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Abstract

Background: Statistical models and methods that associate changes in the physicochemical properties of amino
acids with natural selection at the molecular level typically do not take into account the correlations between such
properties. We propose a Bayesian hierarchical regression model with a generalization of the Dirichlet process
prior on the distribution of the regression coefficients that describes the relationship between the changes in amino
acid distances and natural selection in protein-coding DNA sequence alignments.

Results: The Bayesian semiparametric approach is illustrated with simulated data and the abalone lysin sperm
data. Our method identifies groups of properties which, for this particular dataset, have a similar effect on
evolution. The model also provides nonparametric site-specific estimates for the strength of conservation of these
properties.

Conclusions: The model described here is distinguished by its ability to handle a large number of amino acid
properties simultaneously, while taking into account that such data can be correlated. The multi-level clustering
ability of the model allows for appealing interpretations of the results in terms of properties that are roughly
equivalent from the standpoint of molecular evolution.

1 Background
The structural and functional role of a codon in a gene determines its ability to freely change. For example,
nonsynonymous (amino acid altering) substitutions may not be tolerated at certain codon sites due to
strong negative selection, while at other sites some nonsynonymous substitutions may be allowed if they do
not affect key physicochemical properties associated with protein function [1]. Thus, at such preferentially
changing sites, more frequent substitutions occur between physicochemically similar amino acids (or codons
which lead to those amino acids) than dissimilar ones [2–4]. Methods which use changes in physicochemical
amino acid properties have thus been proposed in the study of evolution. For example, [5–7] use distances to
calculate deviations from neutrality for a particular amino acid property. Alternative approaches model the
evolution of protein coding sequences as continuous-time Markov chains with rate matrices that distinguish
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between property-altering and property-conserving mutations as in [8] and [9]. More recently, [10] proposed
a Bayesian hierarchical regression model that compares the observed amino acid distances to the expected
distances under neutrality for a given set of amino acid properties and incorporates mixture priors for
variable selection. The hierarchical mixture priors enable the model in [10] to identify neutral, conserved and
radically changing sites, while automatically adjusting for multiple comparisons and borrowing information
across properties and sites.

A common feature of all the methods listed above is the implicit assumption that properties are inde-
pendent from each other in terms of their effect on evolution. A review of the amino acid index database
(available for example at http://www.genome.jp/dbget/aaindex.html), which lists more than 500 amino
acid properties, shows that a large number of them are highly correlated. Although the correlations we ob-
serve in the data can be different from those computed from the raw amino acid scores due to the influence
of factors such as codon bias, by ignoring these correlations we are also ignoring the fact that correlated
properties may affect a particular site in similar ways. Hence, approaches that do not take into account
the correlations in the rates of mutations on different codons do not make use of key information about the
relative importance of different physicochemical properties on molecular evolution.

A natural way to account for correlations in the data is by considering a factor structure, see for example
[11]. However, selecting the number and order of the factors can be a difficult task in this type of factor
models. In addition, the particular structure of the model in [11] makes it difficult to incorporate the effect
of the factors on regions that are very strongly conserved. This paper extends the Bayesian hierarchical
regression model in [10] by placing a nonparametric prior on the distribution of the regression coefficients
describing the effect of properties on molecular evolution. The prior is an extension of the well known
Dirichlet process prior [12,13] to model separately exchangeable arrays [14,15]. As in [10], the main goal of
the model described in this paper is to identify sites that are either strongly conserved or radically changing.
In order to account for correlations across properties, our model clusters properties with similar effects on
evolution, and within each such group, clusters sites with similar regression coefficients and nonparametrically
estimates their distribution. In addition to accounting for correlations across properties, this structure allows
us to dramatically reduce the number of parameters in the model and generate interpretable insights about
molecular evolution at the codon level.

Although the clusters of properties can in principle be considered nuisance parameters that are of no direct
interest, in practice posterior inference on the clustering structure can provide interesting insights about the
molecular evolution process of a given gene. Indeed, as will become clear in the following sections, our
approach incorporates the effect of codon-usage bias. Hence, any significant differences between the cluster
structure estimated from the observed protein-coding sequence alignment and the correlation structure
derived from the raw distances between the properties in such cluster can be interpreted a signal of extreme
codon-usage bias in that particular region of the genome.

The rest of the paper is organized as follows. A brief review of DP mixture models along with the details
of our model is provided in Section 2. This section also includes a review of some of the currently available
methods for characterizing molecular evolution that take into account changes amino acid properties. The
model is then evaluated via simulation studies and illustrated through a real data example. The simulated
and real data analyses, as well as comparisons between the proposed semiparametric regression approach
and other methods, are presented in Section 3. Finally, Section 4 provides our concluding remarks.

2 Methods
Dirichlet Process Mixture Models
The Dirichlet process (DP) was formally introduced by [12] as a prior probability model for random distri-
butions G. A DP(ρ, G0) prior for G is characterized by two parameters, a positive scalar parameter ρ, and a
parametric base distribution (or centering distribution) G0. ρ can be interpreted as the precision parameter,
with larger values of ρ resulting in realizations of G that are closer to the base distribution G0.

One of the most commonly used definitions of the DP is its constructive definition [13], which characterizes
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DP realizations as countable mixtures of point masses. Specifically, a random distribution G generated from
DP(ρ, G0) is almost surely of the form

G(·) =
∞∑

l=1

wlδφl(·),

where δφl(·) denotes a point mass at φl. The locations φl are i.i.d. draws from G0, while the corresponding
weights wl are generated using the following “stick-breaking” mechanism. Let w1 = v1 and define wl =
vl

∏l−1
r=1(1 − vr) for l = 2, 3, . . ., where {vl : l = 1, 2, . . .} are i.i.d. draws from a Beta(1, ρ) distribution.

Defining the weights in this way ensures
∑∞

l=1 wl = 1. Furthermore, the sequences {vl : l = 1, 2, . . .} and
{φl : l = 1, 2, . . .} are independent.

