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Abstract

The process convolution approach for constructing a Gaussian Process (GP) model is a com-

putationally efficient approach for larger datasets in lower dimensions. Bayesian inference or

specifically, Markov chain Monte Carlo, is commonly used for estimating the parameters of this

model. Applying this model to sequential applications where data arrives on-line requires re-

running the Markov chain for each new data arrival, which can be time consuming. This paper

presents an on-line inference method for the process convolution GP model based on a Sequential

Monte Carlo method called Particle Learning. This model is illustrated on a synthetic example

and an optimization problem in hydrology.
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1 Introduction

Gaussian processes (GP) have been widely used to model the underlying process of interest in

regression and classification models (Neal, 1997, 1998; Rasmussen and Williams, 2006). Some of

the major applications include computer experiments (Sacks et al., 1989), and models of spatial

and spatio-temporal data (Cressie, 1991; Banerjee et al., 2003). Recent developments in GP mod-

els focus on using the Bayesian approach for inference because it provides for full accounting of

uncertainty. In this approach, a Gaussian process with a chosen correlation function is specified as

the prior for the underlying process of interest. Combining the prior distribution with the likeli-

hood using Bayes’ rule forms the posterior distribution which can be sampled using Markov Chain

Monte Carlo (MCMC). One drawback of these standard GP models is that they require a matrix
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decomposition whose complexity increases at a rate of the cube of the sample size, which makes

them impractical for applications with moderately large datasets.

An alternative approach which can help alleviate the problem of large sample size is the process

convolution approach to constructing a GP (Higdon, 1998, 2002; Calder et al., 2002; Paciorek

and Schervish, 2006). This approach generates a GP by convolving a white noise process with

a smoothing kernel. Bayesian inference of the model parameters again proceeds using MCMC.

Although this approach is computationally efficient for applications with a large sample size, the

batch nature of MCMC makes it unsuitable for sequential problems. For example, design points

in computer simulation experiments are naturally generated sequentially so that MCMC has to

be repeated for each new data arrival, which renders the whole inference process computationally

demanding. In this paper, sequential inference for the process convolution GP model is introduced

based on a Sequential Monte Carlo (SMC) method called Particle Learning (Carvalho et al., 2010).

A similar approach has been developed by Gramacy and Polson (2009) where a standard GP is

considered. The updating time of their model is on the order of Q(t2), where t denotes the time

index (or the sample size at time t assuming that one data point arrives at a time). Although

the computing time is a significant improvement from Q(t3) in the setting of MCMC inference,

t is not a fixed constant and still has the potential problem of being too large for the model to

be computationally efficient. In contrast, the process convolution approach has running time on

the order of Q(m3) for each t, where m denotes the number of basis points that is always fixed

and usually on the order of hundreds so that the model remains computationally efficient. This

advantage would be more obvious as the sample size becomes even moderately large, and this may

occur when a batch of data points is considered at each time step. Model results show that the

sequential process convolution GP provides comparable model fitting to the standard GP approach

at a faster speed.

This paper is organized as follows. Section 2 gives an overview of process convolution GP model

(PCGP). Section 3 introduces Sequential Monte Carlo and Particle Learning (SPCGP). Section 4

provides details of forming on-line inference for process convolution GPs. Section 5 illustrates the

model on a set of 1-d synthetic sinusoidal data and a 2-d optimization problem based on expected

improvement. Discussion and conclusion is given in Section 6.
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2 Process Convolution GP model

A Gaussian process can be specified via discrete process convolutions (DPC) (Higdon, 1998, 2002)

as follows:

z(s) ≈
m∑
j=1

k(uj − s)x(uj), s,uj ∈ S ⊆ Rd,

where {u1, · · · ,um} is a set of basis points in S with even spacing, x(·) is a White noise process

with mean zero and precision λ, and k(·) is a symmetric kernel (e.g, Gaussian) defined over S. In

most applications, only a finite set of spatial sites {s1, · · · , sn} ∈ S are of interest. In such cases,

the above representation can be written in matrix form, z = Kx, where z = (z(s1), · · · , z(sn))>,

x = (x(u1), · · · , x(um))>, and K is a (n×m) matrix with elements Kij = k(uj − si).

