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Summary: We present a Bayesian nonparametric approach to modelling and risk assessment

in developmental toxicity studies. The primary objective for this dose-response setting is to

quantify the relationship between the level of exposure of pregnant laboratory animals to a

toxic chemical and the probability of prenatal death or a physiological response for viable fe-

tuses. Hence, the data involve clustered categorical responses, and typically suggest response

distributions and dose-response relationships that can not be captured well by standard para-

metric approaches. The focus of our modelling approach is on the dose-dependent response

distributions, which are represented through a nonparametric trinomial mixture model. The

nonparametric mixing is built from a dependent Dirichlet process prior with the dependence

of the mixing distributions governed by the dose level. The key implication of this modelling

strategy is flexible inference for both the response distribution as well as for the dose-response

curves associated with the different endpoints, including the capacity of the model to capture

non-monotonic dose-response relationships. The practical utility of the methodology is illus-

trated with data from an experiment on the effects of diethylhexalphthalate, a commonly used

plasticizing agent.

1 Introduction

Developmental toxicity studies investigate birth defects induced by toxic chemicals. In particular,

under the standard Segment II developmental toxicity experiment, at each experimental dose
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level, xi, i = 1, ..., N , a number, ni, of pregnant laboratory animals (dams) are exposed to

the toxin. Dam j at dose xi has mij implants, of which the number of resorptions, that is,

undeveloped embryos or very early fetal deaths, and prenatal deaths are recorded as Rij , and

the number of live pups at birth with a certain malformation are recorded as yij . Consequently,

the number of viable fetuses for dam j at dose xi is mij −Rij . Additional continuous outcomes

measured on each of the live pups may include body weight and length.

The main objective of developmental toxicity studies is to examine the relationship between

the level of exposure to the toxin, which we generically refer to as the dose level, and the

probability of the various responses of interest. We focus on the clustered categorical endpoints

of embryolethality, that is, non-viable fetuses, and fetal malformation for live pups; thus, the

data structure comprises {(mij , Rij , yij) : i = 1, . . . , N ; j = 1, . . . , ni}. The corresponding

dose-response curves are defined by the probability of the endpoints across dose levels. Also of

interest is quantitative risk assessment, which evaluates the probability that adverse effects may

occur as a result of the exposure to the substance.

Plotted in Figure 1 is a motivating data set, available from the National Toxicology Program

database, from an experiment that explored the effects of diethylhexalphthalate (DEHP), a

commonly used plasticizing agent. The left and middle panels correspond to the endpoints

of non-viable fetus, that is, resorption or prenatal death, and malformation, that is, external,

visceral or skeletal malformation of a live fetus. The right panel plots the proportions of combined

negative outcomes, that is, adding the number of non-viable fetuses and malformations.

The number of dams is 30 for the control group, and 26, 26, 17, and 9 for doses 25, 50, 100,

and 150 mg/kg ×1000. The number of implants across all dams and dose levels ranges from 4

to 18, with 25th, 50th, and 75th percentiles equal to 11, 13, and 14, respectively. Particularly

noteworthy is the drop in the proportions of malformations, and combined negative outcomes,

from dose 0 to 25 mg/kg ×1000, which may correspond to a hormetic dose-response relationship.

Hormesis refers to a dose-response phenomenon characterized by favorable biological responses

to low exposures to toxins, and thus by opposite effects in small and large doses. For endpoints

involving disease incidence, such as mutation, birth defects or cancer, hormesis results in a J-

shaped dose-response curve. Although the possibility of different low dose effects is accepted,

the suggestion of positive low dose effect is debated, hence, hormesis remains a controversial
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Figure 1: DEHP data. In each panel, a circle corresponds to a particular dam and the size of the
circle is proportional to the number of implants. The coordinates of the circle are the dose level and the
proportion of the specific endpoint: non-viable fetuses among implants (left panel); malformations among
live pups (middle panel); combined negative outcomes among implants (right panel).

concept in the toxicological sciences [e.g., 1].

Notwithstanding the ultimate scientific conclusions, data such as the ones from the DEHP

study motivate our modelling framework for the dose-dependent response distributions which

enables rich inference for the implied, possibly non-monotonic, dose-response curves. Building

flexible modelling for the response distribution is easy to justify for developmental toxicology

data, which typically indicate vast departures from parametric models. This can be attributed

to the inherent heterogeneity in the data due to the clustering of individuals within a group

and the variability of the reaction of the individuals to the toxin. Note also that the typical

toxicity experiment discussed above provides information on potentially different dose-response

relationships for the distinct endpoints of embryolethality and fetal malformation, and it is thus

biologically relevant to jointly analyze the clustered responses. This stands in contrast with the

prevailing data structure found in the statistical literature, where the variables involved are the

number of implants and the sum of all negative outcomes, as in the right panel of Figure 1.

