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Abstract

We use Bayesian methods to infer an unobserved function that is convolved

with a known kernel, using noisy realizations of an observable process. Our

method is based on the assumption that the function of interest is a Gaussian

process. Thus, the resulting convolution is also a Gaussian process. This

fact is used to obtain inferences about the unobserved process, effectively

providing a deconvolution method. We apply the methodology to the problem

of estimating the parameters of an oil reservoir from well-test pressure data.

From a system of linear ordinary differential equations, we write the equation

that governs the dynamics of pressure in the well as the convolution of an

unknown process with a known kernel. The unknown process describes the

structure of the well. This is modeled with a Gaussian process whose mean

function is obtained as a linear combination of specific bases. A purposedly

designed directional Monte carlo method is used to sample from the posterior

distribution of the parameters. Applications to data from Mexican oil wells

show very accurate results.

KEYWORDS: Oil well test data; Deconvolution; Bayesian Inference; Inverse Prob-

lems; Gaussian Processes; Simulation.

1 Introduction

Pressure and flow rate measurements from oil well testing experiments are used to

evaluate the productivity of the well and estimate the properties of the reservoir for-

mation. As described in Kuchuk et al. (2010) when a well is subject to a change in
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production rate, it creates pressure diffusion in permeable formations. This pressure

diffuses from the wellbore into the formation and, by monitoring the transient pres-

sure changes, one can obtain valuable information on properties and characteristics

of the reservoir. The resulting data consist of time series of noisy observations. As

in many geophysical and petroleum engineering problems, we are in the presence of

a problem where direct measurement of the quantities of interest is either impossible

or too costly. Thus we resort to a mathematical model that provides pressure as a

function of the geological characteristics of the well. We refer to this model as the

“forward” model. The problem of interest in this paper is to infer the geological

structure using measurements of pressure. Thus we are interested in the “inverse”

problem. As seen, for example, in Andrecut (2009); Duru and Horne (2011), the

forward model can be stated as the convolution of an unobserved field, say V (t),

with a known kernel, say, k(t), where k(t) corresponds to the controlled flow rate of

the well. Thus, the pressure, p(t) can be essentially written as

p(t) =

∫ t

0

k(t− z)V (z)dz (1)

where k is a known control kernel.

Pressure tests commonly use flow rate as pulses. Therefore, if the well is in a

stable state, then, at some time te, the well is shut-in. The resulting pressure build

up is measured as a function of time. The goal is to use such measurements to infer

V (z). This corresponds to important characteristics of the formation that include

average reservoir pressure, formation permeability wellbore damage or stimulation,

skin effects, productivity indexes, drainage areas, among others (Kuchuk et al.,

2010; Gringarten, 2008). More specifically, in this paper we consider the problem

of inferring V (t) using a collection of noisy observations Y (t1), . . . , Y (tn) from p(t).

Here, k is a step function representing the flow, ie. q0 before te and 0 thereafter.
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Deconvolution is a technique for well-test interpretation. It allows the reconstruc-

tion of a constant rate drawdown response for all production and shut-in periods

combined (Gringarten, 2008; Kuchuk et al., 2010). Well-test analysis and interpre-

tation techniques are problematic since there is a variety of alternative methods

and interpretation criteria are heterogeneous, generating concerns about the reli-

ability of the results (Gringarten, 2008). Well-test analysis involves the following

three steps (von Schroeter et al., 2001): i) estimating the reservoir properties from

data; ii) matching the shape of the response function against a library of curve type,

and iii) fitting the parameters of this model to the data. Deconvolution addresses

the first step. In the case of a single flow period with constant production rate

the response function can be obtained as the derivative of the pressure drop with

respect to the logarithm of time. If deconvolution techniques are not applied, the

standard method for obtaining such derivative is by numerically differentiating the

pressure curve. This presents the problem of error amplification, since the signal,

the pressure curve itself, is measured with error (von Schroeter et al., 2001).

Deconvolution is a reliable alternative to numerical differentiation, but it is still

affected by measurement error. A number of approaches have been proposed to

address the ill-posed problem of deconvolving pressure data. In the petroleum en-

gineering literature the methods by von Schroeter et al. (2001); Levitan (2005);

Levitan et al. (2006); Ilk et al. (2007); Onur et al. (2008) have been applied with

varied success. The main concern of all of these methods is the problem of estimation

robustness given the noisy nature of data.

