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ABSTRACT
The goal of this research is to improve the performance of
the RAID4S system. For RAID4S, the throughput slope of
small-writes, the magnitude of medium sized writes on both
sides of the small/large-write selection threshold, and the
speedup of small-write performance suggest that medium-
writes using the large-write parity calculation will perform
better if they use the small-write parity calculation instead.
RAID4S-modthresh uses a modified write selection algo-
rithm which only affects medium-writes and keeps the parity
calculation and corresponding throughput for small-writes
and large-writes intact. RAID4S-modthresh is implemented
into the software RAID controller module in the Linux source.
Results show a speedup of 2 MB/s for medium-writes with-
out imposing performance or reliability penalties on the rest
of the system. This paper also presents other interesting
projects for future work in modifying the software RAID
controller to improve performance.

1. INTRODUCTION
RAID systems help bridge the gap between processor and
cache technology by improving either performance or reli-
ability. Different RAID levels utilize a variety of striping,
mirroring, and parity techniques to store data. This allows
the user to select the RAID level that best fits the appli-
cation’s cost, performance, complexity, and redundancy re-
quirements [9]. RAID schemes based on parity enhance stor-
age reliability by managing a recovery parity disk but parity

9∗(Template taken from ACM_PROC_ARTICLE-SP.CLS. Sup-
ported by ACM.
†Inside the handle_stripe_dirtying5() function.
‡Enrolled in CMPS 221: Advanced Operating Systems.
§Mentor for project.
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Figure 1: RAID4S-modthresh provides a noticeable
speedup over RAID4S when performing medium-
sized writes. The RAID4S-modthresh write selec-
tion algorithm classifies medium-writes as small-
writes, so it uses the small-write parity calculation
and enjoys the benefits of RAID4S for medium-sized
writes.

calculations degrade performance [1]. This is especially ap-
parent when performing small-writes. A key goal in this
research is to improve upon the RAID4S [10] system so that
the overhead of parity based RAIDs can be minimized even
further in an effort to approach RAID0 schemes [6]. Fig-
ure 1 shows the improved throughput measurements of the
new write selection algorithm implemented in this project.

When calculating the parity for a parity-based RAID, the
RAID controller selects a computation based on the write
request size. For maximum efficiency, large-writes, which
span at least half the drives, must first compute the parity by
XORing the drives to be written with the remaining drives.
The large-write parity calculation is:

plarge-write = dnew ⊕ rold



Figure 2: The traditional RAID4 (left image) scheme has a bottleneck at the parity drive. As a result, small-
write operations cannot be performed in parallel. RAID5 (middle image) rotates the parity disk, so the rest
of the system is not reduced to the I/O bandwidth of 1 disk. Small-writes can be performed in parallel if
the 2 small-write requests have different parity disks and write disks. RAID4S (right image) can perform
small-writes in parallel if the write disks are unique because the SSD has a much faster I/O bandwidth. If
the parity drive has a speedup factor of N, then in the time that it takes one regular disk to read or write
the parity can perform N disk read or writes. Diagram idea taken from [10].

where d is the data on the drive(s) to be written, p is the
parity drive, and r is the remaining drive(s). After comput-
ing the parity, the data is written to the disks and the new
parity is written to the parity disk.

Small-writes, which span less than half the drives, are most
efficient when parity is computed by XORing the old and
new data with the old parity. The small-write parity calcu-
lation is:

psmall-write = dold ⊕ dnew ⊕ pold

where d is the data on the drive(s) to be written and p is
the parity drive. After the parity is computed, the new data
is written to the drives and the new parity is written to the
parity disk. [1, 9, 10]

Small-writes require 2(m + 1) disk I/Os while large writes
always require N + 2 disk I/Os. The instance where four
accesses are needed for each small-write instead of two is
known as the small-write problem[8]. This is most apparent
with small-writes, whose throughput, compared to the same
sized write for mirrored RAIDs (i.e. RAID0), is severely
penalized [10] for every small-write. This bottleneck can be
seen in Figure 2.

Traditionally, RAID4 have been dumped in favor of RAID5
because in RAID4, as noted in [9], the parity disk is a
throughput bottleneck when performing small-writes.

RAID4S is a RAID4 configuration comprised of data HDDs
and 1 dedicated parity SSD which aims to overcome the
parity bottleneck in an effort to improve small-write per-
formance . With this scheme, small-write performance in-
creased because the SSD parity drive can process small-write
reads and writes much faster. This allows small-writes on
data disks (the rest of the RAID system) to be performed
”in parallel”. By simply isolating the parity on the SSD,
RAID4S provides excellent performance while still achiev-

ing the same reliability of parity-based RAIDs. Figure 3
shows the increased throughput of RAID4S over RAID5 and
RAID5S. RAID4S provides nearly 1.75 times the through-
put over RAID5 and 3.3 times the throughput for random
writes under 128KB (small-writes) [10]. The overall perfor-
mance speedup is a function of the speed of the SSD relative
to the other disks and the percentage of small writes per-
formed. RAID4S alleviates the RAID4 parity bottleneck,
offloads work from the slower devices, and fully utilizes the
faster device.

The configuration and utilization of the entire system’s re-
sources allow such high speedups without sacrificing relia-
bility and cost. Implementing the RAID with 1 SSD instead
of N makes RAID4S cheaper than other RAIDs with SSDs
and still retains the reliability of parity-based RAIDs. This
solution addresses the small-write problem of parity over-
head by intelligently injecting and configuring more efficient
resources into the system.

For RAID4S, the throughput slope of small-writes and the
magnitude of medium sized writes on both sides of the small/large-
write selection threshold suggest that medium-writes using
the large-write parity calculation will perform better if they
use the small-write parity calculation instead.