We develop a Bayesian nonparametric mixture model for the joint distribution of the number

of non-viable fetuses and malformations. We seek mixture modelling for response distributions
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that are related across doses with the level of dependence driven by the distance between the

dose values. To this end, we consider a dependent Dirichlet process (DDP) prior [18] for the dose-

dependent mixing distributions. Particular emphasis is placed on the choice of the mixture kernel

and the DDP prior formulation to ensure an increasing trend in prior expectation for the implied

dose-response curves, but without restricting prior realizations to be necessarily monotonic.

This is key for the model’s capacity to capture non-standard dose-response relationships. The

nonparametric mixture model structure enables flexible inference for the response distributions

at any observed dose level. Moreover, the dependence of the DDP prior across dose levels allows

inference for the induced dose-response relationships through interpolation and extrapolation

over any range of dose values of interest.

The modelling approach developed here extends work for the simpler data setting with

combined negative outcomes [10]. To our knowledge, the literature does not include any Bayesian

nonparametric approaches to modelling developmental toxicology data with a multicategory

response classification. A Bayesian semiparametric model for the combined negative endpoints

case, based on a product of Dirichlet process prior, was proposed by [5], and more recently

extended in [19]. Examples of parametric Bayesian hierarchical models for toxicology data with

discrete-continuous outcomes include [6] and [8]. Regarding the classical literature, a Dirichlet-

trinomial model is presented in [2]; [24] develop an extended Dirichlet-multinomial model with

Weibull dose-response functions; and [21] and [17] use quasi-likelihood and generalized estimating

equations, respectively, to fit multinomial models which incorporate overdispersion.

The outline of the paper is as follows. Section 2 develops the DDP mixture model, including

model properties and methods for prior specification and Markov chain Monte Carlo posterior

inference. In Section 3, we present the application to the analysis of the DEHP data. Section 4

concludes with a summary.

2 Methods

2.1 The modelling approach

Under the Segment II toxicity study design, exposure occurs after implantation, and thus it

is natural to treat the number of implants as a random quantity containing no information
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about the dose-response relationship. Hence, the modelling for the number of implants (m),

the number of non-viable fetuses (R), and the number of malformations (y) is decomposed to

f(m,R, y) = f(m)f(R, y | m), where only the conditional distribution f(R, y | m) will depend on

dose level x. We assume a shifted Poisson distribution for f(m) such that m ≥ 1, although more

general distributions can be readily utilized. Inference for the implant distribution is carried out

separately from inference for f(R, y | m), and is not discussed further.

To develop a flexible inference framework for risk assessment, we propose a nonparametric

mixture model for the dose-dependent conditional distribution of the number of non-viable

fetuses and malformations given the number of implants. Specifically, for a generic dose x,

f(R, y | m) ≡ f(R, y | m;Gx) =
∫

k(R, y | m;ϕ) dGx(ϕ)

where k(R, y | m;ϕ) is a parametric kernel, with parameters ϕ, and Gx the dose-dependent

mixing distribution. Placing a nonparametric prior on Gx results in a nonparametric mixture

prior for f(R, y | m;Gx). Nonparametric Bayesian mixture priors offer flexible modelling tools

that, with the appropriate structure, can capture the complexity inherent in the data. These

models can be viewed as extensions of finite mixture or continuous mixture models, where the

random mixing distribution is not defined with a particular parametric family of distributions.

Regarding the mixture kernel, we take k(R, y | m; γ, θ) = Bin(R;m,π(γ))Bin(y;m−R,π(θ)),

where π(u) = exp(u)/{1+exp(u)}, u ∈ R, will be used to denote the logistic function. Therefore,

π(γ) is the kernel probability of a non-viable fetus, and π(θ) the conditional probability of a

malformation for a live pup. This formulation of the trinomial kernel distribution is natural as

it highlights the nested nature of the count responses. Moreover, the logistic transformation for

the Binomial probabilities is used to facilitate the formulation of the nonparametric prior model

for the collection of mixing distributions, GX = {Gx : x ∈ X}, where X ⊆ R+.