The DP is most often used to model the distribution of random effects in hierarchical models. In the
simplest case where no covariates are present, these models reduce to nonparametric mixture models (e.g.,
[16–18]). Assume that we have an independent sample of observations y1, y2, . . . , yn such that yi|θi

ind∼ k(·; θi),
where k(·; θi) is a parametric density. Then, the DP mixture model places a DP prior on θi as

θi|G
i.i.d.∼ G, i = 1, . . . , n

G|ρ ∼ DP(ρ, G0)

The almost sure discreteness of realizations of G from the DP prior allows ties in θi, making DP mixture
models appealing in applications where clustering is expected. The clustering nature is easier to see from
the Pólya urn characterization of the DP [19] which gives the induced joint distribution for the θis, by
marginalizing G over its DP prior. Under that representation, we can write θi = θ∗ξi

where θ∗1 , θ∗2 , . . . is an
independent and identically distributed sample from G0 and the indicators ξ1, . . . , ξn are discrete indicators
sequentially generated with ξ1 = 1 and

Pr(ξi+1 = k|ρ, ξi, . . . , ξ1) =

{
ri

k
i+ρ k ≤ maxj≤i{ξi}
ρ

i+ρ k = maxj≤i{ξi} + 1,

where ri
k =

∑i
j=1 I(ξj = k) and

I(ξj = k) =

{
1 ξj = k

0 otherwise.

One advantage of DP mixture models over other approaches to clustering and classification is that they
allow us to automatically estimate the number of components in the mixture. Indeed, from the Pólya urn
representation of the process it should be clear that, although the number of potential mixture components
is infinite, the model implicitly places a prior on the number of components that, for moderate values of ρ,
favors the data being generated by an effective number of components K∗ = maxi≤n{ξi} < n.

The Model
Our data consist of observed and expected amino acid distances derived from a DNA sequence align-
ment, a specific phylogeny, a stochastic model of sequence evolution, and a predetermined set of physic-
ochemical amino acid properties. In the analyses presented here, we disregard uncertainty in the align-
ment/phylogeny/ancestral sequence level since our main focus is the development and implementation of
models that allow us to make inferences on the latent effects that several amino acid properties may have
on molecular evolution for a given phylogeny and an underlying model of sequence evolution. Extensions
of these analyses that take into account these uncertainties are briefly described in Section 4. For further
discussion on this issue, see also [10].

In order to calculate the observed distances, we first infer the ancestral sequences under a specific sub-
stitution model and a given phylogeny. In our applications, we use PAML version 3.15 [20] and the codon
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substitution model of [21], which accounts for the possibility of multiple substitutions at a given site. Non-
synonymous substitutions are then counted by comparing DNA sequences between two neighboring nodes
in the phylogeny. The observed mean distance, denoted as yi,j for site i and property j, is obtained as the
mean absolute difference in the property scores due to all nonsynonymous substitutions at site i. Only those
sites with at least one nonsynonymous change from the ancestral level are retained for further analysis.

To compute the expected distances, note that each codon can mutate to one of at most nine alternative
codons through a single nucleotide substitution [5], only some of which are nonsynonymous (changes to stop
codons are ignored). Let Nk be the number of nonsynonymous mutations possible through a single nucleotide
change, corresponding to a particular codon k (k = 1, . . . , 61). Let Di,j

k,l be the absolute difference in property
j between nonsynonymous codon pairs at site i differing at one codon position, where l = 1, . . . , Nk. The
frequency of codon k at a particular site i in the DNA sequence under study is denoted by F i

k. Then, the
expected mean distance for a particular site i and a given property j is given by

xi,j ≡ Di,j
E =

∑61
k=1 F i

k

∑Nk

l=1 Di,j
k,l∑61

k=1 F i
kNk

.

We consider a hierarchical regression model that relates xi,j to yi,j and allows us to compare the expected
and observed distances at the codon level for several properties simultaneously with the following rationale.
If a given site i is neutral with respect to property j, then yi,j ≈ xi,j . If property j is conserved at site i,
then yi,j << xi,j and finally, if property j is radically changing at site i, then yi,j >> xi,j .

To construct our model, we first standardize the distances xi,j and yi,j by dividing them by the maximum
possible distance for each property. This enables us to use priors with the same scale for all the regression
coefficients. Our regression model for the standardized distances y∗i,j and x∗i,j , for sites i = 1, . . . , I and
properties j = 1, . . . , J , can be written as

y∗i,j |βi,j , σ
2
i,j ∼

{
N(βi,jx∗i,j , σ

2
i,j) if βi,j = 0

N(βi,jx∗i,j , σ
2
i,j/nO

i ) if βi,j &= 0,
(1)

where nO
i is the observed number of nonsynonymous changes at a particular site i and βi,j and σ2

i,j are
the regression coefficient and variance parameter associated with site i and property j. The mixture model
accounts for the fact that some of the y∗ijs can be equal to zero as some nonsynonymous changes do not
change the value of the property being measured (e.g., Aspargine, Aspartic acid, Glutamine, Glutamic acid
all have the same hydropathy score).

To complete the model, we need to describe a model for the matrix of regression coefficients [βi,j ].
There are a number of possible models for this type of data which utilize Bayesian nonparametric methods;
some recent examples include the infinite relational model (IRM) [22,23], the matrix stick breaking process
(MSBP) [24], and the nested infinite relational model (NIRM) [14,15].

In this paper we focus on the NIRM, which is constructed by partitioning the original matrix into groups
corresponding to entries with similar behavior. This is done by generating partitions in one of the dimensions
of the matrix (say, rows) that are nested within clusters of the other dimension (columns). This structure
allows us to identify groups of (typically correlated) properties with similar pattern and then, within each
such group, identify clusters of sites with similar values of βi,j (Figure 1 provides a graphical representation
of this idea). In our setting, we take [θij ] = [βi,j , σ2

i,j ] and employ a NIRM to generate a prior for [θij ].
More specifically, we denote by θj = (θ1,j , . . . , θIj)′ the vector of regression coefficients and the associated

variances corresponding to property (column) j. To obtain clusters for the properties, we assume that θj ∼ F ,
where

F =
∞∑

k=1

πkδθ∗
k

(2)

is a random distribution such that πk = vk
∏

s<k(1− vs), vk ∼ Beta(1, ρ), and θ∗k ∼ Hk. Indeed, the discrete
nature of F ensures that ties among the θj happen with non-zero probability.
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Figure 1: Stylized representation of our model. Each sub table at the second level of clustering shares a
common value for the regression coefficient βi,j . Rows correspond to properties, while columns correspond
to sites.