In practice, the observation y(s) recorded at location s is often decomposed in the following

form,

y(s) = µ(s) + z(s) + ε(s), (1)

where the mean function µ(s) is usually taken as a constant or linear, and is represented by Fβ,

where F denotes the design matrix and β denotes the linear coefficient vector; z(s) denotes the value

of the underlying zero-mean stochastic process at location s; ε(s) ∼ N(0, φ−1) denotes Gaussian

measurement error with φ being the precision. In the Bayesian GP model setting, the stochastic

component z is usually given a zero-mean GP prior. In the process convolution approach, this

is equivalent to imposing a White noise process prior on x. Bayesian inference about the model

parameters can be performed by specifying conditionally conjugate priors for the parameters,

β ∼ Np+1(β0 , (φC)−1), φν ∼ G(ay , by),

x ∼ Nm(0 , (λIm)−1), λ ∼ G(ax , bx),

where β0, C, ax, ay, bx, by are constants. Combining with the likelihood, the conditional posterior

distributions are given by:

x| · · · ∼ Nm((φK>K + λIm)−1φK>w , (φK>K + λIm)−1),

λ| · · · ∼ G(m/2 + ax , 0.5x>x + bx),

β| · · · ∼ Np+1(((F>F + C)−1(F>v + Cβ0)) , (φ(F>F + C))−1),

φ| · · · ∼ G(n/2 + ay , by + 0.5(s2 + (β0 − β̂)>(C−1 + (F>F)−1)−1(β0 − β̂))),
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where

v = y −Kx, w = y − Fβ, s2 = (v − Fβ̂)>(v − Fβ̂), β̂ = (F>F)−1F>v.

Sampling from the posteriors distributions can be done using Gibbs sampling since all posterior

distributions are in closed-form.

3 Sequential Monte Carlo and Particle Learning

In the state space models literature, there are two main statistical inference problems: 1) sequential

state filtering and parameter learning which is characterized by the joint posterior distribution of

states and parameters at each point in time, and 2) state smoothing which is characterized by the

distribution of the states conditional on all data and marginalizing out all unknown parameters.

That is, filtering and learning is about inferring the hidden states and parameters given only the

currently available data at each time point, and smoothing is about inferring the states based

on the full dataset. In the setting of linear Gaussian models, the Kalman filter (Kalman, 1960)

provides analytical recursion equations for both filtering and smoothing assuming knowledge of

parameters. For example, in the case of filtering, updating of the model at time t + 1 is done by

treating the model fitting at time t as a prior, which is then combined (using Bayes’ rule) with

the likelihood of new data arriving at time t + 1. If the model has unknown static (independent

of t) parameters, the full sequence of updating equations with all data up to the current time

defines a likelihood which can be combined with a prior for Bayesian inference (West and Harrison,

1997). Depending on the prior, the resulting inferential complexity can go from being analytically

tractable to intractable. For more general model specifications, it is common to apply Sequential

Monte Carlo (SMC) methods which are also known as particle filters. SMC provides a numerical

alternative to the inference problem of non-linear and/or non-Gaussian dynamical process, or when

the parameters and their priors do not lead to tractable posteriors. In this paper, the emphasis is

on the filtering/parameter learning problem. SMC uses a set of particles {Z(i)
t }Ni=1 to approximate

the posterior distribution of the state information Zt about the dynamic process, conditional on

the data up to time t. The main task is to update the particle approximation from time t to

t + 1. Pure filtering of the state information (assuming knowledge of parameters) can be done