As discussed in the Introduction, we seek modelling for the response distributions that allows

nonparametric dependence structure across dose levels. We achieve such modelling by placing

a DDP prior on the dose-dependent mixing distributions {Gx : x ∈ X}. The DDP prior arises

through extension of the Dirichlet process (DP) prior [9], the most widely used prior for mixing

distributions in nonparametric or semiparametric mixture models. We use DP(α, G0) to denote
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the DP prior defined in terms of a parametric centering distribution G0, and precision parameter

α > 0.

To define the form of the DDP prior we use for GX , the almost sure discrete representation

for the regular DP [22] is extended to

GX (·) =
∞∑

l=1

ωlδηlX (·) (1)

where δa denotes a point mass at a, the ηlX = {ηl(x) : x ∈ X} are independent realizations

from a stochastic process G0X over X , and the weights are defined by a stick-breaking process:

ω1 = ζ1, and ωl = ζl
∏l−1

r=1(1− ζr) for l ≥ 2, with ζl independent from a Beta(1,α) distribution,

independently of the ηlX . A key feature of the DDP prior is that for any finite collection of dose

levels (x1, ..., xk) it induces a multivariate DP prior for the corresponding collection of mixing

distributions (Gx1 , ..., Gxk). Therefore, the DDP prior model involves a countable mixture of

realizations from stochastic process G0X with weights matching those from the standard DP;

this prior structure is referred to as single-p DDP prior. Single-p DDP mixture models have been

applied to analysis of variance settings [4], spatial modelling [11; 15], dynamic density estimation

[20], quantile regression [16], and survival regression [3].

Finally, the DDP prior mixture model is given by

f(R, y | m;GX ) =
∫

Bin(R;m,π(γ))Bin(y;m−R,π(θ)) dGX (γ, θ), GX ∼ DDP(α, G0X ). (2)

Here, DDP(α, G0X ) denotes the DDP prior for GX =
∑∞

l=1 ωlδηlX , where ηl(x) = (γl(x), θl(x)),

for x ∈ X , with precision parameter α and base stochastic process G0X . We define G0X through

two independent Gaussian processes, one driving each probability of response, each with a linear

mean function, constant variance, and isotropic exponential correlation function. Hence, to

introduce notation, we assume for all l, E(γl(x) | ξ0, ξ1) = ξ0 + ξ1x, and E(θl(x) | β0,β1) = β0 +

β1x; var(γl(x) | τ2) = τ2, and var(θl(x) | σ2) = σ2; corr(γl(x), γl(x′) | ρ) = exp(−ρ|x− x′|), and

corr(θl(x), θl(x′) | φ) = exp(−φ|x−x′|), with ρ > 0 and φ > 0. As discussed in the next section,

this specification for G0X and, in particular, the linear mean functions, are key for flexible

inference about the dose-response relationships implied by model (2). The full Bayesian model

is implemented with priors on α and on the G0X hyperparameters, ψ = (ξ0, ξ1, τ2, ρ, β0,β1,σ2,φ).
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2.2 Dose-response relationships

Here, we study the dose-response curves implied by DDP mixture model (2), including the

probability of a non-viable fetus, the conditional probability of a malformation for a live pup,

and a risk function that combines the two endpoints.

To develop the dose-response curves, it is useful to note a connection of the mixture model

with the clustered Binomial kernels with the model based on products of Bernoullis kernel for

the underlying binary responses. That is, for a generic dam at dose level x with m implants,

let R∗ = {R∗
k : k = 1, . . . ,m} be the individual non-viable fetus indicators and denote by y∗ =

{y∗s : s = 1, . . . ,m −
∑m

k=1 R∗
k} the malformation indicators for the viable fetuses. Therefore,

R =
∑m

k=1 R∗
k and y =

∑m−
P

k R∗
k

s=1 y∗s . Then, a DDP mixture model for the clustered binary

responses can be formulated as

f∗ (R∗, y∗ | m;GX ) =
∫ m∏

k=1

Bern(R∗
k;π(γ))

m−
P

k R∗
k∏

s=1

Bern(y∗s ;π(θ)) dGX (γ, θ), (3)

where GX is assigned the same DDP prior as the one for model (2). It is straightforward to show

that mixture models (2) and (3) are equivalent with regard to the distribution for (R, y) condi-

tional on m; in particular, the joint moment generating function for (
∑m

k=1 R∗
k,

∑m−
P

k R∗
k

s=1 y∗s)

under model (3) is equal to the joint moment generating function for (R, y) under model (2), in

both cases, conditioning on m. Hence, we can define the dose-response curves under the DDP

mixture model (2) working with probabilities of the two endpoints for a generic implant; this

involves implicit conditioning on m = 1, which we suppress in the notation below.

