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Abstract

Assessing the selective influence of amino acid properties is impor-
tant in understanding evolution at the molecular level. A collection of
methods and models have been developed in recent years to determine
if amino acid sites in a given DNA sequence alignment display sub-
stitutions that are altering or conserving a prespecified set of amino
acid properties. Residues showing an elevated number of substitutions
that favorably alter a physicochemical property are considered targets
of positive natural selection. Such approaches usually perform inde-
pendent analyses for each amino acid property under consideration,
without taking into account the fact that some of the properties may
be highly correlated. We propose a Bayesian hierarchical regression
model with latent factor structure that allows us to determine which
sites display substitutions that conserve or radically change a set of
amino acid properties, while accounting for the correlation structure
that may be present across such properties. We illustrate our approach
by analyzing simulated data sets and an alignment of lysin sperm DNA.

1 Introduction

Several methods for detecting departures from neutrality at the molecu-
lar level are based on studying patterns of polymorphism in protein coding
genes. Specifically, methods such as those in Li [1993], Suzuki and Gojobori
[1999], Nei and Kumar [2000], Yang et al. [2000a], Yang and Nielsen [2002],
Yang and Swanson [2002], Ronquist and Huelsenbeck [2003], Huelsenbeck
and Dyer [2004], Suzuki [2004] and Anisimova and Kosiol [2009], among oth-
ers, compare nonsynonymous (amino acid replacing) to synonymous (amino
acid conserving) mutation rates and conclude that a given DNA region,
residue, or branch along an evolutionary tree (phylogeny) is a target of
positive natural selection if it displays an excess of nonsynonymous over
synonymous mutations.
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Methods that take into account changes in key physicochemical amino
acid properties induced by the nonsynonymous mutations have also been
proposed and used to assess positive selection at the molecular level. For
instance, Xia and Li [1998], McClellan and McCracken [2001], and McClel-
lan et al. [2005] use calculations of expected random distributions, under
the assumption of neutrality, of possible amino acid changes based on fixed
differences between residues given a particular amino acid property. Al-
ternative approaches based on stochastic models of sequence evolution are
developed in Sainudiin et al. [2005] and Wong et al. [2006]. These ap-
proaches model the evolution of protein coding sequences as continuous-
time Markov chains with rate matrices that distinguish between mutations
that alter a given amino acid property and those that conserve it. More
specifically, Sainudiin et al. [2005] divides the mutations into two groups:
a class of property-conserving substitutions — which includes synonymous
and nonsynonymous substitutions that do not alter the amino acid property
— and a class of property-altering substitutions — which are always non-
synonymous. Wong et al. [2006] then generalizes the idea to allow for three
types of mutations: synonymous, property-conserving nonsynonymous, and
property-altering nonsynonymous. It should be noted that both these meth-
ods depend on user-specified partitions of the amino acids for one or more
properties, and so the results are not robust to the choice of partitions.

Recently, Datta et al. [2010] considered a Bayesian hierarchical regres-
sion model that compares the observed amino acid distances to the expected
distances under neutrality for a given set of amino acid properties and in-
corporates mixture priors for variable selection. Unlike the approaches of
Sainudiin et al. [2005] and Wong et al. [2006], which are based on partitions
that categorize differences in amino acid changes, the model of Datta et al.
[2010] directly describes the absolute distances under the different physico-
chemical properties. Directly modeling the distances, instead of amino acid
partitions based on them, has the advantage of avoiding biases that may
arise when the values of the properties are close to the class limits. For ex-
ample, amino acids could be partitioned according to their Hydrophobicity
index into those with indexes below 1.0 and those with indexes above 1.0.
Under such a partition, Gln (1.07) and Tyr (2.65) would belong to the same
class while Gly (0.47) would be in a different class, however, the absolute dif-
ference between Gln and Gly is smaller than that between Gln and Tyr. In
addition, by incorporating hierarchical mixture priors for variable selection,
the model in Datta et al. [2010] is capable of identifying neutral, conserved
and positively selected sites while automatically adjusting for multiple com-
parisons and borrowing information across properties and sites.

The approaches listed above differ considerably with respect to their
modeling assumptions and their capabilities in terms of whether they are
able to properly adjust for multiple comparisons in cases when molecular
adaptation needs to be assessed at several amino acid sites. However, a

2



common feature of all such methods is that they implicitly assume that prop-
erties are independent from each other in terms of their effect on evolution.
This is typically an unrealistic assumption unless the properties included in
the analysis are carefully chosen. Indeed, a review of the amino acid in-
dex database (available at http://www.genome.jp/dbget/aaindex.html),
which lists more than 500 amino acid properties, shows that a large number
of them are highly correlated. Therefore, the finding that a specific prop-
erty influences evolution at a given site provides information about the effect
that other properties may have on the same site, a feature that can be ex-
ploited to improve the ability of the model to detect conserved, neutral and
positively selected sites. With this insight in mind, we extend the Bayesian
hierarchical regression model of Datta et al. [2010] by adding a latent factor
structure to jointly model a large number of amino acid properties, several
of which may be correlated. The idea of using factor models and principal
component analysis to describe the physical properties of the amino acids
has been used in the past (e.g., Kidera et al. [1985], Atchley et al. [2005]);
however, our approach differs from this previous work in that we do not try
to explain correlation in general, but to exploit those correlations to improve
detection of those sites subject to natural selection. In fact, the correlations
we observe in our models can be very different from those computed from
the raw amino acid scores, as they are affected by factors such as codon
usage bias. In addition to handling several amino acid properties via the
latent factor structure, the model we propose allows us to determine if such
properties are being conserved, neutral or radically changed at the amino
acid level while properly adjusting for multiple comparisons when several
amino acid sites are considered.

The paper is organized as follows. Section 2 describes the procedure to
compute distances based on amino acid properties, as well as the structure
of the model. Section 3 briefly summarizes some features of the Markov
chain Monte Carlo (MCMC) algorithm used to fit the model. Section 4
presents a series of simulation studies that illustrate the performance of the
model and how the inference of the latent factor structure is affected by the
actual number of strongly conserved and neutral sites. Finally, Section 5
applies the model to the well studied DNA alignment of Lysin protein from
abalones and Section 6 gives concluding remarks.

2 Model specification

2.1 Amino acid distances

The structural and functional role of an amino acid in a gene determines
its ability to freely change. For example, suppose that certain sites in a
protein require a hydrophobic amino acid to maintain its normal function.
At such sites, more frequent substitutions occur between amino acids that
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have similar values on the hydrophobic scale Xia and Li [1998]. This suggests
that we can understand the significance of a given property on molecular
evolution by comparing the magnitude of the change in such property under
the assumption that a site is neutral under selection (which we call the
expected change) with the magnitude of the change actually observed in the
data (the observed change). The reasoning behind this is that a replacement
between two amino acids with similar physicochemical characteristics may
not change the phenotype in the same way that a replacement between two
amino acids that are radically different does (Hughes et al. [1990], Zhang
[2000]).