The mathematical model proposed in Equation (1) is valid under the following

hypotheses: i) The wellbore/reservoir system is at equilibrium prior to the test and

pressure is constant and equal to p0 throughout the reservoir; ii) the oil is a single

phase flow and it is slightly compressible; iii) wellbore storage and skin effects are

constant throughout the whole production history (Onur et al., 2008). Under such
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conditions, many researchers have addressed the problem of estimation robustness

of the reservoir properties, or more generally the problem of deconvolving (1) under

noisy measurements (Fasana and Piombo, 1997; Hansen, 2002; Cheng et al., 2005;

Ramm and Smirnova, 2005; Pimonov et al., 2009; Andrecut, 2009; Pimonov et al.,

2010; Kuchuk et al., 2010).

In this paper we take a Bayesian approach to estimating the reservoir properties.

We assume a Gaussian process prior for V (z). The mean of such process is derived

from a system of linear ordinary differential equations that governs the dynamics

of the pressure in the reservoir. This is presented in the next section. In Section

3 we describe in detail our inferential approach, which is based on the properties

of Gaussian processes. In Section 4 we present the results for wells in a Mexican

reservoir. In the final Section we discuss our findings and possible extensions of our

method.

2 The forward model

A clear understanding of the justification for the foward model in equation (1) is

fundamental for effectively inferring V . We start with a system of ordinary differ-

ential equations (ODE) for a set of state variables X. These variables describe the

characteristics of the well. We assume that they are linearly related to pressure.

Thus

dX(t)

dt
= AX(t) + bk(t) and p(t) = c′X(t) + αk(t).

In these equations only the controlled flow k is known. A, b, c and α are unknown. p

is observed, but subject to measurement error. It is well known (Bay, 1999, chapter

6) that the solution to this system of ODE has the form

p(t) = c′eA(t−t0)X(t0) + αk(t)− c′
∫ t−t0

0

eA(z)bk(t− z)dz, (2)
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for t ∈ [t0, T ]. The system is conceived as stable and, accordingly, all the eigenvalues

of A are assumed to have nonpositve real parts (Bay, 1999, p. 278).

For suitably designed well test experiments, we have that p(t) is a stable process

before a given time te. Thus c′eA(t−t0)X(t0) is approximately constant, and equal

to p(te), for t < te. Thus, Equation (2) takes the form

p(t) = p(te) + αk(t)−
∫ t−t0

0

k(t− z)V (z)dz,

where p(te) is the unknown initial pressure and V (t) = c′eAtb. Since V (t) must be

a real number, at most one eigenvalue of A may be zero and the rest should be

negative (Bay, 1999). We can then write

V (t) =

q−1∑
j=1

βj exp(−λjt) (3)

for some constants βj and λj > 0, and q the (unknown) dimension of A. Andrecut

(2009) suggests a form for the (negative) eigenvalues λj = α(j/q)γ where typically

α = 10γT−1, γ = 3 and q = 10 to 20 eigenvalues are considered. We take a similar

approach defining

λj =
jγ

T − t1
.

Avoiding the eigenvalues to depend on the dimension q makes the fitted models

nested, and coeficient estimation remains coherent across various dimensions q.

Keeping α and γ fixed maintains the linear Gaussian estimation problem.

Following the discussion in the introduction, we take k(t) = q01(t < te) , where

q0 is the constant production rate before shut-in. This is an ideal scenario in which

the flow is stopped instantaneously at time te, and k(t) is known without error.
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Under this assumption the forward model is given as

p(t) = p(te) + αk(t)−
∫ t−t0

max(0,t−te)
V (z)dz. (4)

3 Inference

The common approach to analyzing oil well pressure data is to notice that the

derivative of p(t) is

p′(t) =


−q0V (t− t0) for t0 ≤ t ≤ te

−q0(V (t− t0)− V (t− te)) for te ≤ t ≤ T.

(5)

This derivative is numerically calculated from pressure measurements and is then

used to estimate V (t) which in turn is used to plot tV (t) in log-log scale (von

Schroeter et al., 2001; Bourdet, 2002; Schlumberger, 2002). This latter graph is the

basic tool to interpreting the data. Note, however, that for t greater that te, which

is the relevant part of the experiment, V (t) is not precisely p′(t). However, assuming

(as in the previous Section) that before the experiment the process is stable we may

think that V (t− t0) ≈ 0 for te ≤ t ≤ T and therefore

V (z) =
p′(z + te)

q0
for 0 ≤ z ≤ T − te.

zV (z) is plotted in log-log scale and since for t ≥ te the pressure increases, then

zV (z) (and V (z)) should always be positive. Note that the initial time, t0, is assumed

to be distant enough to have a stable process at te, and its actual value is now

unimportant, as far as the inference is concerned.