The first risk assessment quantity of interest is the probability of embryolethality across

effective dose levels, which is defined by

D(x) ≡ pr(R∗ = 1;Gx) =
∫

π(γ) dGx(γ, θ), x ∈ X .

Risk assessment for the malformation endpoint is based on the conditional probability that a

generic pup has a malformation given that it is a viable fetus, i.e.,

M(x) ≡ pr(y∗ = 1 | R∗ = 0;Gx) =
pr(R∗ = 0, y∗ = 1;Gx)

pr(R∗ = 0;Gx)
=

∫
{1− π(γ)}π(θ)dGx(γ, θ)∫

{1− π(γ)}dGx(γ, θ)
, x ∈ X .
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Moreover, a full risk function at any given dose level can be defined through the combination of

the probability of a non-viable fetus and the probability of a live, malformed pup; that is, the

combined risk at dose level x is given by

r(x) ≡ pr(R∗ = 1 or y∗ = 1;Gx) = pr(R∗ = 0, y∗ = 1;Gx) + pr(R∗ = 1;Gx)

=
∫

{1− π(γ)}π(θ) dGx(γ, θ) +
∫

π(γ) dGx(γ, θ)

= 1−
∫

{1− π(γ)}{1− π(θ)}dGx(γ, θ), x ∈ X .

A key aspect of the modelling approach is that it does not force a non-decreasing shape

restriction to the dose-response functions, which is the traditional assumption for more standard

quantal bioassay experiments. As discussed in the Introduction and illustrated in Section 3 with

the DEHP data, the model’s capacity to capture non-standard, possibly non-monotonic, dose-

response relationships is an asset of the proposed methodology. At the same time, given the

relatively small number of observed dose levels in developmental toxicity studies, some structure

is needed in the prior model in order to obtain meaningful interpolation and extrapolation

posterior inference results for the dose-response curves. Under the specific formulation of the

DDP prior for mixture model (2), such structure can be incorporated in the form of a non-

decreasing trend in prior expectation for the dose-response curves.

Consider first the prior expectation for the dose-dependent probability of a non-viable fetus,

E{D(x)} = E
{∫

π(γ)dGx(γ, θ)
}

=
∫

π(γ)dG0x(γ, θ) =
∫

π(γ)dN(γ; ξ0 + ξ1x, τ2),

that is, E{D(x)} is the expectation of the (increasing) logistic function with respect to the

N(ξ0 + ξ1x, τ2) distribution, which is stochastically ordered in x when ξ1 > 0. Hence, D(x) is a

non-decreasing function of x in prior expectation, under the ξ1 > 0 prior restriction. Similarly,

E{r(x)} = 1−
∫
{1− π(γ)}{1− π(θ)}dG0x(γ, θ)

= 1−
[∫

{1− π(γ)}dN(γ; ξ0 + ξ1x, τ2)
] [∫

{1− π(θ)}dN(θ;β0 + β1x,σ2)
]
.

Provided ξ1 > 0 and β1 > 0, distributions N(ξ0 + ξ1x, τ2) and N(β0 + β1x,σ2) are stochastically

ordered in x, which implies that both
∫
{1−π(γ)}dN(γ; ξ0 + ξ1x, τ2) and

∫
{1−π(θ)}dN(θ;β0 +
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Figure 2: Prior mean and 90% interval estimates, along with 5 individual prior realizations, for the
three dose-response curves. See Section 2.2 for details.

β1x,σ2) are decreasing functions of x, with values in the unit interval. Thus, E{r(x)} is non-

decreasing in x when ξ1 > 0 and β1 > 0.

Therefore, with the ξ1 > 0 and β1 > 0 prior restrictions, we can build to both the proba-

bility of a non-viable fetus and to the combined risk function the non-decreasing trend in prior

expectation. Although the same argument does not extend to the conditional probability of

malformation, M(x), the restriction ξ1 > 0 and β1 > 0 appears sufficient to provide the prior

expectation non-decreasing trend for all three dose-response curves. In this respect, it is useful

to note that, even though we develop inference about three dose-response relationships, there

are only two endpoints and, consequently, the model is driven at any specific dose level by a

bivariate random mixing distribution.