More specifically, our data consist of observed and expected amino acid
distances derived from a DNA sequence alignment, a specific phylogeny, a
stochastic model of sequence evolution, and a predetermined set of physic-
ochemical amino acid properties. The distances are obtained by inferring
the ancestral sequences from a DNA sequence alignment assuming a fixed
phylogeny and a given model of sequence evolution. The main focus of this
paper is the development and implementation of models that allow us to
make inferences on the latent effects that several amino acid properties may
have on natural selection at the molecular level for given a phylogeny and a
stochastic model of sequence evolution. Therefore, we do not consider un-
certainty in the alignment, phylogeny, or at the ancestral sequence level. For
analyses that take into account these uncertainties and further discussion
on this issue see Datta et al. [2010].

Our proposed hierarchical model compares the observed amino acid dis-
tances, inferred from ancestral sequences based on a given phylogeny, to the
expected distances, computed under a process consistent with neutrality,
for a given set of amino acid properties. Both the expected and the ob-
served distances are calculated for each amino acid property and for each site
showing nonsynonymous substitutions. In order to calculate the observed
distances, we first infer the ancestral sequences under a specific substitu-
tion model and a given phylogeny. Nonsynonymous substitutions are then
counted by comparing DNA sequences between two neighboring nodes in
the phylogeny. The observed mean distance, yi,j ≡ Di,j

O for site i and prop-
erty j is obtained as the mean absolute difference in the property scores due
to all nonsynonymous substitutions at site i. Only those sites with at least
one nonsynonymous change at the ancestral level are retained for further
analysis.

To compute the expected distances, note that each codon can mutate
to one of at most nine alternative codons through a single nucleotide sub-
stitution [Xia and Li, 1998], of which only some mutations are nonsynony-
mous (changes to stop codons are ignored). Denote by Nk, the number
of nonsynonymous mutations possible through a single nucleotide change,
corresponding to a particular codon k (k = 1, . . . , 61). Let Di,j

k,l denote the
absolute difference in property j between nonsynonymous codon pairs at
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site i differing at one codon position, where l = 1, . . . , Nk. The frequency of
codon k at a particular site i in the DNA sequence under study is denoted
by F ik. Then, the expected mean distance for a particular site i and a given
property j is given by

xi,j ≡ Di,j
E =

∑61
k=1 F

i
k

∑Nk
l=1D

i,j
k,l∑61

k=1 F
i
kNk

.

We consider a hierarchical regression model that relates xi,j to yi,j and
allows us to compare the expected and observed distances at the codon level
for several properties simultaneously with the following rationale. If a given
site i is neutral with respect to property j, then yi,j ≈ xi,j . If property j
is conserved at site i, then yi,j << xi,j and finally, if property j is radically
changing at site i, then yi,j >> xi,j . In addition, the model includes a
latent factor structure for assessing the selective influence of several, possibly
correlated, amino acid properties. We provide a detailed description of the
model below.

2.2 The model

First we standardize xi,j and yi,j by dividing them by the maximum possible
distance for each property and denote the standardized values as x∗i,j and
y∗i,j . This standardization will allow us to use a common prior on the model
parameters associated with the amino acid properties. The first level of
the model writes the expected value of the standardized observed distances
as a simple linear function of the standardized expected distances, i.e., for
i = 1, 2, . . . , I and j = 1, 2, . . . , J we have

y∗i,j = βi,jx
∗
i,j + εi,j , (1)

with

εi,j ∼
{

N(0, κ2) if βi,j = 0
N(0, σ2/nOi ) otherwise.

The particular form for the error distribution is chosen to account for those
y∗i,js that are equal to zero; indeed, some of the nonsynonymous changes
can result in the same score values of the property being measured (for
example, Asn, Asp, Glu and Gln all have the same score for hydropathy).
We approximate a point mass at zero by assuming an appropriately tight
prior for κ2, which is the variance of the y∗i,js that are equal to zero. A
different variance structure is imposed on the remaining y∗i,js. Further, since
the number of observed nonsynonymous changes can be very different for
different sites, Var(y∗i,j |βi,j 6= 0) = σ2/nOi , where nOi is the observed number
of nonsynonymous changes at site i.
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Our main focus is to model the latent structure underlying J amino
acid properties while looking for evidence of selection at I sites using these
properties. To that end, we use a factor structure (e.g., see Gorsuch [1983],
Press [2005] and references therein) on the regression coefficients (βi,j) in our
model. In the simplest case, a K-factor (K ≤ J) model on the ith sample
of a J-dimensional random quantity βi, is written as

βi = α+ Λfi + νi,

or, elementwise,

βi,j = αj +
K∑
l=1

λj,lfi,l + νi,j ,

where α = (α1, . . . , αJ)′ is the mean vector; Λ is the J ×K matrix of fac-
tor loadings; fi = (fi,1, . . . , fi,K)′ is the latent K-vector factor for the ith

sample and νi = (νi,1, . . . , νi,J)′ is the J-dimensional vector of independent,
idiosyncratic (νi,j is unique to each βi,j) noise terms, with νi ∼ N(0,Ψ),
where Ψ = diag(ψ2

1, . . . , ψ
2
J). For identifiability, the factors fi are tradi-

tionally assumed to be independently drawn from N(0, I). Integrating out
the latent factors in the model, we have Var(βi|α,Λ,Ψ) = ΛΛ′ + Ψ and
Cov(βi,j , βi,j′ |α,Λ,Ψ) =

∑K
l=1 λj,lλj′,l.

The K-factor model needs additional constraints to define an identifiable
model. Firstly, Λ, the matrix of factor loadings, has to be of full rank (K)
to avoid identification problems arising from invariance of the model under
location shifts [Geweke and Singleton, 1980]. Secondly, Λ needs a further
constraint to avoid over-parameterization and thirdly, invariance under in-
vertible linear transformations of the factors needs to be ensured. Following
Lopes and West [2004], these constraints are satisfied by imposing the fol-
lowing structure on the loadings matrix,

Λ =



λ11 0 0 . . . 0
λ21 λ22 0 . . . 0

...
...

... . . . 0
λK1 λK2 λK3 . . . λKK
λK+1,1 λK+1,2 λK+1,3 . . . λK+1,K

...
...

... . . .
...

