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SUMMARY. We develop a Bayesian nonparametric mixture modeling framework for

quantal bioassay settings. The approach is built upon modeling dose-dependent

response distributions. We adopt a structured nonparametric prior mixture model,

which induces a monotonicity restriction for the dose-response curve. Particular

emphasis is placed on the key risk assessment goal of calibration for the dose level

that corresponds to a specified response. The proposed methodology yields flexible

inference for the dose-response relationship as well as for other inferential objectives,

as illustrated with two data sets from the literature.
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1. Introduction

The quantal bioassay dose-response setting has been valuable in many fields, from

ecology to medicine. Though quantitative measurement of a response is preferred,

there are several experiments for which the response can only be recorded on a binary

scale, either occurring or not occurring. The dose-response relationship is based on

observed data from experimental animal, human clinical, or cell studies. In these types

of settings, as the level of exposure increases, the responses generally become more

severe. However, within a population, a wide range of responses may be encountered

as some individuals are more susceptible and others resistant.

Regarding the quantal response data structure, at each of a typically small number

of dose levels, a number of subjects are exposed to the substance and the subset that

have the response of interest is recorded. The dose-response curve, denoted by D(x),

is defined as the probability of positive response as a function of dose x. One of the

standard assumptions in the analysis of quantal bioassay problems is that D(x) is a

non-decreasing function and can therefore be modeled as a distribution function. Under

this assumption, the distribution corresponding to D(x) is referred to as the tolerance

distribution. In parametric modeling, D(x) is assumed to be a member of a parametric

family of distribution functions. Standard parametric models, such as probit or logit

models, are simple to implement but do not have the ability to capture complex curves,

including skewness and multimodality.

To extend the inferential scope of standard models, finite mixtures for the tolerance

distribution have been considered in the literature. Lwin and Martin (1989) present a

location-scale mixture model, which is developed based on the idea of a finite number of

unobserved, underlying subpopulations. Geweke and Keane (1999) propose mixtures

of probit models to more accurately describe the shape of the dose-response curve,

2



while Basu and Mukhopadyay (2000) use a finite scale mixture of normal distribution

functions. In addition to theoretical advantages, Bayesian nonparametric mixture

priors, as developed in this paper, offer practical benefits relative to finite parametric

mixtures with respect to Markov chain Monte Carlo (MCMC) posterior simulation as

well as prior specification.

The quantal bioassay setting corresponds to one of the earliest applications for

Bayesian nonparametrics. One of the more common approaches involves assigning a

Dirichlet process (DP) prior (Ferguson, 1973) to the distribution function D(x) (e.g.,

Antoniak, 1974; Bhattacharya, 1981; Disch, 1981; Kuo, 1983, 1988; Gelfand and Kuo,

1991; Mukhopadhyay, 2000). Also along these lines is the work in Muliere and Walker

(1997) where Pólya tree priors are used to determine the maximum tolerated dose. A

monotone nonparametric regression framework is presented in Bornkamp and Ickstadt

(2009), where the monotone function is modeled as a mixture of shifted and scaled

two-sided power distribution functions.

An alternative approach is to model the binary responses with latent continuous

variables, and assume mixtures of probit or logit functions for the dose-response curve.

MacEachern (1998) assumes a DP prior directly on the distribution of the latent

variables. Presented in terms of multivariate probit regression, Jara et al. (2007) mix

on the intercept of the linear mean and the covariance matrix of the distribution of

the subject specific latent variable distribution. Casanova et al. (2010) place a scale

normal DP mixture prior on the distribution of the latent variables.

We also represent the model through latent continuous responses, but build the

inference for the dose-response curve from nonparametric mixture modeling for dose-

dependent response distributions. We adopt a structured dependent DP prior for

the collection of dose-dependent mixing distributions, which begets a monotonicity
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restriction and produces smooth realizations of the dose-response curve. We place

particular emphasis on inference for calibration, where we seek to estimate the dose

level associated with a given vector of responses. This objective is especially important

in cytogenetic dosimetry, a particular area of dose-response modeling concerned with

the relationship between exposure to radiation and some measure of genetic aberration.