To obtain cluster-specific partitions for the sites (rows), Hk (the joint distribution associated with all
sites for a given cluster of properties) has to be chosen carefully. In particular, we write θ∗k = (θ∗1,k, . . . , θ∗I,k)′
for any specific specific cluster of properties k and let

θ∗i,k ∼
∞∑

l=1

wl,kδϕl,k , (3)

with wl,k = ul,k
∏

r<l{1 − ur,k}, ul,k ∼ Beta(1, γk) for every k, and ϕl,k are independently drawn from the
baseline measure G0,l,k.

The baseline measure G0,l,k is chosen to accommodate the fact that some y∗i,js can be zero, since some
nonsynonymous changes can keep the value of the property being measured unchanged. Thus, G0,l,k is a
mixture with a point mass at zero and a continuous density otherwise. To allow for a more flexible model
we assume that different prior variances are associated with the y∗i,js which are zero and those y∗i,js that are
different from zero, with the specific form of G0lk as below.

ϕl,k = (φl,k, ϑ2
l,k)|G0lk ∼ G0lk

with

G0lk = λ1{φl,k=0}p1(ϑ2
l,k) + (1− λ)p(φlk|ϑ2

l,k)p2(ϑ2
l,k), (4)

where p1(ϑ2
l,k) ∼ Inv-Ga(aκ, bκ), p(φl,k|ϑ2

l,k) ∼ N(αk, ϑ2
l,k/V0) and p2(ϑ2

l,k) ∼ Inv-Ga(a∗σ, b∗σ). Here φl,k and
ϑ2

l,k respectively denote the unique values βi,j and σ2
i,j can take, whereas λ is the prior probability that φl,k

has the value zero (i.e., the properties associated with this cluster are strongly conserved at this cluster of
sites).
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Note that our model implies that both sites and properties are exchangeable a priori. If no additional
prior information is available, this type of assumption seems reasonable. However, a posteriori, it is possible
to have sites behave differently in different clusters.

To complete the model we place hyperpriors on all parameters of the resulting model. Conjugate priors
are chosen for ease of computation. αk denotes the mean for the φl,ks that are different from zero belonging
to a specific cluster of properties k and is assumed to have a N(mα, Cα) prior for all k. The DP concentration
parameters ρ and γk are assumed to follow Ga(aρ, bρ) with mean aρ/bρ, and Ga(aγ , bγ) with mean aγ/bγ for
all k, respectively. λ, which is the prior probability for the point mass at 0 in G0lk, follows a Beta(aλ, bλ). The
specific choice of hyperparameters is discussed later as part of each data analysis. In general, we use Ga(1, 1)
priors for the DP concentration parameters and a N(1, Cα) prior for αk to correspond to our assumption of
neutrality a priori for the properties.

Related Work
We compare results from our proposed method with results from a few currently available methods that aim
to characterize molecular evolution while also taking into account changes in amino acid properties, namely,
the regression model in [10], TreeSAAP [25], and EvoRadical [9].

In [10], the first level of the model is the regression equation on y∗i,j as in equation (1), but it implicitly
assumes independence among properties and independence among sites unlike our current model. The model
in [10] is suitable for use when a few mostly independent amino acid properties are being analyzed whereas
the new semiparametric model is better suited to the analysis of a large number of possibly correlated
properties.

TreeSAAP uses the methods of [6] to classify nonsysnonymous substitutions into one of M categories, with
higher numbered categories corresponding to sites showing radical changes and lower numbered categories
used for sites showing conserved changes for a given property. For the analysis considered here, we used 8
categories where categories 6, 7, and 8 corresponded to sites showing radical changes, and categories 1 and 2
to sites showing conserved changes. Nonsynonymous changes are inferred from the ancestral reconstruction
using the nucleotide substitution models in baseml implemented in PAML. We used a Bonferroni correction
to correct for multiple comparisons.

EvoRadical implements the models of [9], which use partitions of amino acids to parameterize the
rates of property-conserving and property-altering codon substitutions in a maximum likelihood framework.
The model considers three types of substitutions: synonymous, property-conserving nonsynonymous and
property-altering nonsynonymous which is a slight improvement from [8]. For analyses with multiple prop-
erties, one has to create different partitions for the different properties and run EvoRadical for each property.

Posterior Simulation
Various algorithms exist for posterior inference of DP mixtures - some of the most popular ones use (i)
the Pólya urn characterization to marginalize out the unknown distribution(s) [26, 27], (ii) a truncation
approximation to the stick-breaking representation of the process which paves the way for the use of methods
employed in finite mixture models [28,29], (iii) reversible jump MCMC or split-merge methods [30,31]. Some
other recent approaches have also used variational methods [32] and slice samplers [33].

We use an extension of the finite mixture approximation discussed in [28] for its ease of implementation.
Truncating F at a sufficiently large K, we write F (K) =

∑K
k=1 πkδθ∗k

, with the weights πk and locations
θ∗k generated as described earlier in this Section. Next we introduce configuration variables {ζj} such that,
for k = 1, . . . ,K, ζj = k if and only if θj = θ∗k. Similarly for Gk, we truncate at a sufficient level L,
and introduce another set of configuration variables {ξi,k} where ξi,k = l, with l = 1, . . . , L, if and only if
θ∗i,k = ϕl,k. Additional details about the algorithm are provided in the Appendix.

To determine the truncation levels K and L, we follow [29]. In particular, note that conditional on ρ (the
DP concentration parameter), the tail probability

∑∞
k=K πk has expectation {ρ/(1 + ρ)}K−1. Using prior
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guesses for ρ and acceptable tolerance levels for the tail probability to be small, one can then solve for the
truncation level K. In our analyses, we used K and L in the range of 25 to 35. These values are in line with
those used in other applications (for example, see [34]).

3 Results
Empirical Exploration via Simulation Studies
We present two simulation studies to check the performance of the model under different scenarios. Addi-
tional simulation scenarios that may be of interest are available as an online supplement.

Simulation Study 1
The setup for the first simulation is as follows. We generate values for the distinct regression coefficients (φl,k)
from a N(1, 0.25). The number of distinct regression coefficients depends on the particular clustering structure
for the corresponding simulation. Once we obtain the regression coefficients, we generate observations yi,j

from N(φl,kxi,j , σ2 = 0.001). The xi,js are obtained from the lysin data set described below with analyses
for 32 properties, which implies J = 32 and I = 94.