λJ1 λJ2 λJ3 . . . λJK


where λjj , j = 1, 2, . . . ,K are strictly positive. Due to the lower triangular
structure of Λ the variability in the regression coefficient corresponding to
the first property (βi,1) is only determined by the first factor, while the
second factor explains additional variability for all βi,js except βi,1 and so
on.
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As pointed out earlier, we expect the y∗i,js to be zero or very close to zero
for sites which strongly conserve a particular amino acid property. Since we
are also interested in identifying such sites, we extend the structure on βi,j
by adding a point mass at zero along with the factor structure when βi,j is
different from 0, i.e.,

βi,j ∼ πi,0δ0(βi,j) + (1− πi,0)N
(
βi,j |αj +

K∑
l=1

λj,lfi,l, ψ
2
j

)
. (2)

Here, δ0(·) is a point mass at zero and N(·|m, v) is the Gaussian prior
with mean m and variance v. The mixture probabilities (π) are assumed
to be site-specific but invariant across amino acid properties, whereas αj
and ψ2

j are assumed to be property-specific. In our previous analyses with
protein-coding genes, we have seen that for most physicochemical properties
a majority of the sites behave neutrally (i.e, yi,j ≈ xi,j). For a sufficiently
large sample size, i.e., for alignments with I large, we can consider a more
general structure on βi,j with an additional point mass at βi,j = 1 to model
sites which are believed to be neutral with respect to a particular property
[Datta et al., 2010]. We explore this scenario in more detail in Section 4.2.

Next we describe the priors which are essential to specify the full mod-
eling structure in a Bayesian setting. For the factor loadings, priors of the
form λj,l ∼ N(0, C0) when j > l; l ≤ K and λj,l ∼ N(0, C0)1(λj,l > 0)
for the diagonal elements j = l = 1, . . . ,K, will ensure that the K-factor
model satisfies the identifiability constraints. The latter truncates the nor-
mal prior to restrict the diagonal elements to positive values. The upper
diagonal elements are all 0, i.e., λj,l = 0 when j < l; l ≤ K. However, in
addition to explaining the correlations between the amino acid properties,
we also want to be able to choose the number of factors required to explain
the correlations. In order to achieve this, instead of using just normal den-
sities and truncated normal densities as priors on the factor loadings we use
sparsity-inducing priors [Lucas et al., 2006], i.e.,

λj,l ∼ γδ0(λj,l) + (1− γ)N(λj,l|0, C0)1{λj,l>0} j = l = 1, . . . ,K, (3)
λj,l ∼ γδ0(λj,l) + (1− γ)N(λj,l|0, C0) j > l, l ≤ K. (4)

The factors are assumed to have independent standard normal priors,
i.e., fi,l ∼ N(0, 1), while the ψ2

j s are independently modeled as ψ2
j ∼ IG(aψ, bψ).

The remaining priors, i.e., priors on π, αj , γ and the scale parameters
σ2 and κ2 are chosen to be conditionally conjugate to simplify calcula-
tions. In particular, the priors chosen are, (πi,0, 1 − πi,0) ∼ Dir(a0, a1),
αj ∼ N(1, Cα), γ ∼ Beta(aγ , bγ), κ2 ∼ IG(aκ, bκ) and σ2 ∼ IG(aσ, bσ). Note
that in expectation all the properties are assumed neutral a priori, and thus
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the αjs are centered around 1. Also note that in our definition of the inverse-
gamma distribution IG(a, b), b corresponds to the scale (and not the rate)
parameter of the distribution. Finally, a0, a1, C0, Cα, aγ , bγ , aκ, bκ, aσ, bσ, aψ,
and bψ are assumed known. Section 4 illustrates how these hyperparameters
are chosen in practice.

3 Posterior inference via MCMC methods

The structure of our model does not lead to closed forms for the posterior
distributions of interest; hence, inference necessitates the use of Markov
chain Monte Carlo (MCMC) methods. For a fixed K, Bayesian analyses of
the latent factor model using MCMC methods are fairly straightforward. We
introduce two sets of indicator variables to sample the mixture components
for βi,j (equation 2) and λj,l (equations 3 and 4). In particular, we introduce
ξi,j = 1{βi,j 6=0} and θj,l = 1{λj,l 6=0}. Due to our choice of priors, all the full
conditionals have standard forms and sampling for all parameters proceeds
via Gibbs steps. For more details about the MCMC algorithm and the
actual forms of the full conditionals, please refer to Appendix 6.

The question remains of how to pick the number of factors K. In our
applications, we start with a large number of factors and subsequently try
to reduce such number. This is done by looking at the posterior means
of the θj,ls computed from the posterior samples θ(1)

j,l , . . . , θ
(B)
j,l , taken after

MCMC convergence. The average θ̄j,l =
∑B

b=1 θ
(b)
j,l /B gives an estimate of

the posterior probability of the corresponding λj,l being different from zero.
We retain the lth factor in our model if that factor has significant posterior
probability of explaining variation in at least two variables, i.e., if θ̄j,l > c
for some threshold c for at least two of the js. Following Lucas et al. [2006],
we use c = 0.95. If one or more factors can be dropped based on the above
criterion, we fit a model with a smaller number of factors and continue the
above procedure until no more factors can be discarded.

4 Empirical exploration

We now present three simulation studies that aim to highlight some of the
model features, illustrate the performance of the MCMC algorithms for pos-
terior inference, and show how the inference on the latent factor structure is
affected by the sample size and the proportion of sites that conserve or alter
a given set of amino acid properties. For the first simulation study, we also
provide a comparison with a model which assumes no correlations between
variables.
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Table 1: Posterior means of θj,ls.
Variable Factor 1 Factor 2 Factor 3 Factor 4
1 0.244 0.000 0.000 0.000
2 0.031 1.000 0.000 0.000
3 1.000 0.042 0.329 0.000
4 0.024 0.032 0.023 1.000
5 0.032 0.039 0.042 1.000
6 0.255 1.000 0.041 0.020
7 0.109 1.000 0.062 0.019
8 1.000 0.032 0.108 0.025
9 1.000 0.213 0.138 0.028

4.1 Simulation Study 1

Using a setup similar to Lopes and West [2004], a data set was simulated
from a model with 100 observations (sites), 9 variables (properties), and 3
factors, i.e., I = 100, J = 9 and K = 3. In particular, yi,js were generated
from equation (1) with xi,js ∼ Gamma(3, 3). The βi,js needed in equation
(1) were generated from equation (2) with (πi,0, 1− πi,0) ∼ Dir(2, 8), which
implies that, in expectation, 20% of the sites strongly conserve the properties
(i.e., 20% are expected to have βi,j = 0) and 80% do not. The true factor
loadings were set as follows:

Λ′ =

 0.99 0 0 0.99 0.99 0 0 0 0
0 0.95 0 0 0 0.95 0.95 0 0
0 0 0.90 0 0 0 0 0.90 0.90

 ,

and Ψ = diag(0.02, 0.19, 0.36, 0.02, 0.02, 0.19, 0.19, 0.36, 0.36). The true val-
ues for κ2 and σ2 were set at 0.001 and 0.1 respectively. The αjs were
independently generated from a N(1, 0.25) distribution and the factors were
generated from independent Gaussian distributions, i.e., fi,l ∼ N(0, 1) for
all i and l.