Numerical derivation of noisy data can be very unstable and necessary involves an

assumption on the level of smoothness of the implicit function been differentiated.
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Here we take a more consistent modeling approach, in which the existence, and

smoothness properties, of the derivative process is guarantee through the use of a

twice differentiable correlation function in a Gaussian Process model for the pressure

data. We explain our approach in the following.

Using the expansion in (3) we can integrate the forward model in (4). For the

j-th term in the expansion we have

−
∫ t−t0

0

k(t− z) exp(−λjz)dz =
q0
λj
{exp(−λj(t− t0))− exp(−λj max(0, t− te))}.

For convenience we normalize the regressors to have fj(te) = 0. Again, the stability

assumptions at te imply that exp(−λj(t− t0)) ≈ 0 for te − ε ≤ t < te. Accordingly

we define the regressors as

fj(t) =
q0
λj

(1− exp(−λj max(0, t− te)),

where j = 1, 2, . . . , q− 1 and t ∈ [t1, T ] (t1 < te) and f0(t) = 1. These bases are not

orthonormal but are clearly linearly independent (
∑q−1

j=0 ajfj(t) = 0 would require∑q−1
j=1 ajλ

n
j = 0 for all n = 0, 1, . . . which is impossible for different λj’s). What

remains to be done is to infer the βj’s from data in (3). This will be done in the

next Sections.

3.1 The Gaussian process approach

Gaussian process regressions are a powerful tool to making inference about functions

and their derivaties, as illustrated in Rasmussen (2003). To estimate V (t), we start

with the observation equation. That is, given p(t)

yi = p(ti) + ei, ei ∼ N(0, σ2
1) and cov(ei, ej) = 0.
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We then use a Gaussian process to describe p(t), that is

p(t) ∼ N(f(t)β, σ2
0) and cov(p(ti), p(tj)) = σ2

0ρ2(ti, tj), (6)

where f(t) = (1, f1(t), f2(t), . . . , fq−1(t)). In other words, pressure time series is a

Gaussian Process with covariance function σ2ρ2(ti, tj) (ρ2 is a correlation function

to be defined below, ρ2 will depend on a small number of parameters). We further

assume that p(t) and ei are independent for all t. That is, yi = p(ti) + ei with

cov(yi, yj) = σ2
0ρ2(ti, tj) for ti 6= tj. We define σ2 = V ar(yi) = σ2

0 + σ2
1 = cov(yi, yi).

Our model can be expressed in a standard form as

Y = Fβ + ε where ε ∼MNn(0, σ2K). (7)

Thus, Y = (yi) is a Gaussian process with mean Fβ and variance-covariance matrix

σ2K; F is the design matrix obtained by stacking the n regressor vectors f(ti). Let

K = (ρ0
2(ti, tj)), i, j = 1, 2, . . . , n be a n× n correlation matrix with

ρ0
2(ti, tj) =


1 for ti = tj

ηρ2(ti, tj) otherwise,

(8)

where η =
σ2
0

σ2
0+σ2

1
=

σ2
0

σ2 . This is a covariance function with a discutinuity arising

from the observational error, where
σ2
1

σ2
0+σ2

1
is the “sill” and η is the limit at zero time

distance. While the correlation for the underlaying pressure Gaussian process ρ2

is conceived continuos at zero, ρ0
2 is not. Equation (7) can be used as a likelihood

to infer the parameters that define the mean and covariance functions of p(t), and,

consequently, the predictive distribution of p(t) and V (t). This is, in esense, the

approach suggested in Rasmussen (2003) for inference on the derivative of a curve.