Note that the argument above relies on both the constant Gaussian process variances for

the two components of G0X – which ensures the stochastic ordering of the induced normal

distributions – and on the linear Gaussian process mean functions – which enables the non-
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decreasing trend through the restriction on the slope parameters. Indeed, the linear mean

functions are crucial for practicable posterior inference. As suggested by Figure 2, if the model

is applied using constant mean functions for the DDP prior centering Gaussian processes, that

is, setting ξ1 = β1 = 0, we should not expect practically useful results outside the observed dose

levels. For illustration, Figure 2 plots results from prior simulation for the embryolethality and

malformation dose-response curves, and for the combined risk function, using fixed values for

α (= 1) and ψ. In particular, (ξ1 = 0.0085, β1 = 0.12) and (ξ1 = 0.12, β1 = 0.01) in the top

and middle row, respectively. Although the relative magnitude of ξ1 and β1 affects the rate of

increase for the different curves, in all cases with ξ1 > 0 and β1 > 0, the non-decreasing trend

in prior expectation is preserved.

Finally, smoothness properties of prior realizations for the dose-response curves relate directly

to the respective properties of the centering process G0X . For details, we refer to the arguments

in [18] and [11], extended and formalized by [12], but note briefly that the continuity of the

realizations from the two Gaussian processes that define G0X implies that as the distance between

x and x′ gets smaller, the difference between Gx and Gx′ gets smaller; moreover, it yields

continuous prior realizations for the three dose-response functions defined above. The practical

implication is that in prediction for the probability mass function f(R, y | m;Gx) and for the

corresponding dose-response curves, we learn more from dose levels x′ nearby x than from

more distant doses, a desirable property for distributions that are expected to evolve relatively

smoothly with the dose level.

2.3 Implementation details

2.3.1 Markov chain Monte Carlo posterior simulation

Regarding the hierarchical model formulation for the data = {(mij , Rij , yij) : i = 1, . . . , N ; j =

1, . . . , ni}, we observe that for the DEHP data (discussed in the Introduction) the dams are

labeled and recorded in ascending numerical order across dose levels; that is, the smallest iden-

tification number corresponds to data from the first dam at the first dose level, the first dam

at the second dose level has the next identification number, and so on. This is also the case for

other data sets available from the database of the National Toxicology Program. Therefore, to

write the model for the data, the animals are linked as a response vector across the dose levels
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with the conditional independence assumption built for the replicated response vectors. Hence,

the data structure and corresponding hierarchical model is along the lines of the spatial DP [11]

rather than, for instance, the ANOVA DDP [4].

Therefore, let Rj = (R1j , . . . , RNj), and yj = (y1j , . . . , yNj) be the j-th response repli-

cates with corresponding number of implants vector mj = (m1j , . . . ,mNj), for j = 1, . . . , n,

where n = maxi ni. Moreover, denote by γj ≡ γj(x) = (γj(x1), . . . , γj(xN )), and θj ≡ θj(x) =

(θj(x1), . . . , θj(xN )) the latent mixing vector for Rj and yj , respectively, where x = (x1, . . . , xN ).

We introduce missing value indicators, sij , such that sij = 1 if the j-th response replicates at

dose level i are present and sij = 0 otherwise. Note that the sij are fixed for any particular data

set. Then, the first stage of the hierarchical model for the data can be written as

{(Rij , yij)} | {mij}, {(γj , θj)} ∼
n∏

j=1

N∏

i=1

{Bin(Rij ;mij ,π(γj(xi)))Bin(yij ;mij −Rij ,π(θj(xi)))}sij

where the (γj , θj), given Gx, are i.i.d. from Gx, which follows a DP(α, G0x) prior implied by the

DDP prior for GX . In particular, G0x comprises two independent N -variate normal distributions,

induced by the two Gaussian processes that define G0X ; the first normal distribution has mean

vector (ξ0+ξ1x1, . . . , ξ0+ξ1xN )′ and covariance matrix with (i, j)-th element Tij = τ2 exp(−ρ|xi−

xj |); the mean of the second normal distribution is (β0 +β1x1, . . . ,β0 +β1xN )′ and its covariance

matrix has (i, j)-th element Σij = σ2 exp(−φ|xi − xj |).

Hence, the hierarchical model for the data is a DP mixture model induced by the DDP

mixture prior. For Markov chain Monte Carlo posterior simulation, we use blocked Gibbs

sampling [e.g., 13], which offers relatively ready implementation and also, in our context, can

easily handle unbalanced response replicates. The approach is based on a finite truncation

approximation of Gx such that Gx ≈ GL
x =

∑L
l=1 plδ(Ul(x),Zl(x)), where the weights pl arise

from a truncated version of the stick-breaking construction: p1 = V1, pl = Vl
∏l−1

r=1(1 − Vr),

l = 2, . . . , L − 1, and pL = 1 −
∑L−1

l=1 pl, with the Vl i.i.d., given α, from Beta(1,α). Moreover,

Ul(x) = (Ul(x1), . . . , Ul(xN )) ≡ Ul and Zl(x) = (Zl(x1), . . . , Zl(xN )) ≡ Zl, with the (Ul, Zl) i.i.d.,

given ψ, from G0x, for l = 1, ..., L. Hence, under the truncated version of mixing distribution