This research improves the performance of RAID4S by intro-
ducing a new write selection algorithm to the software RAID
controller. The new write selection algorithm modifies the
threshold of RAID4S to allow the parity of smaller large-
writes (medium-writes) to be calculated using the small-
write parity calculation. The new system that uses the
new write selection algorithm has been named RAID4S-
modthresh. This modification to the RAID controller only
affects medium-writes and keeps the parity calculation and
corresponding throughput for small-writes and large-writes
intact. Furthermore, changes to the write selection algo-



rithm do not affect the reliability or cost of the system since
the hardware is not being changed.

This modification is accomplished by examining the software
RAID controller module in the Linux source, modifying the
kernel code, and loading an external Loadable Kernel Mod-
ule (LKM) into the kernel. The results of initial tests are en-
couraging and illustrate a speedup of 2 MB/s for all medium
writes without imposing performance or reliability penalties
on the rest of the system.

The rest of the paper outlines the steps taken to implement
RAID4S-modthresh and analyzes its resulting performance.
Section 2 discusses the Background and Methodology of the
implementation and focuses on the theoretical performance
implications of modifying the threshold. The section also
discusses the background for the code and kernel modules
that is necessary for understanding the implementation de-
tails. Section 3 describes the implementation in detail and
shows the exact changes that need to be made to imple-
ment RAID4S-modthresh. Section 4 shows how RAID4S-
modthresh is tested and provides a brief analysis of the re-
sults. Section 6 acknowledges related works with similar
goals but different implementations.

2. METHODOLOGY AND BACKGROUND
The goal of this project is to utilize the small-write per-
formance enhancements of RAID4S by modifying the write
selection algorithm. The following sections discuss the per-
formance measurements of RAID4S and explain how these
measurements motivated the implementation of the RAID4S
optimization. A discussion of raid5.c, the current software
RAID controller, is also included in this section.

2.1 Motivation
To baseline RAID4S write performance for 4KB block aligned
random writes, XDD was configured to make various write
sizes, in powers of 2, ranging from the minimum block size
to the RAID stripe size (4KB, 8KB, 16KB, ..., 128KB, and
256KB). RAID4S is configured with 4 data drives and 1
parity SSD using 256KB stripes. In this setup, each drive
receives 64KB chunks from the data stripe. Figure 3 shows
the throughput measurements for the block aligned random
writes.

The results show that the write threshold for small and
large-writes is at 128KB because this is where all RAID
systems achieve the same throughput. Throughput is the
same (or very close) at large-writes for most RAID configu-
rations because the parity calculation is reliant on the stripe
data and disk bandwidth and cannot be be parallelized with
other large-writes. This is consistent with the write selec-
tion algorithm of RAID4S. The write selection algorithm
will choose a large-write parity calculation for 128KB sized
writes because 128KB writes span at least half of the drives.

Motivation for this project stems from the results of RAID4S
and the throughput measurements of the block aligned writes.
The results suggest that performing more small-write parity
calculations will improve the throughput for medium sized
writes.

2.1.1 Throughput vs. Write Size Slope
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Figure 3: The throughput of RAID4S compared to
RAID5 and RAID5S. Using a parity drive signifi-
cantly improves the performance of small-writes be-
cause of the parallel capabilities that the SSD pro-
vides. The curve of the small-writes and the mag-
nitudes of the 64KB and 128KB writes suggest that
changing the 128KB large-write parity calculation
into a small-write parity calculation can improve the
performance even more.

The shape of the curves in Figure 3 suggested that for RAID4S,
the parity for 128KB writes should be calculated using the
small-write parity computation instead of the large-write
parity computation. The slope of RAID4S approaching 64KB
is different than the slope leaving the 64KB write-size be-
cause the write selection algorithm is now using the large-
write parity computation. This sudden negative change in
slope implies that a medium-sized might perform better if
it was calculated as a small-write.

The interpolation of the RAID4S curve in Figure 3 also
suggests that small-writes will outperform large-writes for
medium-write sizes. The large small-writes have a lower
slope but higher performance than smaller large-writes (medium-
writes). It should be noted that interpolating the small-
write curve much further beyond the halfway point (128KB)
would result in lower throughput than the large-write per-
formance despite the higher initial performance.

2.1.2 Magnitude of Medium-writes
The magnitude of the throughput of large small-writes and
small large-writes is very close. Figure 4 is a subset of the
throughput values shown in Figure 3 and is set on a non-log
scale. The figure shows that the last small-write of RAID4S,
64KB, has a throughput that is only about 3 MB/s slower
than the first large-write, 128KB. Since small-write perfor-
mance for RAID4S increased dramatically, it is logical to
predict that the write after the last small-write may enjoy
some speedup over its predecessor, which should improve
its throughput over its current large-write parity calculation
throughput.

2.1.3 Extending Parallelism to Medium-Writes
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Figure 4: RAID4S shows similar throughput for
64KB and 128KB sized writes. This suggests that
the performance improvement of RAID4S will make
128KB sized writes faster using the small-write par-
ity calculation.

Figure 5: RAID4S classifies medium sized writes as
large-writes because a read-modify-write will need
to read 3 disks while a reconstruct-write only re-
quires 2 disk reads. RAID4S-modthresh classifies
medium sized writes as small-writes because small-
writes can be processed in parallel on a small-write
RAID4S system.

RAID4S was shown to improve small-write performance be-
cause of the use of a more efficient parity drive, which fa-
cilitated parallel small-writes. The same concept can be
applied to medium writes in the RAID4S system but since
the RAID4S write selection algorithm uses the traditional
threshold for write selection, it needs to be modified so that
large writes are classified as small-writes.