using the bootstrap filter of Gordon et al. (1993) which upon arrival of new data yt+1 propagates
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the particles via the state evolution equation P (Zt+1|Zt), then resamples the propagated particles

with weights proportional to the likelihood P (yt+1|Zt+1). Another method for the same problem

would be the Auxiliary Particle Filter (APF) of Pitt and Shephard (1999) which is based on a

resample-propagate approach. Filtering with learning of unknown static parameters can be done

using the filter of Liu and West (2001) which extends the APF by using a kernel approximation

to the posterior of the parameters, or the filter of Storvik (2002) which assumes that the posterior

of the parameters depends on a low-dimensional set of sufficient statistics that can be recursively

updated. Although filtering algorithms can be used for learning of parameters, they are not efficient

without modifications. A new class of SMC algorithms called particle learning (PL) (Carvalho et al.,

2010) focuses on the parameter learning part and hence is more suitable for the sequential learning

of static models (as opposed to dynamic models). PL is based on a resample-propagate approach

as follows

Resampling: P (Zt|yt+1) ∝ P (yt+1|Zt)P (Zt|yt),

Propogation: P (Zt+1|yt+1) =
∫
P (Zt+1|Zt,yt+1)dP (Zt|yt+1),

where Zt denotes a particle that contains the sufficient information and yt denotes the observation

vector at time t. Sufficient information at time t may include the hidden states, sufficient statistics

of the parameters, or even the parameters themselves. The above algorithm starts by resampling

the sufficient information Zt with probability weights proportional to the predictive distribution of

the new data P (yt+1|Zt). Then, the new set of sufficient information is propagated based on a state

transition distribution P (Zt+1|Zt,yt+1). Let {Z(i)
t }Ni=1 denote the set of particles that approximates

P (Zt|yt), the actual implementation procedure of particle learning can be summarized as follows:

1. Sample indices {ζ(j) : j = 1, · · · , N} with replacement from a Multinomial distribution

with weights proportional to the predictive distribution, i.e., P (ζ(j) = i) ∝ P (yt+1 |Z(i)
t ) for

i = 1, · · · , N . Set {Z(j)
t }Nj=1 = {Zζ(j)t }Nj=1.

2. Draw Z
(j)
t+1 from P (Zt+1|Z(j)

t ,yt+1) to obtain a new particle set {Z(j)
t+1}Nj=1 which approximates

P (Zt+1|yt+1).

The following section shows how to perform on-line inference for a process convolution GP model

based on the particle learning procedure.
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4 Particle learning for process convolution GPs

The default construction of the process convolution GP model is static in the sense that there is

no time component involved. To allow sequential inference, the variable t is used to denote the

sequential ordering of the data and sufficient information. The data are assumed to be sequen-

tially independent. As shown in the previous sections, definitions of the sufficient information Zt

and predictive distribution P (yt+1|Zt) are required for the application of particle learning. The

predictive distribution of model (1) can be obtained in closed form:

P (yt+1|ay,t, by,t,βt,Ct,x)

≡ Tnt+1

(
2ay,t , Ft+1βt + Kt+1x ,

by,t
ay,t

(
Int + Ft+1Ct

−1F>t+1

))
, (2)

where T denotes the Multivariate Student’s t distribution, and yt+1 denotes the (nt+1 × 1) data

vector at time t + 1. Note that all parameters except x have been integrated out and only the

sufficient statistics {ay,t, by,t,βt,Ct} are needed to compute the predictive probability given a new

data point/set {yt+1,Ft+1,Kt+1}. These sufficient statistics are based on the complete conditional

distributions. Therefore, the sufficient information Zt would contain {ay,t, by,t,βt,Ct}. Moreover,

x is needed to evaluate the predictive density, thus it is also stored into the sufficient information

Zt. If one is interested in {λ, φ, β}, they can also be kept, namely, Zt = {ay,t, by,t,βt,Ct,x, λ, φ,β}.