A known feature of Gaussian processes is that, under enough regularity condi-
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tions, they are mean square differentiable. More precisely, p′(t) would also be a

Gaussian process (and therefore V (t)) if the the covariance function of p(t) is dif-

ferenciable and
∂2cov(ti,tj)

∂ti∂tj

∣∣∣∣
ti=t

∣∣∣∣
tj=t

is finite for all t ∈ [t0, T ]. In which case p′(t) is a

Gaussian process with cov(p′(ti), p
′(tj)) =

∂2cov(ti,tj)

∂ti∂tj
; and cov(p(ti), p

′(tj)) =
∂cov(ti,tj)

∂tj

(see Christakos, 1992, p. 57-75). We notice in passing that, for p(t) to be mean

square differentiable, its covariance function can not have a “nugget”, as this would

introduce a discontinuity.

Holsclaw et al. (2011) argue that a better estimate of the derivative of a function,

and the associate uncertainty bands, is acheived by imposing a Gaussian prior on

the derivative itself, rather than the original function. That is, assume defining V (t)

(ie. p′(t)) as a Gaussian process itself and work upwards in the opposite direction.

Thus, let

V (t) ∼ N(∇f(t)β, σ2/a) and cov(V (ti), V (tj)) =
σ2

a
ρ0(ti, tj),

ρ0 is a correlation function (we require an arbitrary matching constant a, as will

be clear below). Then, as stated in general terms in Gihman and Skorohod (1979)

p. 251, for a suitable kernel qc(t, z), p(t) = p(te)−
∫∞
−∞ qc(t, z)V (z)dz is a Gaussian

process with mean function f(t)′β and covariance function

cov(p(ti), p(tj)) =
σ2

a

∫ ∞
−∞

∫ ∞
−∞

qc(ti, z1)qc(tj, z2)ρ0(z1, z2)dz1dz2,

(ti, tj ∈ [te, T ]) if and only if this last expression is finite for all t ∈ [te, T ]. From (4)

we see that in our case qc(t, z) = q0I(t−te,t−t0)(z); since this creates a bounded sup-

port, the latter requirement is fulfilled. Also, the covariance function of p(t) results

in

cov(p(ti), p(tj)) =
σ2q2

0

a

∫ tj−t0

tj−te

∫ ti−t0

ti−te
ρ0(z1, z2)dz1.dz2,
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This can be used to obtain a likelihood for the mean and covariance parameters

similar the one obtained from Equation (7).

It is interesting to notice that, under the stationarity assumption, the correlation

function for V (t) should have the form ρ0(ti, tj) = γ0(|ti−tj|) (where γ0 is an isotropic

correlation function) and the integrated process will, in general, not be stationary.

Nevertheless, in our case we have that cov(p(ti), p(tj)) =
σ2q20
a
h(|ti − tj|) with

h(d) = −2γ2(d) + γ2(d+ (te − t0)) + γ2(−d+ (te − t0))− 2γ1(0)(−d+ (te − t0)),

where γ1(d) and γ2(d) are first and second antiderivatives of γ0(d) (ie. γ′2(d) = γ1(d)

and γ′1(d) = γ0(d)). Therefore p(t) has an isotropic covariance for t ∈ [te, T ] and it

is also stationary.

To obtain a useful parametrization of h(d) we recall that t0 is a distant time

chosen so that the process is stable at te − ε and therefore we are assuming that

T − te < te − t0 which leads to −d+ (te − t0) > 0. We define (te − t0) = αR where

γ0(R) ≈ 0.05 (the correlation range) and α = T−te
α1R

and α1 ∈ (0, 1]; α1 is a unit less

bounded parameter. Therefore the correlation function is parametrized in terms of R

and α1 and is given by h(d) = −2γ2(d)+γ2(d+αR)+γ2(−d+αR)−2γ1(0)(−d+αR);

0 < d < αR. Finally, from (6) we require σ2
0ρ2(d) =

σ2q20
a
h(d), that is σ2

0 =
σ2q20
a
h(0)

or a =
σ2q20
σ2
0
h(0) ie

ρ2(d) =
h(d)

h(0)
.

This is the resulting correlation function for the pressure process p(t), which is

parametrized in terms of the range for γ0, R, and the α1 parameter above. We also

need to define the limit at zero η = σ0

σ0+σ1
(representing the expected noise-to-signal

ratio) in (8) to complete our definition for the correlation structure for the processes

yi, p(t) and V (t). Assuming that these parameters are fixed, our inference focuses

on τ = σ−2 and β.

10



To make inference about V (z) using only data on p(t), we need the correlation be-

tween p(ti) and V (tj). As mentioned above we have cov(p(ti), p
′(tj)) = −σ2

0
h′(|ti−tj |)

h(0)
.