In these studies, only a portion of the dose-response curve is observed, rendering

extrapolation beyond observed dose levels a primary inferential target.

The outline of the paper is as follows. We develop the model in Section 2, including

the hierarchical formulation with latent continuous responses, and a method for prior

specification. The approach to posterior simulation and inference for risk assessment is

provided in Section 3. In Section 4, we illustrate the modeling approach with a standard

data set from the literature as well as with the cytogenetic dosimetry application.

Finally, Section 5 concludes with discussion of possible extensions of the methodology.

2. Methods

2.1 The Modeling Approach

The starting point of our methodology is nonparametric mixture modeling for the

collection of response distributions, which are indexed by dose level x ∈ X , where,

typically, X ⊂ R, as dose is commonly recorded on a logarithmic scale. With replicated

binary responses at a number of observed dose values, the natural mixture structure

involves mixing of Bernoulli distributions,

f(y | Gx) =

∫
Bern (y | Φ(θ)) dGx(θ), x ∈ X (1)

where Φ(·) is the standard normal distribution function, and thus θ ∈ R. Given
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the mixture setting, the choice of the link function for the kernel probability is driven

mainly by convenience in model implementation where the probit link offers advantages.

We aim to develop flexible nonparametric modeling for the response distributions,

{f(y | Gx) : x ∈ X}, and for the implied dose-response relationship, Pr(y = 1 | Gx),

x ∈ X , retaining however the traditional assumption of monotonicity for the dose-

response curve. To this end, the model needs to be completed with an appropriate

nonparametric prior for the collection of mixing distributions, GX = {Gx : x ∈ X}.

Given the nature of quantal bioassay studies, we expect response distributions

associated with nearby dose levels to be more similar than those which are far apart.

Under our mixture model setting, this situation gives rise to the need for a prior

which relates the mixing distributions Gx across dose level x to varying degrees. A

powerful option for this modeling problem is the dependent Dirichlet process (DDP)

prior (MacEachern, 2000). The DDP prior is motivated by the (almost sure) discrete

representation of DP realizations (Sethuraman, 1994), where, in full generality, both

the stick-breaking weights and the atoms may evolve with x. Because the general DDP

prior is complicated to implement and requires large data sets to sufficiently learn about

its hyperparameters, simpler versions are typically employed in applications. Under

minimal conditions, Barrientos et al. (2012) have established full support (according to

weak convergence) for both of the simplified DDP prior specifications discussed next.

In particular, a “single-p” DDP prior involves a countable mixture of realizations

from a stochastic process over X , with weights matching those from the standard DP,

that is, GX =
∑∞

l=1 ωlδηlX . Here, the ηlX = {ηl(x) : x ∈ X} are i.i.d. realizations

from a base stochastic process, G0X , over X , and the weights arise from stick-breaking:

ω1 = ζ1, ωl = ζl
∏l−1

r=1(1− ζr) for l ≥ 2, with the ζl i.i.d. from a Beta(1, α) distribution

(independently of the ηlX ). Under a single-p DDP prior for the mixing distributions
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in (1), the dose-response curve, Pr(y = 1 | Gx) =
∫

Φ(θ)dGx(θ) =
∑∞

l=1 ωlΦ(ηl(x)),

x ∈ X . This model does not enforce monotonic dose-response relationships, although

an increasing trend can be incorporated in prior expectation. This structure can be

achieved through a Gaussian process for G0X with constant variance, σ2, and linear

mean function, β0 + β1x, with β1 > 0. Then, the N(β0 + β1x, σ
2) distribution for

G0x, induced by the Gaussian process G0X at x ∈ X , is stochastically ordered, and

thus E(Pr(y = 1 | Gx)) =
∫

Φ(θ)dG0x(θ) is increasing in x being the expectation of

the increasing function Φ(θ) with respect to G0x. (Depending on the context, we use

N(m, s2) for either the normal distribution or density with mean m and variance s2.)