Assuming that the initial priors are given by

β|φ ∼ Np+1(β0, (φC0)−1),

φ ∼ G(ay,0, by,0),

x|λ ∼ Nm(0, λ−1Im),

λ ∼ G(ax,0, bx,0),

the complete conditionals at time t can be found as

β|φ ∼ Np+1(βt , (φCt)−1),

φ ∼ G(ay,t, by,t),

x|λ ∼ Nm(µt,Σt),

λ ∼ G(ax,t, bx,t),
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where

βt = C−1
t (Ft

>vt + Ct−1βt−1), Ct = Ft
>Ft + Ct−1,

ax,t = m/2 + ax,0, bx,t = 0.5x>x + bx,0, ay,t = nt/2 + ay,t−1,

by,t = by,t−1 +
1
2

(s2t + (βt−1 − β̂t)
>(C−1

t−1 + (Ft
>Ft)−1)−1(βt−1 − β̂t)),

µt = (φKt>Kt + λIm)−1φKt>(yt − Ftβ), Σt = (φKt>Kt + λIm)−1,

β̂t = (Ft
>Ft)−1Ft

>vt, vt = yt −Ktx, s2t = (vt − Ftβ̂t)
>(vt − Ftβ̂t).

Here, nt denotes the total number of observations up to time t, yt = (yt−1>,y>t )>, Ft = (Ft−1>,F>t )>,

and Kt = (Kt−1>,K>t )> denote the (nt×1) data vector, (nt× (p+ 1)) design matrix, and (nt×m)

kernel matrix, respectively. In the propagate step, the resampled sufficient information Zt is up-

dated to account for the new data {yt+1,Ft+1}. Specifically, the sufficient statistics are updated

deterministically based on the above equations, but for time t+ 1. Once the sufficient statistics are

updated, then the parameters are sampled from their conditionals since they are needed to compute

the predictive density for the next data arrival. Following is a rough sketch of the resampling and

propagation procedures:

1. Upon arrival of yt+1, sample indices {ζ(j) : j = 1, · · · , N} with replacement from a Multino-

mial distribution with weights proportional to the predictive distribution (2), i.e., P (ζ(j) =

i) ∝ P (yt+1 |Z(i)
t ) for i = 1, · · · , N . Set {Z(j)

t }Nj=1 = {Zζ(j)t }Nj=1.

2. For j = 1, · · · , N , update the sufficient statistics to obtain a
(j)
x,t+1, b

(j)
x,t+1, a(j)

y,t+1, b
(j)
y,t+1, β

(j)
t+1,

C(j)
t+1,µ

(j)
t+1, and Σ(j)

t+1, then sample

λ(j) ∼ G(a(j)
x,t+1, b

(j)
x,t+1),

φ(j) ∼ G(a(j)
y,t+1, b

(j)
y,t+1),

β(j) ∼ Np+1(β(j)
t+1, (φC(j)

t+1)−1),

x(j) ∼ Nm(µ(j)
t+1,Σ

(j)
t+1).

The following section applies our methodology to two illustrative examples. For convenience, the

sequential process convolution GP model will be abbreviated by SPCGP. Comparisons with the

standard process convolution GP model (PCGP), the sequential GP with standard specification

(PLGP) by Gramacy and Polson (2009), and the standard GP with MCMC, are also given. PLGP
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is provided by the plgp R package (Gramacy, 2010), and the standard GP with MCMC is provided

by the tgp R package (Gramacy, 2007).

5 Examples

5.1 1-d Synthetic Sinusoidal Data

One hundred data points are generated by sampling from the 1-d response below,

z(s) = sin
(πs

5

)
+ 0.2 cos

(4πs
5

)
, 0 ≤ s ≤ 9.6,

and adding N(0, sd = 0.12) noise to the sampled points (shown in Figure 1). One data point is
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Figure 1: 1-d synthetic sinusoidal response (left) and data (right)

randomly selected without replacement at each time step as an input to the model. The initial

priors are given by

β ∼ N(0, (10φ)−1), φ ∼ G(ay = 1, 0.001),

x|λ ∼ Nm(0, (λIm)−1), λ ∼ G(ax = 1, 0.001).