Gx, (γj , θj) = (Ul, Zl) with probability pl, and GL
x ≡ (p, U, Z), where p = (p1, . . . , pL), U =

(U1, . . . , UL) and Z = (Z1, . . . , ZL).
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To represent the hierarchical model for the data under the DP truncation approximation,

configuration variables w = (w1, . . . , wn) are introduced, such that wj = l if and only if (γj , θj) =

(Ul, Zl), for l = 1, . . . , L and j = 1, . . . , n. Then, the model for the data can be expressed as

{(Rj , yj)} | {mj}, w, (U,Z) ∼
n∏

j=1

N∏

i=1

{
Bin(Rij ;mij ,π(Uwj (xi)))Bin(yij ;mij −Rij ,π(Zwj (xi)))

}sij

wj | p ∼
n∏

j=1

L∑

l=1

plδl(wj)

p, (U,Z) | α, ψ ∼ f(p | α)×
L∏

l=1

G0x(Ul, Zl | ψ) (4)

where f(p | α) = αL−1pα−1
L (1 − p1)−1{1 − (p1 + p2)}−1 × · · · × (1 −

∑L−2
l=1 pl)−1, a special case

of the generalized Dirichlet distribution, is the prior for p, given α, induced by the truncated

stick-breaking construction. The full Bayesian model is completed with independent hyperpriors

for the DDP precision parameter α and the parameters ψ of the centering Gaussian processes.

Specifically, we place a gamma(aα, bα) prior on α; normal priors N(mξ, s2
ξ) and N(mβ, s2

β) on ξ0

and β0; exponential priors Exp(bξ) and Exp(bβ) on ξ1 and β1 to promote the non-decreasing trend

in prior expectation for the dose-response functions; inverse gamma priors inv-gamma(aτ , bτ )

and inv-gamma(aσ, bσ) on the variance terms τ2 and σ2; and uniform priors Unif(0, bρ) and

Unif(0, bφ) on the range parameters ρ and φ. Prior specification is discussed in Section 2.3.3.

Denote the n∗ distinct values of vector w by w∗
1, . . . , w

∗
n∗ , and let M∗

k = |{j : wj = w∗
k}|, for

k = 1, . . . , n∗, and Ml = |{j : wj = l}|, for l = 1, . . . , L. Then, sampling from the posterior

distribution p(U,Z,w, p,α, ψ | data) corresponding to model (4) is based on simulation from the

following posterior full conditional distributions.

The (Ul, Zl) that correspond to l /∈ {w∗
k : k = 1, . . . , n∗} are sampled from G0x given its cur-

rently imputed parameters ψ. For l = w∗
k, k = 1, . . . , n∗, the posterior full conditional for Uw∗

k

is proportional to Gγ
0x(Uw∗

k
| ψ)

∏
{j:wj=w∗

k}
∏N

i=1{Bin(Rij ;mij ,π(Uw∗
k
(xi)))}sij , and the poste-

rior full conditional for Zw∗
k

to Gθ
0x(Zw∗

k
| ψ)

∏
{j:wj=w∗

k}
∏N

i=1{Bin(yij ;mij−Rij ,π(Zw∗
k
(xi)))}sij .

Here, Gγ
0x and Gθ

0x denote the respective N -variate normal distributions arising from G0x. Each

of Uw∗
k

and Zw∗
k

is updated using a random-walk Metropolis-Hastings step with an N -variate nor-

mal distribution as the proposal. The proposal covariance matrices were estimated dynamically,

using initial runs based on normal proposals with scaled identity covariance matrices.
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The posterior full conditional for each wj , j = 1, ..., n, is given by a discrete distribution with

values l = 1, ..., L and corresponding probabilities

p̃lj ∝ pl

∏N

i=1
{Bin(Rij ;mij ,π(Ul(xi)))Bin(yij ;mij −Rij ,π(Zl(xi)))}sij , l = 1, ..., L.

The updates for parameters α and p are the same with a generic DP mixture model [14].