Figure 5 shows how medium-writes can be processed in par-
allel. RAID4S-modthresh would attempt to take advantage
of the improved small-write performance and not the fact
that writes can be processed in parallel. Theoretically, the
large-write parity calculation would perform equally as well
as the situation in Figure 5 but since RAID4S has shown
such an extreme throughput enhancement for small-writes,
it seemed worth it to try changing the write selection algo-
rithm. Since many of the small-writes can perform faster,
it may open up more opportunities for medium-writes to
process in parallel alongside small-writes.

2.2 The raid5.c code

The file raid5.c is the RAID software controller (/linux-
source/drivers/md/raid5.c) which manages RAID4 and
RAID5 configurations. In the controller, each disk is as-
signed a buffer stripe. This buffer stripe holds data for reads
returning from disk and for data that needs to be temporar-
ily saved before being written to the disk. Each disk buffer
has observable states (Empty, Want, Dirty, Clean) and state
transitions perform operations on stripes.

2.2.1 State Transitions
State transitions perform operations on disk buffer stripes
to exchange data between the disk and the RAID controller.
Examining the states of each disk is how the RAID con-
troller checks the disk array for failed devices, devices which
recently completed writes (ready for return), and devices
that are ready to be read.

These state transitions are managed and called in the han-

dle_stripe5() method. Every time handle_stripe5() is
called, it examines the state of each disk’s buffer stripe and
calls the correct operations for each buffer stripe. Functions
set the UPDTODATE and LOCK flags to indicate the state of
the stripe buffer and to facilitate concurrent execution by
marking buffers as locked, up-to-date, wanting a compute,
and wanting a read. raid5.h enumerates the states and the
corresponding spin locks.

2.2.2 The Dirty State - Write Selection / Scheduling
The dirty state first chooses a write type using the small/large-
write selection algorithm and then schedules the write to
disk. All new write requests must be considered by the dirty
state before being written to disk. When a buffer stripe is
transitioned to the dirty state, the buffer must contain valid
data that is either being written to disk or has already been
written to disk. The handle-stripe-dirtying5() method
handles transitions in and out of the dirty state.

The write selection algorithm must decide whether to per-
form a read-modify-write (r-m-w) or a reconstruct-write (r-
c-w) parity calculation. The read-modify write is analogous
to a small-write parity calculation and involves reading the
old parity and the old data before calculating the new parity.
The reconstruct-write is analogous to the large-write parity
calculation and is performed by reading the buffers of disks
which are not being written to before calculating the new
parity. This write selection algorithm decides which parity
calculation to use based on the number of reads needed for
a r-m-w and the number of writes needed for a r-c-w.

To count the disks for each write, the algorithm cycles through
the disks and keeps track of the ”predicted” write counts in
two variables: rmw and rcw. The flags for each buffer stripe
indicate whether the disk needs to be read or not. If the
disk in question is going to be written in the next cycle, rmw
is incremented by one. If the disk in question is not going
to be written in the next cycle, rcw is incremented by one.

Recall that a r-m-w reads the old data, so checking to see if
the device is going to be written to is equivalent to asking
if the device in question needs to be read for a r-m-w. Note
that the parity drive will always increment rmw since the par-
ity drive needs to be read for a read-modify write. Figure 6
shows a model of the typical disk counting for a 128KB and



Figure 6: Counting the drives that would be needed
for a r-m-w and a r-c-w for a 64KB write (1 drive)
and a 128KB write (2 drives). Notice that any drive
that is not marked as a drive that needs to be read
for r-m-w is automatically marked as a r-c-w read
drive. The parity drive is always marked as a r-m-w
drive.

64KB writes. The debugging output for the r-m-w and r-c-
w calculations is shown in Figure 7. The debugging output
first shows how the handle_stripe_dirtying5() function
first examines the requests of each disk (states) and then it
shows how the rmw and rcw variables are incremented.

Once these tallies are made, the most efficient write is cho-
sen. The most efficient write is the write type that requires
the smallest number of reads. Therefore, the write selection
algorithm threshold is set by examining the tallies incurred
in the previous step. If rmw < rcw and rmw > 0, then the
algorithm concludes that the small-write parity calculation
it optimal. The function then reads all the drives to be writ-
ten in prepararation for the parity calculation. On the other
hand, if rcw <= rmw and rcw > 0, then a large-write parity
calculation is the more efficient computation. In this case,
all the drives that are not going to be written to are read
to prepare for the parity calculation. The threshold checks
whether rmw > 0 and rcw > 0 to make sure that the stripe
is active and not locked for an earlier parity computation.

This threshold is set by two conditionals in raid5.c. They
have been reproduced in Figure 8

Once the proper drives are read, a reconstruction is sched-
uled. This has a pipelining effect because new write requests
can be considered while older write requests are being passed
to the write scheduler. Once the write type has been deter-
mined, the function locks the drives that need to be read,
which also stops the scheduler from scheduling any other
write requests.

The condition rcw == 0 is passed to the scheduler so the
scheduler can determine the write type. If a r-c-w write is
chosen as the write type, the previous step will lock non-
write drives for reading so the rcw variable will be 0. If
r-m-w write is chosen as the write type, the previous step
will lock all the write drives for reading so the rmw variable
will be 0. schedule_reconstruction() locks bits and drains
buffers as it puts the type of write request into the queue.