Note that β is a scalar which corresponds to the intercept, and the linear component is not included.

The initial priors for β, φ and λ are fairly non-informative so that the modeling results would depend

largely on the data. A Gaussian kernel with 30 bases is applied and the standard deviation of the

kernel is set equal to the spacing between adjacent basis points. A total of 500 particles are used
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in the simulation. The posterior predictive mean surfaces with the corresponding 90% interval are

shown in Figure 2 for t = {5, 10, 20, 30, 40, 50}.

When only a few data points are available, uncertainty at unobserved locations is reflected

through having a larger 90% posterior predictive interval, as opposed to a relatively smaller interval

at the observed locations. As more data points arrive and spread over the entire domain, the model

quickly improves and is able to obtain a mean surface at t = 50 that has most of the features of

the true response. The posterior predictive summary for t = 100 is shown in the top left panel

of Figure 3, along with the corresponding 500 particles on the right. The mean surface resembles

the true response, and the 90% interval well captures the data variability. Sensitivity of the model

against the number of particles is illustrated in the middle and bottom panels, which are based on

100 and 20 particles, respectively. Note that SPCGP is fairly robust in the sense that even with

very few particles such as 20, the result is comparable to that of using 500 particles. Figure 4

displays results from a SPCGP (top left), PLGP (bottom left), PCGP (top right), and a standard

GP with MCMC (bottom right). Results from both sequential approaches are displayed for t = 100

with 500 particles. The MCMC approaches are based on a total of 600 iterations with a burn-in of

100 so that the number of samples is 500. Note that the posterior predictive summaries from all

models are quite similar except for PLGP. It produces a mean surface that over smoothes the data

and fails to capture the local features in the true response. The resulting 90% posterior predictive

interval is an over estimate of the true data variability. The misfitting might be due to the default

prior parameters in the plgp R package. In contrast, SPCGP is able to capture the true response,

both globally and locally, and also has a more reasonable prediction for the data variability.

5.2 The Pump-and-Treat problem

The Pump-and-Treat problem (Matott et al., 2011) involves a groundwater contamination scenario

based on the Lockwood Solvent Groundwater Plume Site located near Billings, Montana. Two

plumes (A and B) containing chlorinated solvents were developed due to industrial practices near

the Yellowstone river as shown in Figure 5. Of interest is plume A located in the southern section

of the site. The primary concern is to prevent the plume from migrating to and contaminating

the Yellowstone river. The proposed remediation involves drilling two pump-and-treat wells. This

problem has been modeled using a computer simulator where the inputs are pumping rates for the
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Figure 2: Posterior predictive summary from SPCGP for t = {5, 10, 20, 30, 40, 50}
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Figure 3: Posterior predictive summary from SPCGP for t = 100 with 500, 100, and 20 particles
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Figure 4: Posterior predictive summary based on SPCGP (top left), PCGP (top right), PLGP

(bottom left), and standard GP (bottom right)

12



Figures (continued) 
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Figure 2: Pump-and-Treat Problem Setup 
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Figure 5: Lockwood Solvent Groundwater Plume Site located near Billings, Montana

two pump-and-treat wells, and the output is a cost function which combines the financial cost of

running the wells with a large penalty for any contamination of the river (the penalty ensures that

any optimal solution will not allow any contamination of the river). The two pumping rates can

be set between 0 and 20,000. The objective is to minimize the cost function, i.e., the expense of

running the wells. Because of the non-trivial time for each simulator run, it is not possible to run

the simulator at every possible combination of inputs and find the one that has the minimum cost.