We fitted the model in Section 2 to the y∗i,js and x∗i,js, with the following modifications: (i) the NIRM
is imposed on βi,j , so ϕl,k = φl,k and (ii) φl,k ∼ G0 where G0 ∼ N(α, τ2). We used K = 25 and L = 25 for
the simulations. The MCMC algorithm was run with the following hyperpriors: ρ ∼ Ga(1, 1), γk ∼ Ga(1, 1)
for all k, α ∼ N(1, 0.25). σ2 ∼ Inv-Ga(100, 10) and τ2 ∼ Inv-Ga(2, 4) were chosen such that the prior means
corresponded to the true values for these hyperparameters. Results are based on 15000 iterations, with
the first 5000 discarded as burn-in. Convergence was assessed by running two chains where each chain was
initialized by randomly assigning the βi,js to different partitions. Posterior summaries based on the two
chains were consistent with each other.
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Figure 2: Image plots for true βi,j values (left panel) and posterior means β̂i,js (right panel).

In this scenario, we had four clusters for the columns, each with differing number of groups, leading to
twelve distinct cluster combinations for the entire matrix of βi,js (Figure 2, left panel). Figure 3 shows the
marginal probabilities for any two columns (properties) of belonging to the same cluster. The model correctly
identifies that there are 4 clusters for the columns and assigns each set of columns to its corresponding cluster
with no uncertainty.

Similar graphical summaries obtained for the structure of rows within each cluster of columns show that
the correct clustering structures for the rows, within each cluster of columns, are inferred (see Figure 4). For
this level, however, there is some uncertainty about the membership of the clusters for a few rows. See, for
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Figure 3: Marginal posterior probabilities of each pair of columns belonging to the same cluster.
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Figure 4: Marginal posterior probabilities of each pair of rows belonging to the same cluster for two different
clusters of columns.
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example, the right panel of Figure 4. Some rows in cluster 1 (in the lower left) are sometimes being assigned
to cluster 3 (top right). The distinct values of φ used for these two clusters were 0.73 and 0.98, therefore, it
does not seem unreasonable to see some uncertainty in the assignment of clusters. Posterior means of β̂i,js
agree closely with the true values as shown in Figure 2.

This scenario corresponds to the type of situation we expect on most real datasets: properties will
cluster into groups and, within each group of properties, clusters of sites with similar responses can be
clearly identified. Our results suggest that, as expected, the model is capable of identifying these multiple
clusters with high accuracy and therefore accurately estimate the value of the regression coefficients. Other
scenarios, including extreme cases where all properties belong to a common cluster while sites belong to one
of several clusters, and cases where each property has a different effect on amino acid rates are available as
supplementary material.

To investigate the effect of the truncation levels and the priors on our model, we performed sensitivity
analysis by varying the truncation levels as well as the different hyperparameters. Increasing the truncation
level to 35 did not affect the results and the estimated posterior means of the βs showed close agreement
with the true values. The analyses was also fairly robust to the choice of the priors, since varying the
hyperparameters had almost no effect on the results. Decreasing the prior variance of τ2 makes the results
marginally better, i.e., posterior means of the βi,js, β̂i,js, are slightly closer to the true values.

Simulation Study 2 - Data Simulated From A Biological Model
In our second simulation study the model is evaluated in the context of biological sequences generated from
an evolutionary model. In particular, a Markov model was used to generate 20 sequences of 90 codons
each. For the first one-third of the sites (sites 1-30) we used transition probabilities obtained from the
codon-substitution model of [21] with equal equilibrium probabilities for all 61 codons. For the second
one-third of the sites (sites 31-60), we modified the transition probability matrix from the previous step
by increasing the probabilities of transitions between codons that have small distances for volume and
decreasing the probabilities of transitions between codons that have large distances for volume - this was
done to encourage only those changes that conserve volume in this part of the sequences. Finally, for the
last one-third of the sites (sites 61-90), we modified the original transition probability to encourage radical
changes in hydropathy. Thus, we increased some transition probabilities between codons that have very
different hydropathy scores and decreased a few of those that have similar hydropathy scores. Note that,
since the equilibrium probabilities are either uniform or roughly uniform across all sites, the correlation
structure across properties is retained in the expected distances, which simplifies the interpretation of the
results.

Once we obtained the sequences, we generated ancestral sequences using PAML, version 3.15, [20] and
calculated observed and expected distances yij and xij for five properties, namely, hydropathy (h), volume
(Mv), polarity (p), isoelectric point (pHi) and partial specific volume (V 0). Of these, h and p are correlated
and so are Mv and V 0.

Our model was fitted with K = 25 and L = 25 as truncation levels. The prior distributions were the
same as the ones used for our previous simulation. Results are based on 15000 iterations, of which the first
5000 were burn-in. There did not seem to be any obvious problems with convergence, which was assessed
by visual inspection of trace plots of some of the parameters.

The analyses found that there were three clusters of properties - the first cluster has properties h and p,
the second cluster comprised of properties Mv and V 0 and the third cluster only had property pHi as shown
in Figure 5. Figure 6 shows the posterior means of βi,js for representative properties of the three clusters in
Figure 5. Sites 24, 65, 67, 71, 81, 82, and 89 have large posterior means β̂ijs for cluster 1 (h and p). These
are also the same sites that show up in the small cluster at the top right in Figure 7. Specifically, Figure
7 shows how often any two sites in cluster 1 are grouped together. The sites in the lower left (16, 28, 46,
51) have small posterior means β̂i,js for these properties (h and p) and are grouped together more often.
The big group of sites in the middle mostly seem to have mean β̂i,js around 1 while sites 81, 89, 71, and 65
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Figure 5: Marginal posterior probabilities of any two properties being in the same cluster for the simulated
data.

have the largest β̂i,j values and very large probabilities of being clustered together in cluster 1. Thus, the
model successfully identifies sites that have similar βi,j values in a specific cluster and groups them together.
Groups of sites that change a property can also be identified for clusters 2 and 3 in Figure 5. In particular,
for cluster 2 (Mv and V 0), there is a big group of sites which conserve these properties. Most of these sites
are in the central one-third portion (i.e., the portion that includes sites 31-60) which were simulated under
a transition probability matrix that favors transitions that conserve volume. Finally, for cluster 3 (pHi)
there is one large group of sites which conserve the property and one group comprising sites 39 and 80 which
change the property greatly.