2.3 Loadable Kernel Module (LKM)
The Ubuntu Linux 2.6.32 kernel is used for the implementa-
tion and testing of RAID4S-modthresh. The raid5.c com-
piles into a .ko file and is linked into the kernel through the

i f (rmw < rcw && rmw > 0) {
/∗
∗ −− Block 1 −−
∗ Prepare f o r r−m−w
∗
∗ Decides i f the d r i v e
∗ needs to be read f o r
∗ a r−m−w and reads i t
∗ i f i t i s not l o c ked
∗
∗/

}
i f ( rcw <= rmw && rcw > 0) {

/∗
∗ −− Block 2 −−
∗ Prepare f o r r−c−w
∗
∗ Decides i f the d r i v e
∗ needs to be read f o r
∗ a r−c−w and reads i t
∗ i f i t i s not l o c ked
∗
∗/

}

Figure 8: The raid5.c write selection algorithm
threshold.

raid456.ko kernel module. After stopping all the RAIDs,
the LKM is loaded into the kernel by first removing the old
raid456.ko and loading the new raid456.ko from the of-
fline source tree.

2.3.1 Debugging
All debugging is written to /var/log/kern.log and can be
accessed either by reading this file or through dmesg. Scripts
are used to extract the relevant debugging output for each
run. Typical debugging output is shown in Figure 7 and the
output consists of the disk buffer states, the stripes being
examined, the rmw/rcw counts, the stripe operations being
performed, the states of various buffer stripe flags, and the
type of writes being performed. The debugging is also used
to determine which functions are being called when and how
the handle_stripe() method chooses and schedules stripe
operations.

The debugging output also proved to be extremely valuable
when changing the RAID4S-modthresh threshold for kernel
bugs. The raid5.c code is very exhaustive when making
sure that the proper buffers have data and that the correct
flags are set. BUG_ON() checks the buffer stripes for the cor-
rect data and flags and will throw a Kernel BUG for the
invalid opcode if the states are not initialized correctly. It
then halts all affected modules and logs the failure in /k-

ern/log/kern.log. It then freezes the system, which can
only be remedied by killing the xdd process, rebooting the
system, and re-configuring all the RAIDs.

3. IMPLEMENTATION
This project modifies the write selection algorithm in the
dirty state in order to improve the small-write performance



23:52:32 ssd kernel: [15755.395827] check disk 4: state 0x0 toread (null) read (null) write (null) written (null)
23:52:32 ssd kernel: [15755.395832] check disk 3: state 0x0 toread (null) read (null) write (null) written (null)
23:52:32 ssd kernel: [15755.395835] check disk 2: state 0x0 toread (null) read (null) write (null) written (null)
23:52:32 ssd kernel: [15755.395839] check disk 1: state 0x0 toread (null) read (null) write (null) written (null)
23:52:32 ssd kernel: [15755.395842] check disk 0: state 0x4 toread (null) read (null) write ffff880070d56e40 written (null)
23:52:32 ssd kernel: [15755.395845] Consider new write: handle-stripe-dirtying()
23:52:32 ssd kernel: [15755.395847] disk 4 –> RMW++
23:52:32 ssd kernel: [15755.395848] disk 3 –> RCW++
23:52:32 ssd kernel: [15755.395850] disk 2 –> RCW++
23:52:32 ssd kernel: [15755.395851] disk 1 –> RCW++
23:52:32 ssd kernel: [15755.395853] disk 0 –> RMW++
23:52:32 ssd kernel: [15755.395855] Sector 21105024, rmw=2 rcw=3

Figure 7: Debugging output for a 64KB write on RAID4S. The write selection algorithm chose a r-m-w parity
calculation.

enhancements of RAID4S. This is done by changing the
threshold in the handle_stripe_dirtying5() function of
the raid5.c loadable kernel module. The handle_stripe_

dirtying5() function handles the write selection algorithm
and passes the chosen write to the schedule_reconstruction()
function, as discussed in Section 2.2.2.

Two implementations are made to change the write selection
algorithm:

1. RAID4S-modified: schedule only small-writes

2. RAID4S-modthresh: schedule more small-writes

For both implementations, the r-m-w and r-c-w disk count-
ing, discussed in Section 2.2.2, needs to be left intact for the
schedule_reconstruction() method. The schedule

_reconstruction() method relies on the rmw and rcw vari-
ables for write selection and will not proceed until the proper
disks have been read for the parity calculation. The indi-
cation that these reads are in flight occurs when either the
rmw or rcw variable is 0, since the drives have been locked
for reading.

Modifications are made to the two conditionals shown in
Figure 8, which specify the drives that need to be read.

3.1 RAID4S-modified: Force All Small-Writes
For this first implementation, the raid5.c software RAID
controller code is modified to force all write requests to be
treated as small-writes. This will force all writes to calculate
parity using the small-write parity calculation instead of the
large-write parity calculation.

The RAID controller needs to be modified to satisfy two
conditions:

1. the correct drives are read for the parity calculation

2. the write scheduler always calls for a r-m-w

To satisfy condition (1) changes are made in the second if

condition (Block 2) of Figure 8 so that in the r-c-w cal-
culation, the drives to be written are read for the parity

computation. With this change, the drives to be written
are always read for the parity computation, independent of
the write type chosen. To satisfy condition (2), the write
scheduler parameter is forced to call a r-m-w by changing
the rcw == 0 parameter to 1. The following two lines of
code achieve these requirements:

/∗
∗ Implementing RAID4S−modi f ied
∗
∗ S a t i s f y cond i t i on (1)
∗ In the method h a n d l e s t r i p e d i r t y i n g 5 ()
∗ In Block 2 o f Figure 8
∗ Comment out the o r i g i n a l code
∗ I n s e r t new beg inn ing to ” i f ” s ta tement
∗/

// . . .

// i f ( ! t e s t b i t (R5 OVERWRITE, &dev−>f l a g s )&&
// i != sh−>pd idx &&
i f ( ( dev−>t owr i t e | | i == sh−>pd idx ) &&

! t e s t b i t (R5 LOCKED, &dev−>f l a g s )&&
! ( t e s t b i t (R5 UPTODATE, &dev−>f l a g s ) | |
. . . ) {

// . . .