Instead, a computer simulation experiment approach (Sacks et al., 1989) is taken to sequentially

build a surrogate model while searching for the minimum of the surface (Jones et al., 1998; Taddy

et al., 2009; Gramacy and Lee, 2011). This method proceeds sequentially by adding new design

points (a pair of pump rates and the associated cost) one-by-one based on some criterion and

update the model fit conditional on the new design point. Updating of the model fit could be

done with MCMC, however, it could be computationally demanding since the MCMC has to be

repeated for every new design point. Instead, SPCGP is applied to this problem. The model is

setup by specifying a (25 × 25) basis grid, and a Bézier kernel (Lemos and Sansó, 2009) whose

circular support has a radius of three times the spacing of any two adjacent bases. A Bézier kernel

has a compact support such that it makes the kernel matrix K sparse by assuming that spatial
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points far apart have negligible correlation. This allows dedicated matrix decomposition routines

to speed up the computation. Setting the kernel radius to be three times the spacing of adjacent

bases aligns with the rule of thumb given by Higdon (2005) for Gaussian kernels since the shape of

the employed Bézier kernel resembles a Gaussian. To choose the new data point (simulator run),

the expected improvement (EI) approach (Jones et al., 1998) is employed by choosing the point s

that maximizes

E[Ig(s)] = E[max(fbest − f(s))g, 0],

where fbest denotes the current best point (inputs with minimum response) and f(s) denotes the

predicted output response (from the current state of SPCGP) at input s. The power g can be

specified to tune the local versus global character of the optimization. For example, g = 1 yields

the standard expected improvement statistic, while for g = 2, E[I2(s)] = var[I(s)] + E[I(s)]2 ex-

plicitly rewards the improvement in variance and thus gives relatively more weight toward global

exploration of the response surface. Since finding the maximizing s exactly would be another diffi-

cult problem, optimization is approximated by considering 200 candidate points in the input space

generated using Latin hypercube sampling (McKay et al., 1979) and then choosing the candidate

point with largest expected improvement (Gramacy and Lee, 2009). The initial priors are specified

as

β ∼ N(0, φ−1), φ ∼ G(1, 0.0001),

x|λ ∼ Nm(0, (λIm)−1), λ ∼ G(1, 0.001),

where β denotes the mean level (intercept). A narrow G(1, 0.0001) prior is imposed on φ because

the simulator is approximating a deterministic process, however, it makes sense to leave some room

for any error that might result, and this error is expected to be relatively small. A total of 60 input

points are considered, where the first 30 are generated from a Latin hypercube to build an initial

model surface, and the remaining 30 are chosen sequentially one-by-one using the EI approach

described above. A total of 500 particles are used for the simulation.

Fixing g = 1, the posterior predictive mean surfaces from SPCGP are shown in Figure 6. For

t = {6, 9, 15}, the mean surfaces illustrate the intermediate results during the process of generating

the initial model surface for t = 30. Starting from t = 30, the EI algorithm is deployed and it

is apparent that most of the design points considered are near the minimum of the mean surface.
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This is expected because the goal of this approach is to explore the input space in areas that

are likely to provide the minimum response. The posterior predictive summary from SPCGP and

PLGP at t = 60 are shown in the top and bottom panels of Figure 7, respectively. The middle

panel displays results from repeatedly applying PCGP with 600 MCMC iterations (100 burn-in

and 500 samples) to each newly generated design point. The mean surface from these models are

resembling in general, with SPCGP and PCGP predicting more local features than PLGP. The

90% interval width of both SPCGP and PCGP have low uncertainty at the data locations and high

uncertainty at the unobserved locations, whereas that of PLGP seem to overestimate/underestimate

the uncertainty at the observed/unobserved locations. Nonetheless, the locations of the predicted

minimums found by these models are comparable to one another. Figure 8 displays the posterior

predictive mean surfaces under 500 (top), 100 (middle), and 20 (bottom) particles with g = 1 (left)

and g = 2 (right). Results that have the same g value are closely resembling. For different g values,

the difference comes from the fact that the g = 2 case tends to fit a better overall surface than

the g = 1 case by exploring places with high uncertainty. Nonetheless, the locations of minimums

are similar for all, even with very few particles such as 20. Since finding the minimum location

is the main purpose of this problem, all models and settings considered here have comparable

performance in this regard. All simulations are run on an Intel Core 2 duo CPU at 2.4 Ghz with 4