MCMC analyses were performed under prior distributions with the fol-
lowing hyperparameters: C0 = 2 (in Equations 3 and 4); aψ = bψ = 2 define
fairly vague priors on ψ2

j with mean 0.5; aκ = 100 and bκ = 10 and aσ = 2
and bσ = 10, which define inverse gamma priors on κ2 and σ2 centered at
approximately 0.001 and 0.1 respectively; αj was given a Gaussian prior
centered at 1 with variance Cα = 0.25; aγ = 8 and bγ = 2, which define a
beta prior with mean of 0.8; and finally, each pair (πi,0, 1 − πi,0) was given
a Dirichlet prior with hyperparameters a0 = 1 and a1 = 9, which implies
that in expectation, 10% of the sites are expected to be strongly conserved
(βi,j = 0) a priori. Posterior analyses are based on 1,000 samples taken
after MCMC convergence. We discarded a burn-in of 10,000 iterations and
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then used every 10th iterate of another 10,000 iterations for a final sample
of 1,000. We initially fitted a 4-factor model to the simulated data. Note
that using our criterion for retaining factors (see Table 1), we can conclude
that only 3 factors are required to describe the data. After fitting a 3-factor
model with the priors specified above we obtained the following posterior
summaries. The posterior mean and standard deviation of Λ and Ψ, up to
two decimal places, were

Λ̂′ =

 1.01 0.01 0.01 0.99 0.97 0 0 0 0
0 0.98 0 0 0 1.04 0.98 0 0
0 0 1.06 0 0 0 0 0.90 0.93


with

sd(Λ̂′) =

 0.10 0.05 0.06 0.08 0.08 0.02 0.02 0.01 0.02
0.00 0.08 0.03 0.02 0.01 0.13 0.11 0.03 0.03
0.00 0.00 0.12 0.01 0.02 0.11 0.03 0.15 0.13


and Ψ̂ = diag(0.11, 0.18, 0.25, 0.09, 0.11, 0.33, 0.26, 0.40, 0.31) with
sd(diag(Ψ̂)) = (0.04, 0.07, 0.11, 0.03, 0.04, 0.05, 0.05, 0.12, 0.09). Based
on the posterior samples, we found that about 96% of the βs were classified
correctly when the true β was different from 0, whereas 78% of the βs were
classified correctly when the true β was 0, i.e., P̂ r(β̂i,j 6= 0|βi,j 6= 0,y) = 0.96
and P̂ r(β̂i,j = 0|βi,j = 0,y) = 0.78. In addition, P̂ r(β̂i,j = 0|βi,j 6= 0,y) =
0.04 and P̂ r(β̂i,j 6= 0|βi,j = 0,y) = 0.22. Figure 1 shows the true distribu-
tion and the histograms of the posterior samples for each of the αjs. The
posterior samples of αjs all lie within 2 standard deviations of the true mean.

4.1.1 Comparison with results from a model with no factor struc-
ture

In this section, we investigate how the analysis is affected if we fit a model
with no factor structure to the above simulated data. To that end, we
modify (2) and fit a model where the regression coefficients βi,j are assumed
to have the following structure:

βi,j ∼ πi,0δ0(βi,j) + (1− πi,0)N
(
βi,j |αj , τ2

)
. (5)

This assumes that the βi,js come from a mixture with a point mass at
zero, and a normal density otherwise. Note that in this case, Cov(βi,j , βi,j′ |α, τ2)
= 0 and Var(βi,j |α, τ2) = τ2. Also, notice that in both (2) and (5), the prior
mean on the βi,js different from 0 is αj . Thus, we use the same priors for
αj and (πi,0, 1− πi,0) as in the previous case, namely, N(1, Cα = 0.25) and
Dir(a0 = 1, a1 = 9). Since in (2), Var(βi,j |α,Λ,Ψ) =

∑K
l=1 λ

2
j,l +ψ2

j , the hy-
perparameters for the prior on τ2 are chosen to agree with the priors induced
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Figure 1: Histograms of the posterior samples of αjs with the N(1, 0.25)
density, the distribution from which the αjs were generated. For this sim-
ulation, the prior distribution on αj was also N(1, 0.25). The black dots
represent the true values of αj .

by the factor model in (2) as closely as possible, to make a fair comparison.
In particular, we use an inverse gamma prior for τ2 with hyperparameters
IG(aτ = 2, bτ = 0.4), so that the prior mean on the variance parameter (τ2)
is 2.5. Posterior analyses are based on 1,000 samples after discarding the
initial 10,000 as burn-in and using every 10th iterate of the remaining 10,000
iterations.

The results from the analyses suggest that while both models have sim-
ilar performances in terms of their ability to distinguish between βs from
the different categories (0 or different) (see Table 2), the model with no
factor structure, i.e., that using (5) as the prior for βi,j , underestimates the
correlation structure that is present in the data, as shown in Figure 2. The
figure plots the histograms of the correlations between some of the pairs of
variables for the regression model with factor structure (in light gray) and
regression model (in dark gray). The regression model consistently underes-
timates the correlation between the pairs of variables, for example, among
variables 1, 4 and 5. However, when there is actually no correlation between
the variables, for example among variables 1, 2 and 3, both models estimate
that correctly.
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Table 2: Conditional probabilities of βs classified in each of the categories
given the true categories for simulation 1, using a factor model and a regres-
sion model.

Estimated
Factor Regression

β = 0 β different β = 0 β different
True β = 0 0.78 0.22 0.79 0.21

β different 0.04 0.96 0.03 0.97
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Figure 2: Histograms of the correlations between posterior samples of βi,j
and βi,j′ for different values of j and j′ from the regression model with factor
structure (light gray) and the regression model (dark gray). The black dots
denote the true correlations between the respective βi,j and βi,j′ .

4.2 Simulation Study 2

As mentioned before, equation (2) can be modified to include an additional
category with a point mass at βi,j = 1 to account for sites that are neutral
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with respect to a particular set of properties as done in Datta et al. [2010].
We present the results of a simulation study in which the data are sampled
from a model in which the βi,js follow a mixture with three components.
We highlight some model features and study the effect of the sample size on
the estimation of the parameters of interest.