To better understand the performance of our method, we also analyzed the sequences generated above
with the parametric regression model in [10], TreeSAAP [25], and EvoRadical [9]. Table 1 lists the thirty
sites with the largest posterior means β̂i,js for h, and the thirty sites with the smallest posterior means β̂i,js
for Mv for the regression model of [10] and also for our new semiparametric approach. Many of the same
sites are identified by both methods, however, our new method performs slightly better than the regression
model in [10]. In particular the new method identifies two additional sites in the 61-90 region as sites that
change h.

Table 2 lists sites that TreeSAAP finds significant for the different properties. All of the sites that
TreeSAAP finds significant are also identified by our methods. However, note that once we correct for
multiple comparisons in the TreeSAAP results, only one site (74) still remains significant. We note that the
hierarchical specification of the priors in our models automatically accounts for multiple comparisons and
no corrections are needed (see [10] for more discussion on this).

Finally, we analyzed the sequences generated previously with EvoRadical using two different partitions [8]
- one for p and the other for Mv. We chose to run Evoradical with p instead of h, since a partition of the
amino acids for polarity was already available in [8]. Additionally, given that h and p are correlated, we
expect to see somewhat similar results for these two properties.
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Figure 6: Posterior means of βi,js for the three clusters in Figure 5. The sites are sorted according to the
increasing value of posterior means.

Table 3 lists site-specific results from EvoRadical. The sites listed have high posterior probabilities
(> 0.95) of being in the different site classes. This was the criterion that was used to identify significant sites
in [9]. The results presented here correspond to Model A1 in [9] which uses ω for the nonsynonymous to
synonymous substitution rate ratio for codons encoding amino acids with properties in the same partition,
and γ measures the nonsynonymous to synonymous substitution rate ratio between codons for properties
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Figure 7: Marginal posterior probabilities of any two sites being grouped together in the first cluster in
Figure 5. The sites are sorted according to the increasing value of posterior means of βi,js.

belonging to different partitions. While the sites listed for p somewhat match results from the other methods,
the results for Mv are not in agreement. This is probably due to the fact that partitions are not always
directly comparable with the amino acid distances. For example, under the volume partition of [8], both
glycine and valine are small and glutamine is large, while looking at the volume scores glycine is very
different from valine and glutamine. Thus, our models would consider a change from glycine to valine as
radical, whereas for the partition-based method of [9], there would be no change. The fact that the user has
to define a property-specific partition in advance, as opposed to directly working with the physicochemical
distances, is one of the disadvantages of partition-based methods.
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Table 1: Comparing results from models in [10] and the new semiparametric model. Sites marked in bold
are the ones which are in the region of interest - for h this is where radical changes were encouraged and for
Mv where small changes were encouraged while generating the sequences. Underlined sites are identified by
both methods.

Parametric regression Semiparametric regression
30 sites with largest pos-
terior mean β̂i,j for h

4, 5, 6, 10, 14, 18, 19, 21,
22, 23, 24, 33, 48, 52, 54,
59, 62, 64, 65, 67, 71, 74,
75, 77, 80, 81, 82, 84,
85, 89

4, 5, 14, 18, 19, 21, 24, 33,
37, 39, 48, 52, 54, 59, 62,
64, 65, 67, 71, 72, 74,
75, 77, 80, 81, 82, 84,
85, 86, 89

30 sites with lowest poste-
rior mean β̂i,j for Mv

5, 6, 7, 9, 16, 19, 24, 25,
26, 27, 28, 31, 32, 36, 44,
49, 51, 58, 59, 60, 61, 64,
65, 67, 79, 80, 82, 83, 85,
88

5, 6, 7, 9, 16, 18, 19, 24,
25, 26, 27, 28, 31, 32, 34,
36, 38, 49, 58, 59, 60, 61,
64, 65, 67, 79, 80, 83, 84,
88

Table 2: Sites identified as significant by TreeSAAP for the different properties. Values in parentheses denote
the cut-off values for the z-test statistic. Sites marked in bold are in the region of interest.

Property Radically
changing
(1.645)

Radically
changing
(3.695)

Conserved
(1.645)

Conserved
(3.695)

h 5, 59, 65, 67,
71, 74, 81, 82,
89

74 36, 83 None

p 21, 24, 37, 64,
65, 67, 71, 74,
75, 81, 82, 89

None 7, 18, 36, 49, 55 None

Mv 10, 33, 66 None 5, 18, 36, 49 None
V 0 10, 13, 33, 66 None 18, 36 None
pHi 39, 55, 72 None 11, 64, 72 None

Illustration with Lysin Data
Our proposed model was applied to the sperm lysin data set which consisted of cDNA from 25 abalone species
with 135 codons in each sequence [35]. Sites with alignment gaps were removed from all sequences, which
resulted in 122 codons for the analysis presented here. The phylogeny of [35] and the codon substitution
model M8 in PAML, version 3.15, [20] was used to generate the ancestral sequences. The model M8 uses a
discretized beta distribution to model ω values between zero and one with probability p0 and allows for an
additional positive selection category with ω > 1 and probability p1.

The lysin data was analyzed with the model in Section 2 with the 32 amino acid properties listed in
Table 5 in the Appendix. Only sites which showed at least one nonsynonymous change were retained for the
final analysis, which led to a data set with 94 sites. We used K = 25 and L = 35 as truncation levels for
this data. The prior distributions with the following hyperparameters were used in the analysis. The DP
concentration parameters ρ and γk were assumed to follow a Ga(1, 1). λ, the prior probability for φl,k being
0, was assumed to follow a Beta(2, 8) which implied that about 20% of the unique βi,js were expected to be
0 a priori. aκ and bκ, the hyperparameters for the prior of ϑ2

l,k when φl,k is 0, were chosen as 2 and 100
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Figure 8: Marginal posterior probabilities of any two properties being in the same cluster for the lysin data.
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Table 3: Sites that have high posterior probabilities (> 0.95) of belonging to each site class for the different
partitions for EvoRadical. Sites marked in bold are in the region of interest.