From (5) we see that cov(p(ti), p
′(tj)) = q0cov(p(ti), V (tj − te))− q0cov(p(ti), V (tj −

t0)), but V (t − t0) ≈ 0, thus the second term will be far less significant than the

first. Therefore we assume

cov(p(zi + te), V (zj)) = σ2
0

−h′(|zi − zj|)
q0h(0)

,

for zi, zj ∈ [0, T − te], and indeed cov(V (zi), V (zj)) = σ2
0
γ0(|zi−zj |)
q20h(0)

.

In our example we use the Matèrn correlation function with smoothness param-

eter equal to 1.5. This function can be expressed as M(d) = (d+ 1)e−d, d ≥ 0. It

is a convenient correlation function, computationally simple to evaluate, that corre-

sponds to a mean square differentiable processes. Following our previous discussion,

we will use the parametrization

γ0(d) = M

(
c
d

R

)
. (9)

where c = 4.75 is such that γ0(R) ≈ 0.05; that is, this is a standardized correlation

with “range” R. From (9), we have γ1(d) = R
c
M1

(
c d
R

)
, γ1(0) = −2R

c
and γ2(d) =

R2

c2
M2

(
c d
R

)
, γ2(0) = 3R

2

c2
. Figure 1 illustrates the shapes of the correlation function

that results from the integrated approach.

3.2 Prior, posterior and predictive distributions

Let µ,A−1, a and b be NormalGamma parameters of the prior for β and τ = σ−2.

Using the Cholesky decomposition one may efficiently calculate β̂ = (F ′K−1F +

A)−1(F ′K−1Y + Aµ), q × 1 which is known as the generalized LE estimator.

The marginal posterior distribution of β|Y is a multivariate non-central student-

t distribution with 2a + n degrees of freedom, mean β̂, and scale matrix B =
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Figure 1: ρ0
2(d) correlation function for the measured pressure process p(t), with

η = 0.95 (sill = 0.05) and range R = (T − te)/16 and α1 = 0.5 (blue); T − te = 100.
Corresponding Matèrn correlation γ0(d) (red), proportional to the correlation of the
impulse response process V (z).

(
F ′K−1F +A

)
(2a+ n) b−1

p , where bp = b + 1
2

[
y′K−1y + µ′Aµ− β̂

′
Bβ̂
]

. If we

wish to calculate the predictive distribution of the random variable Z, that is, the

conditional distribution Z|Y , assuming jointly Y , Z|β, σ2 is also a multivariate

normal, let κ(ti) = σ−2cov(yi, Z|β, σ2), v2 = σ−2var(Z|β, σ2) and let m be a q × 1

vector such that E(Z|β, σ2) = m′β. Then the predictive distribution of Z is a

noncentral student-t distribution with 2a+ n degrees of freedom, mean

E(Z|Y ) = mz = κ′K−1Y + ut−1
z β̂

′
T−1
z c,

and variance

var(Z|Y ) = ((2a+ n− 2)tz)
−1 c0,

where c = m − F ′K−1κ, κ = (κ(ti)), i = 1, 2, . . . , n, u =
(
v2 − κ′K−1κ

)−1
,

T z = ucc′ + B, tz = u
(
1− uc′T−1

z c
)
, and c0 = 2bp +

[(
κ′K−1Y

)2 −m2
z

]
tz +

β̂
′ (
B −BT−1

z B
)
β̂ + 2uκ′K−1Y c′T−1

z Bβ̂.

12



For the predictive distribution of p(t) we have κ(ti) = σ−2ρ2(|t− ti|), v2 = η and

m = f(t)′. For the predictive distribution of V (t − te) we have κ(ti) = −h′(|t−ti|)
q0h(0)

η,

v2 = η
q20h(0)

and m = ∇f(t)′, for t ∈ [t1, T ].