Finally, the joint posterior full conditional for the hyperparameters ψ of the DDP prior centering

Gaussian processes is proportional to

p(ξ0)p(ξ1)p(τ2)p(ρ)p(β0)p(β1)p(σ2)p(φ)×
∏n∗

k=1
G0x(Uw∗

k
, Zw∗

k
| ψ)

where p(·) denotes the prior for each parameter. The form of G0x and the parametric priors

for the components for ψ result in normal posterior full conditionals for ξ0 and β0, and inverse

gamma full conditionals for τ2 and σ2. We use Metropolis-Hastings updates for ξ1 and β1, and

sample ρ and φ by discretizing their bounded support.

2.3.2 Inference for risk assessment

The samples from the posterior distribution of model (4) yield the mixing distribution GL
x at

all the observed dose levels through the posterior samples for (p, U, Z). To expand the inference

over any range of doses of interest, we augment the N observed dose levels with M new doses,

x̃ = (x̃1, . . . , x̃M ). Now, in the prior model, the (Ul(x), Ul(x̃)) and the (Zl(x), Zl(x̃)), for l =

1, ..., L, are independent realizations from two independent (N+M)-variate normal distributions,

induced by the Gaussian processes that define G0X , with mean vectors and covariance matrices

that are of the same form as above extending x to (x, x̃). But then, to sample from the conditional

posterior distributions for each of the Ul(x̃) and Zl(x̃), the additional sampling needed is from

conditional M -variate normal distributions given the currently imputed (Ul, Zl), l = 1, ..., L, and

the parameters ψ.

Using the posterior samples from model (4), augmented with the posterior samples for

(Ul(x̃), Zl(x̃)), l = 1, ..., L, full inference for the response distributions and for risk assessment

through the dose-response curves can be obtained by evaluating the relevant expressions de-

veloped in Sections 2.1 and 2.2. Under the DP truncation approximation used for posterior

13



simulation, the integrals are replaced with sums. For instance, for any generic dose x0 in (x, x̃),

the posterior distribution for the probability of a non-viable fetus arises from
∑L

l=1 plπ(Ul(x0)),

and for the combined risk function through 1−
∑L

l=1 pl{1−π(Ul(x0))}{1−π(Zl(x0))}. Moreover,

for a specified number of implants m0, the conditional probability mass function for the num-

ber of malformations given R0 non-viable fetuses, is evaluated through
∑L

l=1 ql(x0)Bin(y;m0 −

R0,π(Zl(x0))), where ql(x0) = plBin(R0;m0,π(Ul(x0)))/{
∑L

t ptBin(R0;m0,π(Ut(x0)))}. The

posterior samples can be summarized with means and percentiles to provide posterior mean

estimates and uncertainty bands for dose-response curves and probability mass functions for the

response distributions; Section 3 reports such inferences for the DEHP data.

2.3.3 Prior specification

To specify the uniform priors for the range parameters ρ and φ, we consider the limiting case of

the DDP model with α → 0+, which yields the kernel of the mixture in (2) as the model’s first

stage with G0X defining Gaussian process priors for the Binomial probabilities on the logistic

scale. Then, under the exponential correlation function, 3/ρ is the range of dependence, that is,

the distance between dose levels that yields correlation 0.05 for the Gaussian process realizations

that define the probability of a non-viable fetus, and, analogously, for 3/φ. The range is usually

assumed to be a fraction of the maximum interpoint distance over the index space. Let Dmax

be the maximum distance between observed doses. Since 3/bρ < 3/ρ, we specify bρ such that

3/bρ = rDmax for a small r; r = 0.002 was used for the DEHP data analysis in Section 3 leading

to a Unif(0, 10) prior for ρ; the same uniform prior was used for φ. This approach to prior

specification for ρ and φ is conservative, in particular, the posterior distributions for ρ and φ are

concentrated on values substantially smaller than bρ and bφ.

We set the prior means for ξ0 and β0 to 0, and the shape parameters of the inverse gamma

priors for τ2 and σ2 to 2, implying infinite prior variance. The prior variances for ξ0 and β0,

and the prior means for ξ1, β1, τ2 and σ2 are chosen by studying the induced prior distribution

for the dose-response curves defined in Section 2.2. For the DEHP data, we placed a N(0, 10)

prior on ξ0 and β0, an exponential prior with mean b−1
ξ = b−1

β = 0.1 on ξ1 and β1, and an

inv-gamma(2, 10) on τ2 and σ2. Under this prior choice, the prior means for functions D(x) and

M(x) have a relatively weak increasing trend starting around 0.5, with 90% uncertainty bands
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Figure 3: For the DEHP data, the posterior mean (solid lines) and 90% interval bands (dashed lines)
for the risk assessment functions: probability of a non-viable fetus (left panel); conditional probability of
malformation (middle panel); combined risk (right panel).

that cover almost the entire unit interval.