Once again, we assume that the model had 9 variables (properties). In
this case we considered two different sample sizes, I = 100 and I = 400.
For both sample sizes, our true model for each βi,j was a mixture with the
following 3 components,

βi,j ∼ πi,0δ0(βi,j) + πi,1δ1(βi,j) + (1− πi,0 − πi,1)N
(
βi,j |αj +

3∑
l=1

λj,lfi,l, ψ
2
j

)
, (6)

with (πi,0, πi,1, 1 − πi,0 − πi,1) ∼ Dir(1, 1, 8), which implies that 80% of
the sites are expected to have βi,j 6= 0, 1, while 20% of the sites are ex-
pected to be strongly conserved (βi,j = 0) or neutral with respect to prop-
erty j. δ1(.) denotes a point mass at 1. The true values for the factor
loadings and the different variances were the same as those in the previ-
ous simulation and, as before, the factors were generated from independent
N(0, 1) distributions. The αjs were independently generated from N(5, 12),
N(1.8, 0.52) and N(0.4, 0.12), three from each distribution, to reflect three
scenarios that we have encountered in practice, i.e., some sites may weakly
conserve (N(0.4, 12)), weakly alter (N(1.8, 0.52)), or strongly alter (N(5, 12))
a given property j.

The MCMC algorithm for the regression model with three components
in the mixture for βi,j is detailed in Appendix 6. We initially fitted 4-factor
models to the simulated data. The prior distributions used are the same
as before, except the prior for the πs, since there are 3 components in π
now. We used a Dir(1, 4, 1) as the prior for the πs, which implies that we
expect about 66% of the sites to be neutral, 17% to be strongly conserved
and 17% to be altered. As before, factors were retained in the model if a
particular factor had significant (> 0.95) posterior probability of explaining
the variation in at least two variables. For both sample sizes, using this
criterion led to the conclusion that 3 factors were sufficient to explain the
variability in the βs. The posterior summaries that result from fitting 3-
factor models to the simulated data with I = 100 and I = 400 sites are
discussed below.

100 observations

The posterior mean and standard deviation of the loadings Λ and Ψ of the
3-factor model, to two decimal places, were

Λ̂′ =

 1.06 0.02 0.01 0.92 0.89 0 0 0 0
0 1.11 0.01 0 0 1.20 1.24 0.01 0
0 0 0.99 0 0 0.01 0 1.00 1.19


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with

sd(Λ̂′) =

 0.12 0.06 0.05 0.13 0.13 0.02 0.04 0.06 0.05
0.00 0.13 0.05 0.02 0.03 0.14 0.14 0.05 0.06
0.00 0.00 0.12 0.02 0.02 0.05 0.03 0.13 0.16


and Ψ̂ = diag(0.12, 0.22, 0.17, 0.11, 0.10, 0.17, 0.15, 0.17, 0.26) with
sd(diag(Ψ̂)) = (0.05, 0.08, 0.07, 0.04, 0.04, 0.07, 0.06, 0.08, 0.13).

α1

0 2 4 6 8

0.0
1.0

2.0

●

α2

0 2 4 6 8

0.0
1.0

2.0

●

α3

0 2 4 6 8

0.0
1.0

2.0
3.0

●

α4

0 2 4 6 8

0.0
1.0

2.0

●

α5

0 2 4 6 8

0.0
1.0

2.0

●

α6

0 2 4 6 8
0.0

1.0
2.0

●

α7

0 2 4 6 8

0.0
1.0

2.0

●

α8

0 2 4 6 8

0.0
1.0

2.0
3.0

●

α9

0 2 4 6 8

0.0
1.0

2.0

●

Figure 3: Histograms of the posterior samples of αjs with the true densities
(in solid) and the prior density (dashed). The black dots denote the true αj
values.

Figure 3 shows the posterior samples of αj for j = 1, . . . , 9 along with
the underlying true densities (in solid) and the prior (in dashed) used in the
MCMC algorithm. In all cases, the model identifies the true structure of the
αjs. Table 3 shows the conditional probabilities of βs which are classified as
zero, one or different from zero and one given their true categories. About
29% of the βi,js that were sampled from the neutral category (i.e., those with
βi,j = 1) are misclassified as sites with βi,j 6= 0, 1, while 90% of the sites
sampled from the βi,j = 0 and 78% of the sites from βi,j 6= 0, 1 categories are
correctly classified. Therefore, even though many of the posterior estimates
based on data from only I = 100 sites are reasonable, it may be hard to
distinguish between sites with βi,j = 1 and sites whose βi,j values were
simulated from the N(1.8, 0.52).
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Table 3: Conditional probabilities of βs classified in each of the three cate-
gories given the true categories for simulation 2.

Estimated
100 observations 400 observations

β = 0 β = 1 β different β = 0 β = 1 β different
β = 0 0.9 0 0.1 0.9 0 0.1

True β = 1 0 0.71 0.29 0 0.8 0.2
β different 0.02 0.20 0.78 0.02 0.19 0.79

400 observations

From the posterior analysis of the model with 3 factors the posterior mean
and standard deviation of the loadings Λ and Ψ, to two decimal places, were

Λ̂′ =

 0.92 0 0 0.93 0.94 0 0 0 0
0 0.98 0 0 0 1.05 0.96 0 0
0 0 0.75 0 0 0 0 0.97 1.03


with

sd(Λ̂′) =

 0.04 0.01 0.01 0.05 0.05 0.01 0.01 0.02 0.01
0.00 0.05 0.01 0.00 0.01 0.06 0.05 0.02 0.08
0.00 0.00 0.06 0.01 0.02 0.03 0.02 0.08 0.08


and Ψ̂ = diag(0.06, 0.21, 0.16, 0.05, 0.06, 0.14, 0.09, 0.44, 0.28) with
sd(diag(Ψ̂)) = (0.01, 0.05, 0.05, 0.01, 0.01, 0.05, 0.03, 0.11, 0.10). We see
that the Λ̂′ values are much closer to the true values for this example than
for the previous case, indicating the number of observations is important,
although for both cases the 95% credible intervals include the true values.
From the posterior summaries of αj , we find the histograms are more concen-
trated than in the previous simulation, which is expected since we have more
observations in this case (figure not shown). Again, the posterior samples
of all the αjs lie within 2 standard deviations of the true mean.

Table 3 shows the conditional probability of βi,js classified in the three
categories given the true classes. As the sample size increases from I = 100
to I = 400, the model finds it easier to correctly categorize those sites with
βi,j = 1.