3.3 Model Selection

Selecting among the possible number of bases q may be easily tackled using the

Bayesian Model Selection ideas (Hoeting et al., 1999) that basically include in the

parameter space the now unknown parameter q, ie. the number of bases in our

model. These in fact represent an increasing number of eigenvalues for the matrix

A and therefore it is pointless to experiment with other but the full sequence of bases

up to bases q − 1 (as opposed to usual variable selection in linear models, Hoeting

et al., 1999). We also would like to include in the model selection the correlation

parameters R and α1. Given a discrete grid of the total number of base functions

q, R and α1 the marginal likelihood of each model configuration is

l(Y |q = h,R = r, α1 = a) =

∫ ∫
f(Y |F h,Kr,a,β, τ)f(β, τ)dβdτ

where f(y|F h,Kr,a,β, τ) is our Multivarite Normal model with h bases and corre-

lation parameters r, a, that is Y ∼MNh(F hβ, τ
−1Kr,a) and f(β, τ) is the Normal-

Gamma prior for β, τ . The former expression is proportional to

(2π)h/2

|F ′hK−1
r,aF h +A|1/2

(b+ 0.5S2
h,r,a)

−(a+n/2).

We calculate l(Y |q = h,R = r, α1 = a) for a series of examples and for q =

4, 5, . . . , 25, R = (T − te)2
−k and α1 = 2−k for k = 1, 2, 3, 4; see Figure 2. We

plot log l(Y |q = h,R = r, α1 = a) + C for an arbitray constant C (we choose C to

make the minimum log likelihood at −600). After less than 23 bases F ′hK
−1
r,aF h+A

becomes singular, meaning that the bases become numerically linearly dependent
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Figure 2: logP (q = h,R = r, α1 = a|Y ) = C + log l(Y |q = h,R = r, α1 = a) (all
shifted to a minimum of -600) for q = 4, 5, . . . , 25, R = (T − te)2−k and α1 = 2−k for
k = 1, 2, 3, 4 and a constant prior for q. The maximum posterior probabilities for
all R and α1 combinations are depicted at each q and for each data set from wells
(1) to (6) (owned by Pemex, in Tabasco, Mexico, see Section 4.1 for more details on
these data sets).

(since the λj’s become similar). In all cases there is a sharp increase in log likelihood

until about q = 10 where they level out. We see that in most cases q = 10−12 should

be enough (this has been also noticed by more heuristic means in Andrecut, 2009).

With respect to the correlation parameters we see that in all cases R = (T − te)/16

and α1 = 2 have the highest likelihood. We use this guidelines for the examples

presented in Sections 4.1 and 4.2.

3.4 Positivity Constraint of V (z): MCMC

As discussed in Section 3, V (z) must be positive for every z > 0 and strictly speaking

we have to consider only the values of β that satisfy the constraint V (z) > 0. In

many real pressure test data examples, the error is sufficiently low, resulting in a

posterior distribution that is basically fully supported where V (z) > 0. That is,

without explicitly restricting the support of β, V (z) > 0 and we may proceed as
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in Section 3.2 with a fully analytic method. In examples where such unconstrained

analytic calculation results in a posterior predictive distribution of V (z) with a

noticeable portion below zero, we need to explicitly restrict V (z) > 0, which results

in a Truncated Multivariate Normal distribution for β|τ , with a complex support,

and we to resort to a MCMC method for its analysis.

The support of this distribution is difficult to establish analytically. Thus, we

resort to numerically checking if V (zi) > 0, for a preset number of times zi’s, for any

β being considered within our sampling scheme. In Section 4.2 we will illustrate

the need to impose the constraints on β in order to capture the complexities of

various systems and avoid inferences that lead to negative V (z). We use a novel

Optimal Direction Gibbs (ODG)sampler to simulate from the truncated Normal

distribution. This algorithm is a generalized Gibbs sampler that simulates from the

full conditional distribution of a set of directions to minimize the mutual information

(correlation) between steps of the MCMC (Christen et al., 2012).

To simulate from the predictive distribtion of V (z), defined by

f(V (z)|Y ) =

∫ ∫
f(V |z,Y ,β, τ)f(β, τ |Y )dβdτ,

we simulate (β(i), τ (i)) from the (truncated) posterior distribution of f(β, τ |Y ) us-

ing the ODG, and in turn, for every zi, we simulate V (zi) from f(V |zi,Y ,β(i), τ (i)),

which is an univariate truncated normal distribution. Note that simulating from

an univariate truncated normal is straightforward using an efficient Φ(x) inversion

method (Wichura, 1988) which rivals other ad hoc methods in terms of computa-

tional efficiency (the former is in fact the current default in R for simulating from

the standard normal).
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4 Results

In this section we present our results using pressure data from wells in a naturally

fractured reservoir of Mexico. As mentioned in Section 1, after estimation of the

logarithmic derivative curve from data, one has to match the shape of this response

function to a type curve. These curve types characterize different flow regimes

that can be roughly classified as “onset”, “intermidiate phase” and “late” periods.