/∗ S a t i s f y cond i t i on (2)
∗ At the end o f h a n d l e s t r i p e d i r t y i n g 5 ()
∗ Comment out the o r i g i n a l code
∗ I n s e r t new s ch edu l e r e c on s t r u c t i on ()
∗/

// . . .

// s c h edu l e r e c on s t r u c t i on ( sh , s , rcw==0, 0 ) ;
s c h e d u l e r e c o n s t r u c t i o n ( sh , s , 0 , 0 ) ;

// . . .

If either condition (1) or (2) of the first implementation are
skipped, the algorithm behaves incorrectly. Skipping condi-
tion (1) causes a crash because when the disks to be written
are read, there is no data in the buffer stripe. Skipping
condition (2) does not force the algorithm to choose r-m-w



for every write type. Because of these conditions, it is not
sufficient to change the if statements to always force the
program flow into Block 1 of Figure 8.

3.2 RAID4S-modthresh: Modify Threshold to
Schedule More Small-Writes

For the second implementation, the raid5.c software RAID
controller code is modified to allow more write requests to
be treated as small-writes. This will force medium-writes
to calculate parity using the small-write parity calculation
instead of the large-write parity calculation.

The code needs to be modified so that writes that span
half the drives are classified as small-writes instead of large-
writes. To accomplish this, the two conditionals from Fig-
ure8 need to be modified so that Block 1 accepts larger
writes and Block 2 accepts the rest (anything that is not
a small-write). Changes are made to the following if state-
ments :

/∗
∗ Implementing RAID4S−modthresh
∗
∗ In the method h a n d l e s t r i p e d i r t y i n g 5 ()
∗ Comment out the o r i g i n a l code
∗ I n s e r t new ” i f ” s ta tements
∗/

// . . .

// i f (rmw < rcw && rmw > 0) {
i f (rmw <= ( rcw+1) && rmw > 0) {

/∗
∗ −− Block 1 −−
∗ Prepare f o r r−m−w
∗
∗ Decides i f the d r i v e
∗ needs to be read f o r
∗ a r−m−w and reads i t
∗ i f i t i s not l o c ked
∗
∗/

}
// i f ( rcw <= rmw && rcw > 0) {
i f ( ( rcw+1) < rmw && rcw > 0) {

/∗
∗ −− Block 2 −−
∗ Prepare f o r r−c−w
∗
∗ Decides i f the d r i v e
∗ needs to be read f o r
∗ a r−c−w and reads i t
∗ i f i t i s not l o c ked
∗
∗/

}

// . . .

This has the effect of sliding the write threshold to the right
in order to accept more writes. Now writes that span less
than or equal to half the drives will be classified as small-

writes instead of writes that span strictly less than half the
drives.

It should be noted that rcw is replaced by rcw + 1. This
is because of the way that the handle_stripe_dirtying5()

function counts r-m-w and r-c-w drives. The additional drive
for the r-m-w calculation is the parity drive and this tilts the
balance in favor of r-c-w when the number of drives to be
written and number of remaining drives are the same. This
means that without the rcw + 1, the drives r-m-w drives
will still outnumber the r-c-w for drives that span half the
disks. The following example illustrates the reason for using
rcw + 1.

3.2.1 RAID4S vs. RAID4S-modthresh Example
Consider an example: a 5 disk RAID4S comprised of 4 data
disks and 1 parity disk with data striped at 256KB (64KB
data chunk for each disk). In the traditional writeselection
algorithm, any write sizes of 64KB or less will constitute a
small-write since it only spans 1 drive. Our modified write
selection algorithm seeks to extend this threshold to include
any write sizes that span 2 disks or less (i.e. 128KB or less).

The rmw and rcw count for a 64KB write is shown in Figure 7.
In this debugging log, disk 0 has a write request. The write
selection algorithm classifies disk 0 and disk 4 (parity disk)
as r-m-w’s because they will need to be read if the algorithm
were to choose r-m-w. The remaining disks would need to
read for a r-c-w. Both the original RAID4S write selection
and the RAID4S-modthresh write selection algorithm will
select r-m-w because rmw < rcw.

The rmw and rcw count for a 128KB write is shown in Fig-
ure 9. In this debugging log, disk 0 and disk 1 have a write
request. The write selection algorithm classifies disk 0, disk
1, and disk 4 (parity disk) as rmws. The remaining disks
would need to be read for a r-c-w. The RAID4S write se-
lection algorithm will select a r-c-w parity calculation be-
cause rcw <= rmw. The RAID4S-modthresh write selection
algorithm selects a r-m-w parity calculation as is evident
by the last three lines of the debugging output. RAID4S-
modthresh selects a r-m-w parity calculation because rmw

<= (rcw + 1).

It should now be clear that the rcw variable needs to be in-
creased by 1 to account for the parity when half the data
drives are being written; the rmw and rcw values need to be
skewed to account for the parity disk. In this implementa-
tion, the schedule_reconstruction() method is set back to
rcw == 0 for the write-type, since we still want to execute
large-writes if the threshold is overtaken.

3.3 Analysis of RAID4S-modified and RAID4S-
modthresh Implementations

Both implementations are included in this paper because
they produced interesting results and provide insight into
the RAID controller setup and program flow. RAID4S-
modified was implemented as a precursor to RAID4S-modthresh
but peculiar results suggest that the RAID4S-modthresh
should be extended further to include even more small-write
parity calculations.