From the above simulation studies, the following points seem notable. In
general, the model is flexible and can capture the underlying structure of the
different parameters; for all cases, the 95% credible intervals included the
true values of the parameters and, as expected, point estimates were closer
to the true values with a larger sample size. In all the simulations presented
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Table 4: Conditional probabilities of βs classified in each of the three cat-
egories, given the true categories. These results are based on a two-factor
model, which is the model identified by our procedure.

Estimated
β = 0 β = 1 β different

β = 0 0.94 0.06 0
True β = 1 0.01 0.91 0.08

β different 0 0.29 0.71

here, more than 80% of the βs were correctly classified; however, identifying
neutral sites when they are scarce and the sample size is not large enough
can be difficult.

4.3 Simulation Study 3

In the simulations presented above about 80% of the βs were different from
zero or one. Under this scenario, even the smallest of the sample sizes (I =
100) was sufficient to allow for accurate inference on the number of factors
in the model and to correctly classify about 80% of the βs. However, when
there is a smaller percentage of sites in the βi,j 6= 0, 1 category, the model
might be unable to identify the correct number of factors. We performed
another simulation study where the data were sampled from a model with
a smaller percentage of βs in the third category. Specifically, we set I =
400 and J = 9 as before and assumed that the βi,js were generated from
equation (6) with (πi,0, πi,1, 1 − πi,0 − πi,1) ∼ Dir(1, 4, 1). This implies that
approximately 16.7% of sites are expected to have βi,j 6= 0, 1. All other
components of the model were the same as in the previous simulation.

In this case, our approach to identifying the number of factors leads to
selecting a model with only two factors. As shown in Table 4, this two-
factor model finds it easier to categorize those βs for which the data provide
a lot of information. In other words, large proportions of sites are correctly
classified in the first and second categories (0.94 and 0.91, respectively) since
approximately 66.7% of the sites had βi,j = 1 and even though only about
16.7% of the sites had βi,j = 0, such sites are relatively easy to distinguish
from those with βi,j 6= 0, 1. Contrast this with the results in Table 3, where
there was a higher probability of correctly identifying sites with βi,j 6= 0, 1
given their true category. In addition, we found that the ability to correctly
classify the βs was not affected by the number of factors in the model, as
similar results were seen if a 3-factor or a 4-factor model was fitted.

The insights provided by this simulation are important because in pre-
vious data analyses using models that do not incorporate the latent factor
structure we have seen that there is usually a sizeable number of sites for
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which βi,j = 1 [Datta et al., 2010]. Therefore, when the focus is on discover-
ing the latent factor structure underlying a large set of amino acid properties,
as in our case, using a model with only two components in the mixture for
βi,j — that pools sites with βi,j = 1 with those for which βi,j 6= 0, 1 — leads
to increased information for estimating such structure. After identifying the
factors, a model that includes only those amino acid properties that are
roughly independent can then be used to determine which sites are altering
or conserving such set of properties. If a site is conserving or altering a given
set of properties it will likely have the same effect on other properties not
included in the model but whose behavior can be explained by the set of
independent properties via the latent factor structure. Thus, in the analysis
presented below with lysin data, we consider a model with two categories
for the βi,js (zero or different from zero and one) to first discover the latent
structure across a relatively large set of amino acid properties. Then, once
a much smaller set of roughly independent properties has been identified,
one can fit a model with three categories on the βi,js in order to determine
which sites are neutral, not altering, conserving or radically changing this
set of properties as in [Datta et al., 2010].

5 Application to Lysin data

5.1 Data

Our proposed model was applied on the sperm lysin data set which consists
of cDNA from 25 abalone species with 135 codons in each sequence [Yang
et al., 2000b]. Sites with alignment gaps were removed from all sequences,
which resulted in 122 codons for the analysis presented here. The phylogeny
of Yang et al. [2000b] and the codon substitution model M8 in PAML, version
3.15, [Yang, 1997] was used to generate the ancestral sequences. The model
M8 uses a discretized beta distribution to model ω values between zero and
one with probability p0 and allows for an additional positive selection cate-
gory with ω > 1 and probability p1.

5.2 Analysis with amino acid properties

We analyzed the lysin data with 32 physicochemical properties (see Table
5). As mentioned in Section 2.1, we only look at nonsynonymous changes
and for the lysin data set, this meant that our effective sample size was 94
codon sites. In order to be able to better estimate the factor structure, we
assumed that the βs are modeled using the two-component mixture given in
equation (2). The priors for the MCMC analyses were the same used in the
first simulation (see Section 4.1). For the Gibbs sampler, we used a burn-in
of 20,000 iterations and then saved every 10th iterate of 100,000 iterations
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Table 5: List of 32 amino acid properties used in the analysis.

Property Symbol Property Symbol
Hydropathy h Helical contact area Ca
Molecular volume Mv Isoelectric point pHi

Surrounding hydrophobicity Hp Long-range non-bonded en-
ergy

El

Polarity(Zimmerman) pzim Mean r.m.s. fluctuation dis-
placement

F

Alpha-helical tendencies Pα Molecular weight Mw

Polarity(Grantham) p Normalized consensus hy-
drophobicity

Hnc

Average number of surround-
ing residues

Ns Partial specific volume V 0

Power to be at the C-terminal αc Polar requirement Pr
Composition c Power to be at the middle of

alpha-helix
αm

Compressibility K0 Power to be at the N-terminal αn
Equilibrium constant (ioniza-
tion of COOH)

pK
′

Refractive index µ

Beta-structure tendencies Pβ Short and medium range non-
bonded energy

Esm

Bulkiness Bl Solvent accessible reduction
ratio

Ra

Buriedness Br Thermodynamic transfer hy-
drophobicity

Ht

Chromatographic index RF Total non-bonded energy Et
Coil tendencies Pc Turn tendencies P

for a final sample of 10,000. Examination of the trace plots from the MCMC
output did not provide evidence of lack of MCMC convergence.