Kuchuk et al. (2010) list several flow regimes for the different time periods. For

example, at the pressure experiment onset the flow regime may be radial, linear,

spherical, elliptical; at a more intermidiate phase it can be channel linear, radial

composite, dual porosity, and later they may become steady-state, pseudo-steady

state, among others. We refer the reader to Kuchuk et al. (2010, p. 48) for an ample

discussion and more details on the characteristics of these flow regimes.

4.1 A well with fractal pressure behaviour

Well A (owned by Pemex, in Tabasco, Mexico) is located in the Jujo-Tecominoacán

oil field where its main production arises from the Upper Jurassic Kimeridgian for-

mation. This field is a naturally-fractured reservoir with an average depth of about

5000 m. The oil produced there is light in an area of c. 70Km2. Other similar

pressure profile data from the same oil field (with the same alleged fractal charac-

teristics) were used in the model selection discussion in Section 3.3; see Figure 2.

Flow regimes depend on several factors among which the internal reservoir ge-

ology plays a prominent role. Reservoir heterogeneity has a large impact on fluid

flow and therefore on pressure profiles in shut in experiments. In particular, for

naturally fractured reservoirs (a special case of a heterogeneous reservoir), fluid

flows across complex rock fracture structures (as opposed to flow in more standard

homogeneous media) and may be characterized as possessing a “fractal” structure
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(Flamenco-Lopez and Camacho-Velazquez, 2003). Well pressure tests conducted

in naturally fractured reservoirs or, more generally, in reservoirs with pronounced

heterogeneity, result in estimated pressure profiles (specifically in the log-log plot

of zV (z)) that can not be properly characterized from the library of type curves,

based on the standard flow regimes briefly listed in the previous Section.

Several approaches have been developed to account for the impact of a fractal

geometry in a reservoir, in order to study the characteristics of the pressure curve and

pressure derivative (Chang and Yortsos, 1990). However results are not conclusive

since most of these models postulate power law relations in porosity and permeability

increasing the number of parameters to estimate. We postulate that deconvolution

of the form developed here may provide an interesting alternative to help in the

identification of the flow regime in the case of wells with fractal pressure behaviour.

In Figure 3 we show the results of our estimation. In contrast in Figure 4 we

present the estimation using numerical differentiation as implemented in a popular

commercial software for well tests analysis. A key feature of a fractal transient

response is that the log-log plot of the pressure derivative versus time is linear

(Acuna et al., 1992). That is, initially the log-log plot of the zV (z) function seems

linear, typically between log1 0 times of −1 to 0 (first cycle) and 0 to 1 (second cycle).

This transient linear response can be clearly seen in our estimation in Figure 3(d).

Through independent tests (JXVH, personal communication) we have found

evidence of a flow regime in the pressure curve that produces a logarithmic derivative

with a linear transient phase in an interval of at least one logartithmic cycle. Our

deconvolution of the signal is consistent with this finding, as oppose to the traditional

method estimates shown in Figure 4; the linear transient phase is totally blurred

in the latter. The improvement is remarkable and the practical implications are

interesting.

We now have a robust curve estimation against which we can validate flow
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regimes that would take into account a fractal structure in the reservoir. Moreover,

we have probability renges that quantify our unciertanty regarding the estimation

of zV (z), namely the predictive distribution of V (z) and p(t) depicted in the red

dashed lines in Figure 3. This provides a formal indication to where the flow regime

is safely estimated and the proper time window to establish the regime flow, if at

all possible.

Deconvolution for this well indicates the existence of a pressure behavior that

can be described as fractal (Acuna et al., 1992). The technique developed here is

now being used in the actual analysis of this type of behavior in mature oil fileds

in Mexico. A forthcoming paper will present the general conclusions regarding the

application of our methodology in a comprehensive suit of examples.

4.2 MCMC for positivity constraint

The pressure profile data set for well B (owned by Pemex, Mexico) has an extreme

jump and the unrestricted solution has a negative section for V . For R = (T−te)/16

and α1 = 0.5 we consider the likelihood of each model J = 3, 4, . . . , 15; the log

likelihoods are plotted in Figure 5(a). There is a sharp increase at J = 5 bases

after which the log likelihood levels out. The analysis becomes quite numerically

unstable for J ≥ 5 and calculations can only be carried out reliabily for J < 9 bases.