Property ω ≤ 1, γ ≤ 1 ω ≤ 1, γ > 1 ω > 1, γ ≤ 1 ω > 1, γ > 1
p None None None 1, 2, 5, 7, 10, 11,

12, 13, 14, 18,
19, 20, 26, 27,
30, 32, 33, 34,
36, 37, 42, 43,
47, 53, 57, 59,
61, 62, 63, 64,
66, 67, 68, 69,
72, 73, 74, 75,
77, 82, 83, 86,
87, 88, 90

Mv None None None 2, 7, 9, 18, 19,
20, 22, 27, 31,
32, 36, 38, 53,
55, 61, 62, 64,
67, 72, 74, 86

which implied a prior mean of 0.01. When φl,k is different from zero, a∗σ = 2 and b∗σ = 10 control the prior
for ϑ2

l,k. V0, the scale factor for ϑ2
l,k, was fixed at the ratio of prior means of σ2 and τ2

i (the variance terms
in the regression model in [10] for which we had used prior means of 0.1 and 0.01 respectively). Finally, the
αks were assumed to follow a N(1, 0.25) to conform to our prior assumption of neutrality for the properties.
Results are based on 20000 iterations, of which the first 10000 were burn-in. Convergence was assessed by
visual inspection of trace plots of some of the parameters and there did not seem to be any obvious problems
with convergence.

Figure 8 shows the marginal posterior probabilities of any two properties being assigned to the same
cluster. There seem to be four mostly distinct clusters in the properties in our list. The biggest cluster
consists of 20 properties that are related to polarity and hydropathy. All 20 properties are assigned to this
cluster with very high probability. The next cluster is comprised of the properties Bl, and c. There is also a
fairly big cluster whose members are related to volume (Mv, V 0, Mw, Cα, µ). pzim, which is correlated with
p to some extent, is clustered with pHi with which it shows a large correlation value (about 0.9). There is
some uncertainty regarding the membership of K0 and Esm, since both of them are assigned to the largest
cluster about 50% of the time, while Esm is clustered with properties related to volume to a lesser extent.
pK1 is the only property that is almost never clustered with other properties.

Site specific results based on the posterior means (denoted by β̂i,js), for one representative property each
from the four clusters in Figure 8 are shown in Figure 9. The sites are sorted according to the increasing
value of mean β̂i,j for each image. Sites on the far right radically change properties in each group. For
example, most of the sites that appear on the far right for cluster 1 (represented by h) have β̂i,j values of
1-1.4. There seem to be more sites radically changing properties in cluster 1 than in clusters 2 (represented
by c) or 3 (represented by Mv). The first three clusters also have a fairly large number of sites with mean β̂i,j

between 0 and 1. This is different from what we see for cluster 4 (represented by pzim), which corresponds to
properties pzim and pHi. A large number of sites in cluster 4 strongly conserve the properties, as is evident
by the very small mean β̂i,js for sites in the far left, unlike in the other clusters.

Figure 10 shows the posterior summaries of βi,js different from zero for sites 82, 99, 120 and 127 for
properties belonging to different clusters. Of these, sites 120 and 127 were found to be under positive
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Figure 9: Posterior means β̂i,js for the four clusters (denoted by representative properties) in Figure 8. The
sites are sorted according to the increasing value of posterior means.

selection by PAML, while sites 82, 99 and 127 were identified as radically changing some of the properties by
the regression model in [10]. The sites show different behavior for the different properties, for example, site
82 shows radical changes for h, while it conserves Mv. We can also see similarities in the posterior summaries
across sites. For example, for property pK1 sites 82, 120 and 127 have similar values for βi,j .

Table 4 lists sites that are highly conserved with posterior mean β̂i,js less than 0.4 for the different
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Figure 10: Posterior summaries of βi,js different from zero for sites 82, 99, 120 and 127. The first 4 properties
on the x-axis belong to 4 different clusters and the next 2 do not belong to any specific cluster all the time.
The vertical lines are 90% posterior intervals of the βi,js that are different from 0, the medians (filled circles)
and the 25th and 75th percentiles (stars) are highlighted.

clusters. The largest number of highly conserved sites appears in cluster 4, which includes properties pzim

and pHi, in agreement with Figure 9. Some of these sites like 35, 51, 111 and 117 also conserve properties
in clusters 2 and 3. A number of them, such as sites 24, 28, 35, 51, 53, 58, 66, 94, 96, 104, 105, 111, 117,
and 128 are also identified as sites under negative selection by methods that take into account the relative
rate of nonsynonymous to synonymous rate ratio, such as those implemented in PAML [20].

Table 4: Strongly conserved sites (β̂ij < 0.4) for different clusters.

Cluster Site Number
1 96
2 and 3 22, 28, 35, 51, 111, 117, 128

11, 17, 18, 19, 24, 25, 27, 29, 33, 35, 42, 43, 47, 49, 51,
4 53, 58, 64, 66, 68, 69, 71, 73, 79, 81, 88, 94, 96, 98, 100,

101, 104, 105, 110, 111, 114, 115, 117, 121, 122, 129, 131

The results are fairly robust to the choice of different hyperparameter values. Note that the scale factor
for ϑ2

l,k ultimately affects the variation in the βi,j values, and it is advisable to choose it so that the prior
variance for the unique βi,js is not too large.

4 Conclusions
In this paper, we present a Bayesian hierarchical regression model with a nested infinite relational model
on the regression coefficients. The model is capable of identifying sites which show radical or conserved
amino acid changes. The (almost sure) discreteness of the DP realizations induces clustering at the level of
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properties which is analogous to the factor model in [11], with the advantage being that the nonparametric
method automatically determines the appropriate number of clusters. The multi-level clustering ability of
the NIRM also induces clustering at the level of sites and allows us to capture skewness and heterogeneity
in the distribution of the random effects distribution associated with each cluster of properties.

The main advantage of the models we have described is their ability to simultaneously handle multiple
properties with potentially correlated effects on molecular evolution. Our simulations suggest that our
models are flexible but robust, being capable of dealing with a range of situations including those where
properties are perfectly correlated, as well as those where all properties are uncorrelated. Our semiparametric
regression models also work well, particularly in comparison with the regression model in [10], TreeSAAP
and EvoRadical, when applied to DNA sequence data generated from an evolutionary model. In addition,
the analysis of the lysin data suggests that the model leads to reasonable results.

The NIRM that is the basis of our model defines a separately exchangeable prior on matrices. This
means that the prior is invariant to the order in which properties and sites are included. This is due to
the fact that the rows as well as the columns of the parameter of interest are independent draws from a
DP. From the point of view of modeling multiple properties, this is a highly desirable property. However,
assuming that DNA sites are exchangeable can be questionable. Although this is a potential limitation of our
model, we should note that the assumption of independence across sites (which is a stronger assumption than
exchangeability) underlies all the methods discussed in Section 1. If information about the 3-dimensional
structure of the encoded protein or other sequence specific information that can guide the construction of
the dependence model is available, our model could be easily extended to account for this feature. In the
absence of such information, exchangeability across DNA sites seems to be a reasonable prior assumption.
Indeed, in contrast to the most common independence assumption, our exchangeability assumption allows
us to explain correlations at the level of sites.