21:10:08 ssd kernel: [178429.097858] check disk 4: state 0x0 toread (null) read (null) write (null) written (null)
21:10:08 ssd kernel: [178429.097862] check disk 3: state 0x0 toread (null) read (null) write (null) written (null)
21:10:08 ssd kernel: [178429.097865] check disk 2: state 0x0 toread (null) read (null) write (null) written (null)
21:10:08 ssd kernel: [178429.097869] check disk 1: state 0x4 toread (null) read (null) write ffff88007028fa40 written (null)
21:10:08 ssd kernel: [178429.097875] check disk 0: state 0x4 toread (null) read (null) write ffff88007028ecc0 written (null)
21:10:08 ssd kernel: [178429.097879] Consider new write: handle stripe dirtying()
21:10:08 ssd kernel: [178429.097880] disk 4 –> RMW++
21:10:08 ssd kernel: [178429.097882] disk 3 –> RCW++
21:10:08 ssd kernel: [178429.097884] disk 2 –> RCW++
21:10:08 ssd kernel: [178429.097885] disk 1 –> RMW++
21:10:08 ssd kernel: [178429.097887] disk 0 –> RMW++
21:10:08 ssd kernel: [178429.097890] Sector 21105128, rmw=3 rcw=2
21:10:08 ssd kernel: [178429.097893] Read old block 4 for r-m-w
21:10:08 ssd kernel: [178429.097895] Read old block 1 for r-m-w
21:10:08 ssd kernel: [178429.097896] Read old block 0 for r-m-w

Figure 9: Debugging output for a 128KB write on RAID4S-modthresh. The write selection algorithm chose
a r-m-w parity calculation, as is evident from the last three lines.

Comparing RAID4S-modified and RAID4S-modthresh forced
us to think deeply about what the RAID controller was re-
ally doing and how it may be better to always test rather
than assume that a theoretical exploration of a concept is
sound. RAID4S-modified throws errors for very large-writes,
which are not shown in this paper because the focus is
medium-writes, but these failures served to help us learn the
inner-workings of raid5.c and to show that further study
of forcing small-writes can only accelerate the learning for
future, related topics.

4. EVALUATION AND RESULTS
To test the performance speedup of RAID4S-modthresh,
random write tests are performed on three RAID configura-
tions: RAID4S, RAID5, and RAID5S. These configurations
are shown in Figure 10. The XDD [7] tool is a command-line
benchmark that measures and characterizes I/O on systems
and is used in these experiments to measure performance.
Throughput measurements show the improved performance
that RAID4S-modthresh has over RAID4S, RAID5, and
RAID5S for medium-writes.

The data is striped into 256KB blocks and each drive is
assigned 64KB blocks. The data is written randomly to the
target RAID system in various seek ranges, depending on
the write size. The seek is range is calculated by using:

rangeseek =
sizedevice

sizeblock

where rangeseek, sizedevice, and sizeblock are all measured in
bytes. For these experiments,

sizedevice = 49153835008

and

sizeblockbytes = 1024 ∗ sizeblockKB

The queuedepth, which specifies the number of commands
to be sent to 1 target at a time, is 10. For every experiment,
a total of 128MB is transferred on each pass and each run
consists of 3 passes. For each run, the average of the three
passes are plotted.

Figure 10: The RAID5 and RAID4S setups.
RAID5S has the same topology of RAID5 but with
the drives all replaced with SSDs. RAID4S has a
dedicated parity SSD while RAID5 schemes rotate
the parity amongst the drives.

All tests are run on an Ubuntu Linux 10.0.04 namespace run-
ning on an Intel Core i7 CPU with 2GB RAM and 9GB swap
memory. The software RAID controller that is modified and
loaded is from the mdadm drivers package in the Linux kernel
source version 2.6.32. The hard drives are 640GB 7200 RPM
Western Digital Caviar Black SATA 3.0Gb/s hard drives
with 32MB cache and 64GB Intel X25-E SSDs. Both drives
use 12.25 GB partitions.

The Direct I/O (-dio) option is activated for all XDD runs
to avoid caching misnomers. In many file systems there is
a system buffer cache which buffers data before the CPU
copies the data to the XDD I/O buffer. Without activating
Direct I/O, results would be skewed by the memory copy
speed of the processor and the transfer of data from the file
system buffer instead of the disk.

4.1 Block Unaligned Writes - Medium Writes
To test the performance of medium-writes, XDD is config-
ured to perform writes in the range from 40KB to 256KB
in increments of 4KB. Since all the RAID configurations are
set up with 5 drives, the RAID4S write selection algorithm
will select large-write parity computations when the writes
span more than 1 drive and the RAID4S-modthresh write se-
lection algorithm will select large-write parity computations
when the writes span more than 2 drives. Hence, the range
of writes tested is adequate to properly illustrate the bene-
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Figure 11: Comparing RAID4S-modthresh to
RAID4S. The RAID4S-modthresh values have been
divided by RAID4S to get a normalized speedup of
RAID4S-modthresh over RAID4S.

fits of the RAID4S-modthresh when compared to RAID4S,
RAID5, and RAID5S. Since sector sizes are 4KB, writing to
sizes that are not multiples of 4KB will result in degraded
and unpredictable performance.

Figure 1 compares the throughput of RAID4S and RAID4S-
modthresh for randomly generated writes in the 40KB to
168KB range. From 40KB to 64KB, the write throughputs
are identical because both write selection algorithms choose
small-write parity computations. Similarly, writes larger
than 128KB are also identical in both RAID4S and RAID4S-
modthresh because both write selection algorithms choose
large-write parity computations. In this case, RAID4S-modthresh
calculates rmw = 4 and rcw = 1, which does not satisfy the
threshold condition for small-writes.

The most interesting results are what lies between, in the
64KB to 128KB medium-write range. In the medium-write
range, RAID4S-modthresh shows a noticeable difference in
the write throughput over RAID4S. The normalized speedup
of RAID4S-modthresh over RAID4S can be seen in Fig-
ure 11. The throughput increases by 2MB/s for all the un-
aligned and aligned writes less than or equal to 128KB.