We therefore choose to experiment the fit with positivity constraits for J = 5. The

unconstrained fit with J = 5 bases for the pressure data and the corresponding

log-log plot of zV (z) are presented in Figures 5(b) and (c).

The optimal direction Gibbs MCMC is run with this data and 5,000 simulations

are drawn from the corresponding truncated normal and predictive distributions, as

explained in Section 3.4. The results are shown in Figure 6.
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Figure 3: Section of test data for well A. Output flow (control) (a), generalized
least squares estimates (solid blue), predictive mean (dashed blue) and predictive
±2σ bands (dashed red) for V (z) (b), p(t), along with the measured pressure data,
(c) and zV (z) in log-log scale (d).
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estimation of p(t) (blue curve) and zV (z) (red curve), in log-log scale. Blue dots
represent a numerical “derivative” obtained by interpolating the pressure data (red
dots), this “derivative data” is then fitted to obtain zV (z) using simple heuristics,
as implemented in a well known commercial software.
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Figure 5: Pressure profile data set for well B, (a) Log probabilities of each model
with R = (T − te)/16 and α1 = 0.5 and q = 3, 4, . . . , 8 bases, see Section 3.3. (b)
Pressure fit for the unconstrained case and (c) the corresponding log-log plot of
zV (z). Note that the decay in the generalized least squares fit (blue line) at the top
of the pressure jump corresponds to a negative (derivative) V (z) and therefore the
undefined section in the log-log plot of zV (z). The prior (and posterior) distribution
for β should be constrain to ensure that V (z) remains positive, leading to a truncated
normal distribution (see Figure 6).
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Figure 6: Pressure profile data for well B analyzed with a positivity constrain for
V (z) using MCMC. Output flow (control) (a), predictive mean (solid blue) and pre-
dictive 5% and 95% bands (dashed red) for V (z) (b), p(t), along with the measured
pressure data, (c) and zV (z) in log-log scale (d); this last plot is not defined in the
whole time range since solutions are restricted to maintain V (z) positive. Since V (z)
is positive p(t) is increasing for every fixed β, however the predictive mean of p(t)
has an additional term accounting for the correlation in the model, which results in
a slight perturbation in the predictive distribution of p around the pressure jump in
(c).
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5 Discussion

The analysis of pressure profiles in shut in oil well experiments is crucial in under-

standing the geology of oil fields which eventually leads to establishing probable

reserves, well production policies and total prospective output. A formal analysis of

the pressure profile data and the impulse response function V (z) is therefore much

needed. The novel approach taken here, namely, modeling the pressure function

with a Gaussian process, enables to formally infer the V (z) function, establishing

clearly the assumptions needed to be assumed on V (z). For the precise structure

of the problem, if V (z) is assumed stationary, p(z) results also stationary. More-

over, our formal approach permits quantifying our uncertainty in estimating p(t) and

V (z) (by calculating the corresponding predictive distributions) and potentially this

could lead to 1) a more informative analysis of the impulse response function V (z)

in a time window with low levels of uncertainty and 2) better prospective analysis

of the well production regime and potential.

The functional form of the correlation function and its parameter values are an

important part of any Gaussian process data analysis approach. We used the Matèrn

correlation function with smoothness parameter fixed to 1.5. This guarantees the

desired smoothness. Moreover, it has a simple analytic form and so do its first

and second derivatives and antiderivatives. The correlation parameters, namely R

and α1, were established by a model comparison approach. We believe this is a

reasonable and effective strategy, that avoids the use of MCMC schemes that are

difficult to tune.

Still a more integrated approach is needed, in the sense of a formal definition

of the flow profiles and a systematic (model based) assignment of and estimated

impulse response function to a specific flow profile. This in turn could be embedded

in a general oil production inference method for the well. However, a quantitative

understanding of the mapping between the inner geology and the flow profiles should
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first be established in terms of, for example, more precise functional forms for the

impulse response functions (the log-log plots of zV (z) are only characterized in broad

qualitative terms) before a model based approach is attempted. Our approach here

presented therefore represents the first steps towards a mathematical (probabilistic)

interpretation of pressure profile data, in an important field where a rather heuristic

and qualitative strategy is currently in practice.
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