Contrarily, we may consider a DDP prior structure where only the weights evolve

with x, that is, GX =
∑∞

l=1 ωlX δθl , with the θl i.i.d. from a base distribution G0 on R,

independently of the stochastic mechanism that generates the ωlX = {ωl(x) : x ∈ X}.

This “single-θ” DDP formulation presents a formidable complication with regard to the

main inferential objectives for bioassay experiments. A monotonically increasing dose-

response relationship, at least in prior expectation, is imperative in terms of prediction

at unobserved dose levels to anchor the inference with an increasing trend. In the case

of the single-θ DDP prior, there is no means to force such a trend for the dose-response

curve, Pr(y = 1 | Gx) =
∑∞

l=1 ωl(x)Φ(θl). More specifically, using the monotone

convergence theorem and letting C =
∫

Φ(θ)dG0(θ) (where a finite mean is assumed for

G0), we obtain E(Pr(y = 1 | Gx)) =
∑∞

l=1 E(Φ(θl))E(ωl(x)) = C
∑∞

l=1 E(ωl(x)) = C,

for any x ∈ X . Thus, the prior expectation of the dose-response curve is constant in

x, rendering interpolation and extrapolation inference practically useless.

Hence, the single-p DDP prior emerges as the preferred choice for dose-response

inference built from modeling dependent response distributions. The general version

of the single-p DDP prior can be used for settings where one seeks the extra flexibility
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of non-monotonic dose-response functions with the increasing trend only in prior

expectation. We have studied such DDP mixture modeling for developmental toxicity

experiments, which involve clustered categorical responses and multiple dose-response

curves for distinct endpoints (Fronczyk and Kottas, 2013; Kottas and Fronczyk,

2013). For these more involved experiments, the capacity of the DDP mixture

model to uncover non-monotonic dose-response relationships is a practically relevant

feature. However, for the simpler quantal bioassay setting, we seek a more structured

nonparametric prior to incorporate the standard monotonicity assumption for the dose-

response curve with prior probability one rather than only in prior expectation.

To this end, we explore the linear-DDP prior formulation, which simplifies the

single-p DDP stochastic process realizations {ηl(x) : x ∈ X} to linear functions of x,

that is, ηl(x) = γ0l + γ1lx. Hence, the base stochastic process G0X is replaced with a

distribution G0 that generates the component specific intercept and slope parameters.

In particular, we assume the γ0l are i.i.d. from G
(0)
0 , and independently, the γ1l are i.i.d.

from G
(1)
0 . We refer to DeIorio et al. (2009) for survival regression with linear-DDP

priors, and DeIorio et al. (2004) for the closely related ANOVA-DDP model.

The essential observation from the construction of the linear-DDP prior is the

correspondence of {Gx : x ∈ X} and G =
∑∞

l=1 ωlδ(γ0l,γ1l), where G ∼ DP(α,G0) with

G0 = G
(0)
0 G

(1)
0 . In particular, the atoms (γ0l, γ1l), sampled originally from G0, and the

weights, ωl, in the stick-breaking construction of G induce the atoms ηl(x) = γ0l +γ1lx

in conjunction with the same weights, ωl, in the stick-breaking construction of Gx, for

all x. Hence, the linear-DDP mixture model, f(y | Gx) =
∫

Bern(y | Φ(θ))dGx(θ),

where Gx =
∑∞

l=1 ωlδ(γ0l+γ1lx), can be equivalently formulated as a DP mixture model

f(y | G, x) =

∫
Bern(y | Φ(γ0 + γ1x))dG(γ0, γ1); G ∼ DP(α,G0 = G

(0)
0 G

(1)
0 ).
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The corresponding dose-response curve is now defined by

Pr(y = 1 | G, x) =

∫
Φ(γ0 + γ1x)dG(γ0, γ1) =

∑∞

l=1
ωlΦ(γ0l + γ1lx), x ∈ X . (2)

Hence, under the more structured linear-DDP mixture model, the restriction γ1 > 0,

implemented with a distribution G
(1)
0 supported by R+, yields a sufficient condition for

dose-response curve realizations to be increasing with prior probability one.

