engage your students by teaching
programming using only mobile devices with
touchdevelop (abstract only). In Proceedings of the

43rd ACM technical symposium on Computer Science

Education, SIGCSE ’12, pages 663–663, New York,
NY, USA, 2012. ACM.

[20] I. Utting, S. Cooper, M. Kölling, J. Maloney, and
M. Resnick. Alice, greenfoot, and scratch – a
discussion. Trans. Comput. Educ., 10(4):17:1–17:11,
Nov. 2010.

[21] B. Ward, D. Marghitu, T. Bell, and L. Lambert.
Teaching computer science concepts in scratch and
alice. J. Comput. Sci. Coll., 26(2):173–180, Dec. 2010.

[22] J. Wing. Research notebook: Computational thinking
– what and why?
http://link.cs.cmu.edu/article.php?a=600, June 2011.

[23] L. E. Winslow. Programming pedagogy – a
psychological overview. SIGCSE Bull., 28(3):17–22,
Sept. 1996.