Finally, it is important to note that the “observed” distances are not really directly observed, but are
instead constructed from ancestral sequences and, therefore, subject to error. A simple way to account for
this additional level of uncertainty is to modify the computation of expected distances by incorporating the
ideas of [36]. This approach was previously employed in [10], with little impact on the final results.

Appendix: Details about the Gibbs sampler
The truncations and the introduction of the configuration variables imply that (2) and (3) can be written as

ζj |{πk} ∼
K∑

k=1

πkδθ∗k
ξi,k|{wl,k} ∼

L∑

l=1

wl,kδϕl,k (5)

with ϕl,k ∼ G0lk and πk and wl,k being the appropriate stick breaking weights. Writing the model as in (5)
helps in obtaining the forms of the full conditionals as below.

The column indicators ζj for j = 1, . . . , J are sampled from a multinomial distribution with probabilities

P (ζj = k| · · · ) = qk
j ∝

L∑

l=1

∏

{i:ξi,k=l}

πkN(y∗i,j |φl,kx∗i,j , ϑ
2
l,k),

where ϑ2
l,k is ϑ2

l,k if φl,k = 0 or is ϑ2
l,k/nO

i if φl,k is different from zero. πk is sampled in two parts: first,
by generating vk from a Beta(1 + mk, ρ +

∑K
s=k+1 ms) for k = 1, . . . ,K − 1 and vK = 1, where mk is the

number of columns assigned to cluster k and then, by constructing πk = vk
∏k−1

s=1 (1− vs).
For i = 1, . . . , I and k = 1, . . . ,K, the indicators ξi,k are also sampled from a multinomial with proba-

bilities of the form
P (ξi,k = l| · · · ) = pl

i,k ∝
∏

{j:ζj=k}

wl,kN(y∗i,j |φl,kx∗i,j , ϑ
2
l,k).
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The updated weights wl,k are sampled in a manner similar to the πk, i.e., ul,k are generated from a Beta(1+
nl,k, γk +

∑L
r=l+1 nlr) for l = 1, . . . , L− 1 and uLk = 1, where nl,k is the number of βi,js assigned to atom l

of cluster k and then, by constructing wl,k = ul,k
∏l−1

r=1(1− ur,k).
Following [18], the DP concentration parameters ρ and γk are sampled in two steps by introducing

auxiliary variables η1 and η2. First, sample η1 from

p(η1|ρ, · · · ) = Beta(ρ + 1, J)

and then ρ from

p(ρ|η1, · · · ) =
aρ + n∗ζ − 1

aρ + n∗ζ − 1 + J(bρ − log(η1))
Ga(aρ + n∗ζ , bρ − log(η1)) +

J(bρ − log(η1))
aρ + n∗ζ − 1 + J(bρ − log(η1))

Ga(aρ + n∗ζ − 1, bρ − log(η1)),

where n∗ζ is the number of unique column indicators ζj . Similarly, for each k = 1, . . . ,K,

p(η2|γk, · · · ) = Beta(γk + 1, I),

p(γk|η2, · · · ) =
aγ + m∗

ξ,k − 1
aρ + m∗

ξ,k − 1 + I(bγ − log(η2))
Ga(aγ + m∗

ξ,k, bγ − log(η2)) +

I(bγ − log(η2))
aγ + m∗

ξ,k − 1 + I(bγ − log(η2))
Ga(aγ + m∗

ξ,k − 1, bγ − log(η2)),

where m∗
ξ,k is the number of unique row indicators ξi,k, for a specific cluster of columns k.

To sample the unique ϕl,k = (φl,k, ϑ2
l,k)s given in (4), we introduce a set of indicator variables ψl,k which

take the value 1 when φl,k is different from zero. For l = 1, . . . , L and k = 1, . . . ,K, ψl,k, ϑ2
l,k and φl,k are

jointly sampled in the following way - ψl,k is sampled by integrating out φl,k and ϑ2
l,k from its full conditional,

ϑ2
l,k is sampled conditional on ψl,k and φl,k is sampled conditional on both the corresponding ψl,k and ϑ2

l,k,
i.e.,

p(ψl,k, ϑ2
l,k, φl,k| · · · ) = p(ψl,k| · · · )p(ϑ2

l,k|ψl,k, · · · )p(φl,k|ψl,k, ϑ2
l,k, · · · )

with the individual expressions obtained as follows.
First, let Ωi,j

l,k = {(i, j) : ξiζj = l, ζj = k}. Then,

p(ψl,k| · · · ) ∝ λ

∫ [
∏

Ωi,j
l,k

N(y∗i,j |0, ϑ2
l,k)

]
IG(ϑ2

l,k|aκ, bκ)d(ϑ2
l,k) +

(1− λ)
∫ ∫ [

∏

Ωi,j
l,k

N(y∗i,j |φl,kx∗i,j , ϑ
2
l,k/nO

i )

]
N(φl,k|αk, ϑ2

l,k/V0)IG(ϑ2
l,k|a∗σ, b∗σ)d(φl,k)d(ϑ2

l,k).

p(ϑ2
l,k|ψl,k, · · · ) =






IG

(
I∗J∗

2
+ aκ,

[
1
bκ

+ σ1,scale

]−1
)

if ψl,k = 0

IG

(
I∗J∗

2
+ a∗σ,

[
1
b∗σ

+ σ2,scale

]−1
)

if ψl,k = 1,
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where I∗J∗ =
∑

i,j 1{ξiζj
=l,ζj=k} and the update terms are given by σ1,scale =

∑

Ωi,j
l,k

y∗2i,j

2
and σ2,scale =

α2
kV0

2
+

∑

Ωi,j
l,k

nO
i y∗2i,j

2
−

(αkV0 +
∑

Ωi,j
l,k

nO
i y∗i,jx

∗
i,j)2

2(V0 +
∑

Ωi,j
l,k

nO
i x∗2i,j)

.

p(φl,k|ψl,k, ϑ2
l,k, · · · ) =

{
0 if ψl,k = 0
N(mφ, Cφ) if ψl,k = 1,

where mφ =
(αkV0 +

∑
Ωi,j

l,k
nO

i y∗i,jx
∗
i,j

V0 +
∑

Ωi,j
l,k

nO
i x∗2i,j

)
and Cφ =

ϑ2
l,k

V0 +
∑

Ωi,j
l,k

nO
i x∗2i,j

.