Gb of RAM. Table 1 and 2 display the running times of SPCGP, PCGP, and PLGP v.s. the number

of LHS candidates (200, 500, and 1000) with 500 particles (or MCMC samples) at g = 1. The left

panel displays the average updating time (model update and prediction on LHS candidates, but not

including simulator time) for each design point, and the right panel shows the total running time for

the whole process. For 200 LHS candidates, the average updating time for SPCGP is 15.78 seconds,

and that of PCGP is 21.09 seconds. The difference is not too big and mostly due to the extra 100

burn-in iterations in PCGP. However, this difference could be exacerbated in more complicated

datasets, where MCMC might need a larger number of burn-in steps to reach equilibrium, and

also require thinning in order to obtain less correlated samples. These mechanisms can greatly

increase the computational time of MCMC. In contrast, such difficulties generally do not exist in

PL. In addition, PL (or generally, SMC) is completely parallelizable in the propagation step since

the particles can be updated independently of one another up to having a unique computing node

for each particle. In the case of PLGP, the average updating time and total running time are not
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too much larger than those of SPCGP for 200 LHS candidates. However, as the number of LHS

candidates increases, PLGP significantly slows down, while SPCGP maintains roughly the same

speed. This suggests that for more complicated problems where a higher number of LHS candidates

are needed, SPCGP is computationally more efficient than PLGP (for low dimensional problems)

in its current implementation.

Table 1: Average updating time (seconds)

Number of LHS candidates

Model 200 500 1000

SPCGP 15.78 16.09 16.10

PCGP 21.16 22.15 21.72

PLGP 19.28 96.96 263.02

Table 2: Total running time (seconds)

Number of LHS candidates

Model 200 500 1000

SPCGP 595.73 610.96 618.69

PCGP 759.27 792.964 789.89

PLGP 700.90 3030.97 8012.80

6 Discussion and Conclusion

On-line inference for a GP model based on MCMC is inefficient because it requires re-running the

MCMC for every new data arrival, which can be computationally demanding due to slow con-

vergence. In this paper, a sequential inference approach for the process convolution GP model is

developed, which is based on a method called Particle Learning. It allows parameter inference to

be performed on-line for each new batch of data without having to use MCMC. This convolution

approach allows for the handling of much larger datasets than would not be computationally fea-

sible under the standard GP approach. This is because the computational expense is tied to the

number of basis points instead of the number of datapoints, although the convolution approach is

only practical for lower-dimensional problems because of the need to create a grid of basis points.

Another advantage of SMC methods is that they are completely parallelizable in the propagation

step - the particles can be updated independently of one another. In contrast, MCMC has to be

done, to a large extent, in serial. Illustrations of SPCGP on a 1-d synthetic dataset and a 2-d

optimization problem show promising results in terms of model fitting and computational speed,

robustness in optimization, as well as robustness with respect to the number of particles required.
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Figure 6: Posterior predictive mean from SPCGP with g = 1 for t = {6, 9, 15, 30, 40, 50} for the

Pump-and-Treat problem
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Figure 7: Posterior predictive summary from SPCGP (top), PCGP (middle), and PLGP (bottom)

with g = 1 at t = 60 for the Pump-and-Treat problem
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Figure 8: Posterior predictive mean from SPCGP based on 500 (top), 100 (middle), and 20 (bottom)

particles for g = 1 (left) and g = 2 (right) at t = 60 for the Pump-and-Treat problem
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