Note that in RAID4S-modthresh, writes larger than 128KB,
although still considered medium-writes, are calculated as
large-writes because rmw = 4 and rcw = 1. The results of this
graph suggest that the threshold can be pushed even farther
to the right, because RAID4S-modthresh still outperforms
RAID4S up to about 144KB sized writes.

Figure 12 compares the throughput of RAID4S-modthresh
to RAID5 and RAID5S. The results show significant speedup
for RAID4S-modthresh for medium-writes over both RAID5
configurations and is finally overtaken by RAID5S after the
128KB write size. This is expected since RAID5S large-
writes are faster than RAID4S because of the extra SSDs
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Figure 12: Comparing RAID4S-modthresh to
RAID5 and RAID5S. The speedup is noticeably im-
proved for medium-writes.

used in RAID5S. Even the 128KB write for RAID4S-modthresh
compares favorably with RAID5S.

Finally, Figure 13 compares RAID4S-modified to RAID4S-
modthresh. RAID4S modified alters the write selection al-
gorithm to always select small-writes. The predicted effect is
that small-write computation will perform worse than large-
write computation because small-writes need to read more
drives than larger write-sizes. The results show that immedi-
ately after 128KB, the RAID4S-modified throughput is still
better then the RAID4S-modthresh throughput by a small
margin. The RAID4S-modthresh eventually achieves higher
throughput than RAID4S-modified around 164KB, but the
lower performance immediately after 128KB is still peculiar.
These results, like Figure 11 suggest that the small/large-
write threshold can be pushed even farther to the right to
realize even more of a performance gain.

4.2 Block Aligned Writes: Powers of 2
To test the overall performance of the system, XDD is con-
figured to perform block aligned writes, which are write sizes
that are powers of 2 (2KB, 4KB, 8KB, 16KB, 32KB, 64KB,
128KB, and 256KB). This experiment includes medium-writes,
but unlike the previous experiment, this range also covers
very small and very large-write sizes for a 256KB stripe.
The block aligned write size experiments do not show as pro-
nounced a speedup as block unaligned writes (Section 4.1)
because these experiments focus on the system as a whole.
The purpose of these experiments is to show that RAID4S-
modthresh will not degrade the performance of RAID4S.

In Figure 14, the left graph shows the performance gain that
RAID4S-modthresh experiences for 128KB sized writes com-
pared to RAID4S. All smaller writes are the same since both
systems select the same small-write computation for parity
calculation. The write-performance for 128KB RAID4S-
modthresh was predicted to be higher, judging from the
slope of the line but the graph shows a degradation in perfor-
mance relative to the expected performance. Notice that the
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Figure 14: Comparing RAID4S-modthresh to RAID4S , RAID5, and RAID5S on a straight scale without the
256KB write-size. The 256KB write-size skewed the graph because it has such a high performance relative
to the medium and small-write throughputs. For medium-writes, RAID4S-modthresh provides a noticeable
speedup over the three other RAID configurations.
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Figure 13: The throughput of RAID4S-modified (all
small-writes) and RAID4S-modthresh have interest-
ing results. It was expected that throughput would
be the same for all writes up to and including 128KB
but performance varies. Even more interesting is
the trend immediately after 128KB, where RAID4S-
modified has better performance than RAID4S-
modthresh in throughput.

the throughput for RAID4S-modthresh steadily increases at
a linear rate but veers off to a much lower value than in-
terpolation would suggest. This behavior can probably be
attributed to the additional disk read and its unanticipated
overhead.

Figure 14 also shows the throughput speedup of RAID4S-
modthresh compared to RAID5 and RAID5S. Classifying
and computing the 128KB write as a small-write permits
RAID4S-modthresh to enjoy more of a speedup than RAID4S
when compared to RAID5 and RAID5S. Although the per-
formance is better than RAID4S, it is still far less than ex-
pected, as discussed in the observations above.

Finally, Figure 15 shows the minimal improvement that RAID4S-
modthresh has on the entire RAID system. The speedups
are evident but not overwhelming. The takeway from these
graphs is not that RAID4S-modthresh facilitates a large per-
formance increase, but rather that a small performance in-
crease can be achieved by making a small change to the
RAID controller without negatively impacting the rest of
the system.

Although the measurements show that RAID4S-modthresh
enjoys a small performance gain for medium-writes, the more
important point that these experiments illustrate is that
RAID4S-modthresh does not negatively impact either end
of the write size spectrum. RAID4S-modthresh is an ap-
pealing implementation option for RAID4S systems because
it moderately improves performance without incurring any
noticeable performance degradations.

4.3 Future Work and Implementations
In addition to showing encouraging speedups for RAID4S-
modthresh, the experiments show some interesting possibil-
ities for future work. As noted in Section 4.1, peculiarities
in the comparison medium-write throughputs of RAID4S,
RAID4S-modified, and RAID4S-modthresh show that the
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Figure 15: Comparing all the write sizes for block aligned writes (powers of 2). The graph shows that
RAID4S-modthresh increases the throughput of medium-sized writes with minimal impact on the rest of the
RAID4S write sizes. Overall, the throughput for all write sizes is the same as the measurements in Figure 3
but with a small improvement in the 128KB medium-write.

threshold for small-write computations can be extended to
even larger medium-write sizes.

An interesting extension of RAID4S-modthresh would be to
examine the exact write size, rather than how many drives
are spanned, to select the write type. When examining fine-
grained block unaligned write sizes, the current RAID4S-
modthresh disk counting for the rmw and rcw variables seems
awfully clunky and inadequate. To achieve fine precision and
minor performance upgrades, it would be beneficial to re-
examine the write-type calculation to see if the disk counting
can be replaced by a more accurate measurement.