The DDP prior precision parameter, α, controls the number, n∗, of distinct mixture com-

ponents [e.g., 7]. In particular, for moderate to large sample sizes, a useful approximation to

the prior expectation E(n∗ | α) is given by α log{(α + n)α−1}. This expression can be averaged

over the prior for α to obtain E(n∗), thus selecting the gamma prior parameters to agree with a

guess at the expected number of distinct mixture components. A gamma(2, 1) prior was used for

the DEHP data example corresponding to E(n∗) ≈ 5. Prior sensitivity analysis revealed robust

posterior inference under more dispersed priors.

Finally, the level L for the DP truncation approximation can be chosen using standard

distributional properties for the weights arising from the stick-breaking structure in (1). For

instance, E(
∑L

l=1 ωl | α) = 1 − {α/(α + 1)}L, which can be averaged over the prior for α to

estimate E(
∑L

l=1 ωl). Given a tolerance level for the approximation, this expression is solved

numerically to obtain the corresponding value L. For the analysis of the DEHP data, we used

L = 50, which yields E(
∑L

l=1 ωl) ≈ 0.9999593 under the gamma(2, 1) prior for α.
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Figure 4: The posterior mean (“o”) and 90% probability bands (dashed lines) of the probability mass
functions for the number of non-viable fetuses given m = 12 implants.

3 Data example

We illustrate the proposed DDP mixture modelling approach with the DEHP data set discussed

in the Introduction (Figure 1). It is known that plasticizers, such as the DEHP plasticizing

agent, may leak in small quantities from plastic containers with various solvents such as food

or milk. The possibility of toxic effects from these agents have been recognized and tested in

developmental toxicity studies such as the one described in [23]. Recall that the two endpoints

are non-viable fetus corresponding to resorption or actual prenatal death, and malformation

involving external, visceral or skeletal malformation of a live fetus.

Figure 3 plots the posterior mean and 90% interval estimates for the three dose-response

curves developed in Section 2.2 for risk assessment. The probability of a non-viable fetus across

dose levels is a monotonically increasing function, with uncertainty bands around the posterior

mean estimate that increase with increasing dose values, consistent with the decreasing number

of dams for larger dose levels. The conditional probability of malformation, however, reveals

a non-monotonic behavior at the low dose levels, and this J-shaped pattern carries over to the

combined risk which also exhibits the dip in the probability from the control through dose 25
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Figure 5: The posterior mean (“o”) and 90% interval bands (dashed lines) of the probability mass
functions for the number of malformations given m = 12 implants and R = 3 non-viable fetuses.

mg/kg × 1000. The inference for the combined risk function agrees with the estimated dose-

response curve for the combined negative outcomes version of the DEHP data, as obtained in [10]

based on a DDP Binomial mixture model. The modelling approach presented in this paper is

key to uncovering the malformation endpoint as the one that contributes to the non-monotonic,

possibly hormetic, combined dose-response relationship.

Inference for response distributions is illustrated with posterior mean and 90% interval es-

timates for the probability mass function of the number of non-viable fetuses given m = 12

implants (Figure 4) and the number of malformations given m = 12 implants and R = 3 non-

viable fetuses (Figure 5). Results are reported for the control group, the four effective dose

levels, and a new dose at x = 75 mg/kg × 1000. As expected, there is more uncertainty in

the estimation of the conditional response distributions for malformation. The interpolation at

the new dose level appears to be influenced more by the distribution at dose 50, which can be

attributed to the larger sample size relative to dose 100. The estimated distributions for the

number of non-viable fetuses have relatively standard shapes, whereas there is some evidence of

a bimodal shape at dose 100, and skewness in the estimated malformation distributions.
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4 Summary

We have developed a Bayesian nonparametric modelling approach for risk assessment in devel-

opmental toxicity studies. The motivation for the proposed methodology is that it is critical to

model flexibly the dose-dependent dam specific response distribution associated with the clus-

tered categorical outcomes of a non-viable fetus and of malformation for a live pup. The model

is built from a mixture with a product Binomial kernel, to capture the nested structure of the

responses, and a dependent Dirichlet process prior for the dose-dependent mixing distributions.

The resulting nonparametric DDP mixture model provides rich inference for the response dis-

tributions as well as for the dose-response curves. Data from a toxicity experiment involving a

plasticizing agent were used to illustrate the scientifically relevant feature of the DDP mixture

model with regard to estimation of different dose-response relationships for different endpoints,

including non-monotonic dose-response curves.
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