We started by fitting a model with 9 factors. Only 5 of the 9 factors had
posterior probabilities greater than 0.95 of being different from 0 for at least
two properties, which suggested that a model with 5 factors would suffice
for this dataset. Following this, we fitted a 5 factor model to the data. An
analysis of the posterior probabilities of the loadings being different from 0
revealed that we could not discard any more factors from the model. Figure
4 displays the percentages of variation in a property that is explained by each

factor, which is calculated as 100 × λ2
jlPk

l=1 λ
2
jl+ψ

2
j

. We see that F1 explains

most of the variation associated with properties h, Hp, Br, F , Ra and Et
(about 69%-86%) and about 44% of the variation in Hnc. F2 explains most
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of the variability in properties Mv, Cα, Mw, V 0, µ and Esm (59%-76%). F3
explains 84%-87% variation in properties pzim and pHi and some variation
in p, RF , Hnc and Pr (≈ 19%-53%). F4 explains additional variability in
properties correlated with polarity, namely, p, Ns, Pβ, Bl and RF , while F5
explains variability in properties Pα, Pc and P (50%-60%). F5 also explains
about 29% of the variability in αm and αn. A look into the correlation
structure of the properties reveals that F1 explains variability in Hydropathy
and the properties which are correlated with it. The same is true for the
other factors (F2, . . . , F5). The only two properties for which almost no
variation is explained by this model are K0 and pK ′. These two properties
are not correlated with any of the other properties or among each other.
Since factors were retained only if the posterior probability of at least 2
properties being explained by a factor was greater than 0.95, the factors will
not explain variation for independent variables. Five other properties for
which less than 50% variation is explained by the factor structure are αc,
αm, αn, c and Ht (see Figure 5). For each of the remaining 25 properties,
the factor structure explains more than 50% variability with the maximum
being for pzim (93%).

The model also allows us to draw conclusions about the average behavior
of the different properties or about the behavior of specific sites. For ex-
ample, Figure 6 shows the posterior samples of αjs of five of the properties
which are representative of the five factors in the model and a sixth prop-
erty for which the factor structure does not explain much of the variability.
Some of the properties are mostly conserved like Mv or p, while h is mostly
neutral and K0 puts most of its mass above 1. Table 6 lists sites which
maximize the posterior probability of the site being strongly conserved, i.e.,
Pr(βi,j = 0| data) is maximized for these sites. A few of the properties for
which no such sites were found are not reported in the table. Note that
properties which are correlated with each other and can be explained by a
common factor need not necessarily show the same behavior when it comes
to specific sites. For example, pzim and pHi correlated and are explained
by the same factor, but sites which maximize the probability that βi,j is
strongly conserved are not the same for the 2 properties (sites 35, 101 and
117 for pzim and site 101 for pHi). Also in our model, the factor structure
explains variability in βi,js when they are different from zero.

6 Discussion

We present a Bayesian hierarchical regression model with a latent factor
structure that identifies radical, neutral or conserved amino acid changes
by quantifying the magnitude of changes in amino acid properties. The la-
tent factor structure in the model allows us to account for the correlation
structure across a number of the physicochemical properties. The sparse
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Table 6: Sites maximizing Pr(βij = 0| data) for lysin.
Property Sites

Pr(βij = 0| data)
Hp 27, 51, 68, 97, 117
pzim 35, 101, 117
Pα 27, 68
Ns 51, 117
αc 97
c 22, 28
K0 35, 51, 117
pK1 22, 28, 42, 97, 128
Pβ 68, 97
Bl 35
Pc 22, 27, 57, 68
pHi 101
El 19, 58, 105
F 97
Hnc 22
αn 28, 68, 128
Esm 19
Ra 27, 68
Ht 43, 51, 117
Et 27, 68
P 97
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Figure 4: Percentages of variation in the 32 amino acid properties explained
by 5 factors in lysin.

factor modeling structure also helps in reducing the dimension of the prob-
lem greatly and in simplifying the interpretation of the results. Another
important feature of the model is its ability to provide site-specific as well
as global results.

We considered two approaches for modeling the regression coefficients.
One approach consists of using a 2-component mixture on the βi,js with a
point mass at zero to account for sites that do not alter the jth property, and
a latent factor to describe the behavior of the coefficients for the remaining
sites. The alternative approach uses a 3-component mixture on the βi,js
that includes the two previous components plus a point mass at one to
model neutral sites. We found that for a sufficiently large dataset and more
importantly, with enough information to estimate the factor structure, it is
possible to correctly identify the number of factors required in the model
and to identify sites which strongly conserve or are neutral with respect to
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Figure 6: Histograms of the posterior samples of αjs of 6 properties for
lysin. The first five properties are representative of the five factors in the
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a given property. However, if there is reason to believe a priori that the
percentage of sites to estimate the factor structure is relatively small, one
should avoid using the model with the 3 categories (βi,j = 0, 1 or different)
directly.

In principle, the order of variables in a factor analysis could affect the
posterior inference about the number of factors, but not the amount of vari-
ation being explained by the model [Lopes and West, 2004]. We avoid this
issue by introducing sparsity-inducing priors on the factor loading. These
sparsity-inducing priors give a positive probability to each of the factor load-
ings being equal to zero, enabling our procedure to select the number of
factors to be fairly robust to the order of the properties, and allowing more
flexibility in the identification of the factors. However, the order of the vari-
ables will still affect the interpretation of the factors and so, model users
should be careful in selecting the order in which the properties will be in-
cluded in the model. For instance, if one wants to interpret all the properties
included in the model in terms of hydropathy and polarity — assuming that
these are in fact significant properties — then they should be the first two
properties listed so that they correspond to the first two factors. As a start-
ing point, and in the absence of other prior information, users can choose
some properties that are highly correlated with the remaining properties but
not among each other as the first few properties. Users should also be re-
minded that the correlations among the properties calculated only from the
scores of the 20 naturally occurring amino acids, obtained from the amino
acid index database, may not be representative of the correlation structure
present in the data, since the correlations in the data may be affected by
other elements such as codon usage.

In the analyses presented here, we chose to begin fitting models with a
relatively large number of factors and then decrease the number of factors as
required. This idea is similar in spirit to backward elimination in stepwise
regression. One can of course go the opposite route, i.e., start with a small
number of factors and then increase the number as required, which is similar
to the idea of forward selection. It might be argued that the initial fitting
of the model with a large number of factors is computationally expensive,
however, this approach will probably require less number of reruns to get
to the correct number of factors. The choice of the maximum number of
factors is a question that needs to be decided by the user, based on available
computation power and other practical constraints.
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Details about the MCMC

Consider the model presented in Section 2.2. As mentioned in Section 3,
to sample the mixture components of βi,j and λj,l, we introduce two sets of
indicators as below:

ξij =
{

0 if βij = 0
1 otherwise.

and

θjl =
{

0 if λjl = 0
1 otherwise.

The full conditionals for all the parameters are given below.