Another possibility for future work is to consider the write
selection algorithm for RAID4S in choosing a better thresh-
old. It would be beneficial to take a closer look at RAID4S-
modthresh and RAID4S-modified, as shown in Figure 11 to
figure out why RAID4S-modified performed better for some
of the smaller large-writes. This might disprove our pre-
conceived notion that large-writes are always better than
small-writes. Debugging the two systems side by side to
see what RAID4S-modified does that RAID4S-modthresh
doesn’t do would lead to an explanation of the speedup that
might disprove some of the assumed characteristics of small
and large-writes.

5. RELATED WORKS
Related research has similar resources and injects them into
the RAID4 and RAID5 systems to achieve different levels
of performance and reliability. Many of these solutions are
complicated and require extra storage overhead which makes
them less desirable from a pure performance perspective
than RAID4S and RAID4S-modthresh.

5.1 HDD Solutions
Parity logging [8] is a common solution to the small-write
problem. For each small-write, parity logging saves the par-
ity update image, which is the resulting XOR bitwise value

of the old data XORed with the new data, called the parity
update image, in a fault-tolerant buffer. When the buffer
is filled with enough data to constitute an ”efficient” disk
transfer, the logged parity update image is applied to the in-
memory image of the out-of-date parity and the new parity
is written sequentially to the RAID setup. Although parity
logging improves performance without the added cost of an
SSD and can be expanded to RAID5, it also incurs a storage
overhead that increases with the striping degree. It also does
not address the small-write and large-write relationship and
the possibility that making a small transformation to the
threshold might not necessitate the need to alter the algo-
rithm or storage implementation of the entire system. Fi-
nally, the irregularity of writes and the chance that a write
can be unpredictable and may not fit the best sizes, may
affect performance in unpredictable ways. Parity logging is
great for disks of equal speeds but does not take advantage
of SSD technology and the ability to access multiple disks
in parallel with many parity log writes.

LFS [6] optimizes writes by destroying locality, using a seg-
ment cleaner, and keeping track of data and addresses the
overhead of small-writes to data. For small file workloads,
the LFS converts the small disk I/Os into large asynchronous
sequential transfers. Similarily, Write Anywhere File System
(WAFL) [2] is designed to improve small-write performance.
This is achieved by letting WAFL write files anywhere on
disk. Hence, WAFL improves RAID performance because
WAFL minimizes seek time (write to near blocks) and head
contention (reading large files). These two methods assume
that small-writes are poor and transform large writes by
logging the data. By contrast, RAID4S-modthresh takes ad-
vantage of the RAID4S layout to improve small-write per-
formance rather than trying to eradicate the small-writes
completely.

5.2 SSD Solutions



Heterogenous SSD based RAID4 [5] injects SSDs into a
RAID4 setup by replacing all the data drives with SSDs.
They measured performance in terms of life span and relia-
bility instead of cost and throughput. They argue that using
the SSD as a parity drive is subject to unacceptable wear
caused by the frequent updates to the parity. This wear,
up to 2% higher than the heterogenous RAID4, can cause
an increase in error rates, data corruption, reduced reliabil-
ity, and a reduction of SSD lifecycles. This RAID4 system
values different performance measurements: reliability and
life span. They acknowledge the small-write bottleneck but
do not address throughput in their evaluation, which is the
purpose of RAID4S and, by extension, RAID4S-modthresh.
RAID4S and RAID4S-modthresh focus on improving small-
write performance without incurring a large cost penalty.

The Hybrid Parity-based Disk Array (HPDA) solution [4]
uses SSDs as the data disks and two hard disks drives for
the parity drive and a RAID1-style write buffer. Half of the
first drive is the traditional parity drive while the remaining
half of the first HDD drive and the whole of the second
HDD drive is used to log small-write buffers and as a RAID1
backup drive. This solution facilitates high performance for
small-writes and avoids the flash wear-out and erase-before-
write SSD problems. RAID4S experiences more wear then
HPDA, but costs less and requires less storage space because
it does not require n− 1 SSD drives. RAID4S-modthresh is
also simpler, cheaper, and provides similar speedups.

Delayed parity techniques [3] log the parity updates, instead
of the small-writes, on a partial parity cache. Partial parity
takes advantage of the flash properties to read only when
necessary. The process has two states, partial parity cre-
ation / updating and partial parity commit. The delayed
parity reduces the amount of small-writes. The create/up-
date alters the state of the partial parity cache by inserting
the parity if it absent and determining if an existing par-
ity is redundant, i.e. whether it needs to XORed with the
old data. This reduces the number of reads, since the full
parity is not stored and reduces the resulting parity gener-
ation overhead. The problem with this is that it increases
the commit speed overhead, introduces an extra calculation
overhead (what needs to be read), and costs more because
it is a RAID5S system. RAID4S and RAID4S-modthresh
introduce a solution to the small-write problem to increase
performance without the same storage and complexity over-
head.

6. CONCLUSION
RAID4S provided a significant throughput speedup for small-
writes while striving to maintain a low-cost and reliable
configuration. RAID4S-modthresh is a modification to the
software RAID controller (raid5.c) for a RAID4S system
that modifies the write selection algorithm to use the small-
write parity computation for medium sized writes. Speedups
of 2MB/s, which has a maximum speedup factor of 1.42
MB/S, are observed when comparing RAID4S-modthresh
to RAID4S. With minimal changes to the software RAID
controller and the RAID setup, RAID4S-modthresh takes
advantage of the small-write speedup of RAID4S to provide
moderate throughput improvements, which are most notice-
able in block unaligned writes.

Future work includes further comparisons between RAID4S-
modthresh and RAID4S-modified (selecting all small-writes)
to determine where to set the most optimal small/large-write
threshold and how to utilize drive workloads and the exact
write size request to construct a more accurate write selec-
tion algorithm.
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