The full conditional of λ is given by

p(λ| · · · ) ∼ Beta(aλ +
∑

l,k

1{ψl,k=0}, bλ +
∑

l,k

1{ψl,k=1}).

Finally, for k = 1, . . . ,K, the full conditional of αk is given by

p(αk| · · · ) ∼ N(m∗
α, C∗

α)

where C∗
α =

1(
1

Cα
+

∑

{l:ψl,k=1}

V0

ϑ2
l,k

) and m∗
α = C∗

α

(
mα

Cα
+

∑

{l:ψl,k=1}

V0φl,k

ϑ2
l,k

)
.

Software availability: The R code implementing the models in the paper are available from the authors
on request.

Appendix: Properties used in the analysis
A few of the properties were chosen because of their functional importance. Some of the other properties
have been previously used in analyses by [25].

Additional material
Additional simulations are available at the end of the article.
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Table 5: List of 32 amino acid properties used in the analysis. Properties marked by * are from [37].

AAindex ac-
cession num-
ber (if avail-
able)

Property Symbol AAindex ac-
cession num-
ber (if avail-
able)

Property Symbol

KYTJ820101 Hydropathy h * Helical contact area Ca

GRAR740103 Molecular volume Mv ZIMJ680104 Isoelectric point pHi

MANP780101 Surrounding hydrophobic-
ity

Hp OOBM770103 Long-range non-bonded
energy

El

ZIMJ680103 Polarity(Zimmerman) pzim * Mean r.m.s. fluctuation
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Additional Simulations

The setup for the simulations are as follows. We generate values for the distinct regression
coefficients (φl,k) from a N(1, 0.25). The number of distinct regression coefficients depends
on the particular clustering structure for the corresponding simulation. Once we obtain the
regression coefficients, we generate observations yi,j from N(φl,kxi,j, σ2 = 0.001). The xi,js
are obtained from the lysin data set described below with analyses for 32 properties, which
implies J = 32 and I = 94, unless otherwise mentioned.

We fitted the model in Section 2 of the main paper to the y∗i,js and x∗
i,js, with the

following modifications: (i) the NIRM is imposed on βi,j, so ϕl,k = φl,k and (ii) φl,k ∼ G0

where G0 ∼ N(α, τ 2). We used K = 25 and L = 25 for the simulations. The MCMC
algorithm was run with the following hyperpriors: ρ ∼ Ga(1, 1), γk ∼ Ga(1, 1) for all k,
α ∼ N(1, 0.25). σ2 ∼ Inv-Ga(100, 10) and τ 2 ∼ Inv-Ga(2, 4) were chosen such that the prior
means corresponded to the true values for these hyperparameters. For all the simulations,
results are based on 15000 iterations, of which the first 5000 are burn-in. Convergence was
assessed by running two chains where each chain was initialized by randomly assigning the
βi,js to different partitions. Posterior summaries based on the two chains were consistent
with each other.

Simulation Study 3

For this simulation, all the columns were assumed to belong to the same cluster. Six distinct
φl,k values were used to generate the observations yi,j from the appropriate Normal den-
sity. Posterior summaries of the column cluster indicators revealed that the analysis indeed
concludes all the columns belong to the same cluster. Clustering within columns was also
inferred correctly. There was no uncertainty associated with the cluster memberships at
either level. In this case also, posterior means of the βi,js showed very close agreement with
true values of φl,k used to generate the data, as shown in Figure 1.
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Figure 1: Image plots for true βi,j values (left panel) and posterior means β̂i,js (right panel).

Simulation Study 4

For this simulation we chose a scenario where each column was different from the other. The
number of columns for this simulation was 10 (so, J = 10). The number of rows in this
simulation was 30. The first 18 rows were assumed to have the same φl,k for all the columns
while the remaining φl,ks were generated independently from N(1, 0.25).
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Figure 2: Image plots for true βi,j values (left panel) and posterior means of the βi,js (right
panel). The columns have been arranged according to the clustering inferred by the model.

In this case, the model infers that there are 7 clusters for the columns, with very little
uncertainty about the cluster memberships. For each cluster of column, the model assigned
the first 18 rows to the same cluster with fairly high probability (> 0.83). In case of the
remaining 12 rows, rows were assigned to the same cluster if the corresponding true φs were
close. Figure 2 shows the true βi,j values and the estimated posterior means. While the
images seem reasonably close, small differences do exist. For example, in Figure 2 (right
panel) since columns 1 and 5 were assigned to the same cluster with very high probability,

2



we have E{β30,1|Data} = E{β30,5|Data} = 0.8, while the true values were β30,1 = 2.65 and
β30,5 = 0.56 respectively. In spite of these differences, for each of the columns that were
clustered together more than 2/3 of the true βi,js were very close (less than 0.1 difference).

Simulation Study 5

Our final simulation study was designed to investigate the extreme case where the rows and
the columns were all generated independently. We considered 10 columns and 30 rows for
this scenario. All 300 βi,js were generated independently from N(1, 0.25).

The model correctly infers that all 10 columns are independent. In cases where the true
βi,j values are close for different i for a fixed j, a few of the rows are sometimes clustered
together. As in the previous simulations, the posterior means of the βi,js are good estimates
of the true βi,js as evident from Figure 3.
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Figure 3: Image plots for true βi,j values (left panel) and posterior means of the βi,js (right
panel).

Discussion

The additional simulations evaluate the performance of the model for extreme cases. In the
third simulation, all properties belong to a common cluster, while sites belong to one of
several clusters. The results suggest that the model is parsimonious and does not induce
unnecessary clusters that are not supported by the data. Scenario 4 was constructed so that
the effect of each property on amino acid substitution rates is different. Simulation study 5
was more extreme as both the effect of each property and each site was different. This is the
most challenging scenario for our model, as our prior favors the clustering of properties. The
fact that the reconstruction of the regression coefficient matrices is reasonably close to the
true values suggests that the model, in spite of allowing for a potentially very large number
of parameters, will not overfit the data.
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