1. p(σ2| · · · ) ∝
∏

{(i,j) : ξij 6=0}

N(y∗ij |βijx∗ij , σ2/nOi )IG(σ2|aσ, bσ) which yields

(σ2| · · · ) ∼ IG


∑
ij

I{ξij 6=0}

2
+ aσ,


∑

{(i,j) : ξij 6=0}

nOi (y∗ij − βijx∗ij)2

2
+

1
bσ


−1


2. p(κ2| · · · ) ∝
∏

{(i,j) : ξij=0}

N(y∗ij |βijx∗ij , κ2)IG(κ2|aκ, bκ) which yields (κ2| · · · ) ∼

IG


∑
ij

I{ξij=0}

2
+ aκ,


∑

{(i,j) : ξij=0}

(y∗ij − βijx∗ij)2

2
+

1
bκ


−1


3. p(πi0, πi1| · · · ) ∝
∏
ij

π
I{ξij=0}
i0 π

I{ξij=1}
i1 Dir(π0, πi1|a0, a1) resulting in (πi0, πi1| · · · ) ∼

Dir

 J∑
j=1

I{ξij=0} + a0,
J∑
j=1

I{ξij=1} + a1


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4. p(αj | · · · ) ∝
∏

{i : ξij=1}

N(βij |αj +
k∑
l=1

λjlfil, ψ
2
j )N(αj |1, Cα) leading to

(αj | · · · ) ∼ N
[
α.mean
α.var

,
1

α.var

]
where α.var =

1
Cα

+
∑

{i : ξij=1}

1
ψ2
j

, α.mean =

1
Cα

+
∑

{i : ξij=1}

(βij −
k∑
l=1

λjlfil)

ψ2
j

5. p(ψ2
j | · · · ) ∝

∏
{i : ξij=1}

N(βij |αj+
k∑
l=1

λjlfil, ψ
2
j )IG(ψ2

j |aψ, bψ) which yields

(ψ2
j | · · · ) ∼ IG


∑
i

I{ξij=1}

2
+ aψ,


∑

{i : ξij=1}

(βij − αj −
k∑
l=1

λjlfil)2

2
+

1
bψ



−1
6. p(fil| · · · ) ∝

∏
{j : ξij=1}

N(βij |αj+
k∑
l=1

λjlfil, ψ
2
j )N(fil|0, 1) yielding (fil| · · · ) ∼

N
[
f.mean
f.var

,
1

f.var

]
where f.var = 1+

∑
{j : ξij=1}

λ2
jl

ψ2
j

, f.mean =
∑

{j : ξij=1}

λjl(βij − αj −
k∑

l′ 6=l=1

λjl′fil′)

ψ2
j

7. θs are sampled by integrating over the corresponding λs.

When j 6= l, p(θjl| · · · ) ∼ γ
∏
{i : ξij=1}N(βij |αj +

k∑
l′ 6=l=1

λjl′fil′ , ψ
2
j ) +

(1−γ)
1√
CλC

∗
0

( ∏
{i : ξij=1}

1√
2πψ2

j

)
exp

{
−1

2

[ ∑
{i : ξij=1}

z2
ij

ψ2
j

− 1
C∗0

( ∑
{i : ξij=1}

zijfil
ψ2
j

)2
]}

where C∗0 =
1
Cλ

+

∑
{i : ξij=1} f

2
il

ψ2
j

and zij = βij − (αj +
k∑

l′ 6=l=1

λjl′fil′).

For j = l, p(θjl| · · · ) has an expression similar to above, with the
exception of additional normalizing constants, one from the prior and
one from the corresponding updated truncated Gaussian distribution.

8. λs

Diagonal λs (i.e., j = l)
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• (λjl| · · · ) =

 0 if θjl = 0

N
[
λ.mean
λ.var

,
1

λ.var

]
1{λjl>0} if θjl = 1

where λ.var =
1
Cλ

+
∑

{i : ξij=1}

f2
ij

ψ2
j

, λ.mean =
∑

{i : ξij=1}

fij(βij − αj −
k∑

l 6=j=1

λjlfil)

ψ2
j

Non-diagonal λs (i.e., j 6= l)

(a) (λjl| · · · ) =

 0 if θjl = 0

N
[
λ.mean
λ.var

,
1

λ.var

]
if θjl = 1

where λ.var =
1
Cλ

+
∑

{i : ξij=1}

f2
il

ψ2
j

, λ.mean =
∑

{i : ξij=1}

fil(βij − αj −
k∑

l′ 6=l=1

λjl′fil′)

ψ2
j

9. p(γ| · · · ) ∝
∏

{j : ξij=1}

k∏
l=1

γ
I{θjl=0}(1−γ)I{θjl=1}Beta(γ|aγ , bγ) resulting in

(γ| · · · ) ∼ Beta

aγ +
∑

{j : ξij=1}

k∑
l=1

I{θjl=0}, bγ +
∑

{j : ξij=1}

k∑
l=1

I{θjl=1}


10. ξs are sampled by integrating over βs.

p(ξij |βij−) ∝ N(y∗ij |0, κ2)πi0+N

(
y∗ij |x∗ij(αj +

k∑
l=1

λjlfil),
σ2

nOi
+ x∗2ij ψ

2
j

)
πi1

11. (βij | · · · ) =

 0 if ξij = 0

N
[
β.mean
β.var

,
1

β.var

]
if ξij = 1

where β.var =
1
ψ2
j

+
nOi x

∗2
ij

σ2
, β.mean =

αj +
k∑
l=1

λjlfil

ψ2
j

+
nOi y

∗
ijx
∗
ij

σ2
.

NOTE:
If instead of equation (2), the structure on βi,j is

βij ∼ πi,0δ0(βij)+πi,1δ1(βij)+πi,2N(βij |αj+
k∑
l=1

λjlfil, ψ
2
j ), πi,2 = 1−πi,0−πi,1,

we use a Dirichlet distribution with 3 components as the prior for π i.e.,
(πi0, πi1, πi2) ∼ Dir(a0, a1, a2) and the following changes are necessary to the
algorithm for generating posterior samples.
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1. The dummy variables ξij have to be defined such that

ξij =


0 if βij = 0
1 if βij = 1
2 otherwise.

2. The posterior distribution for πs is given by

(πi0, πi1, πi2| · · · ) ∼ Dir

 J∑
j=1

I{ξij=0} + a0,

J∑
j=1

I{ξij=1} + a1,

J∑
j=1

I{ξij=2} + a2


3. ξi,js are sampled as below

p(ξij |βij−) ∝ N(y∗ij |0, κ2)πi0+N(y∗ij |x∗ij ,
σ2

nOi
)πi1+N

(
y∗ij |x∗ij(αj +

k∑
l=1

λjlfil),
σ2

nOi
+ x∗2ij ψ

2
j

)
πi2

4. (βij | · · · ) =


0 if ξij = 0
1 if ξij = 1

N
[
β.mean
β.var

,
1

β.var

]
if ξij = 2

where β.var =
1
ψ2
j

+
nOi x

∗2
ij

σ2
, β.mean =

αj +
k∑
l=1

λjlfil

ψ2
j

+
nOi y

∗
ijx
∗
ij

σ2
.
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