For most bioassay experiments, it is natural to view the observed binary response as

a proxy for a latent continuous response variable. This procedure offers a tractable way

to estimate the parameters of the proposed DP mixture model. In particular, with the

restriction γ1 > 0, we can reparameterize the Bernoulli kernel, and, consequently,

the underlying latent response distribution, to a location-scale mixture of normal

distributions. Specifically, let µ = −γ0/γ1 ∈ R and τ = 1/γ1 > 0, and denote by

z the latent R-valued response associated with the binary outcome y. Then, we obtain

Pr(y = 1 | G, x) =

∫
Φ(γ0 + γ1x)dG(γ0, γ1)

=

∫
Φ ((−µ/τ) + (1/τ)x) dG∗(µ, τ 2) =

∫ {∫ x

−∞
N(z | µ, τ 2)dz

}
dG∗(µ, τ 2)

=

∫ x

−∞

{∫
N(z | µ, τ 2)dG∗(µ, τ 2)

}
dz = Pr(z ≤ x | G∗)

where the final probability arises under a location-scale normal DP mixture for

the latent tolerance distribution,
∫

N(z | µ, τ 2)dG∗(µ, τ 2), where G∗ ∼ DP(α,G∗0)

with G∗0 ≡ G∗0(µ, τ
2) an appropriate distribution on R × R+. Because the (µ, τ 2)

parameterization expedites prior specification, we work with the equivalent location-

scale normal DP mixture formulation (suppressing the G∗ notation in the following).
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2.2 Hierarchical Model Formulation

The general structure for the observations comprises data = {(xi, yij) : i = 1, ..., N ; j =

1, ..., ni}, where yij are the binary responses from the ni subjects at dose level xi.

Moreover, we denote by zij the latent (unobserved) continuous response corresponding

to yij. Inclusion of the latent responses facilitates posterior simulation; see Section 3.

Hereinafter, we use the notation 1ij(yij) to indicate the relationship between yij and

zij, where 1ij(yij) = 1 when zij ≤ xi, and 1ij(yij) = 0 otherwise.

Using the location-scale parameterization for the normal DP mixture tolerance

distribution developed in Section 2.1, the mixture model for the data is given by

yij | zij
ind.∼ 1ij(yij), i = 1, . . . , N ; j = 1, . . . , ni

zij | G
ind.∼
∫

N(zij | µ, τ 2)dG(µ, τ 2), i = 1, . . . , N ; j = 1, . . . , ni

with G | α,ψ ∼ DP(α,G0(µ, τ
2 | ψ)) and G0(µ, τ

2 | ψ) defined through independent

N(µ|β0, σ2
0) and inv-gamma(τ 2|c, δ0) components, where the inverse gamma distribution

has mean δ0/(c − 1) provided c > 1. Here, c is fixed and ψ = (β0, σ
2
0, δ0) denotes the

parameters of the DP base distribution which are assigned hyperpriors.

As a computational tool, we use a DP truncation approximation replacing G with

GL =
∑L

l=1 plδ(µl,τ2l ). Truncation from the outset provides closed form full conditionals

for posterior simulation via Gibbs sampling and a straightforward means for obtaining

inference for all objectives. Here, the (µl, τ
2
l ), given ψ, are i.i.d. G0, and the weights

pl arise from a truncated version of the stick-breaking construction: p1 = V1, pl =

Vl
∏l−1

r=1(1 − Vr), l = 2, . . . , L − 1, and pL = 1 −
∑L−1

l=1 pl, with the Vl i.i.d., given α,

from Beta(1, α). The truncation level can be chosen using distributional properties for

the tail probability of the stick-breaking weights, UL =
∑∞

l=L+1 ωl. More specifically,
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E(UL | α) = {α/(α + 1)}L and E(U2
L | α) = {α/(α + 2)}L (Ishwaran and Zarepour,

2000). These expressions can be averaged over the prior for α to estimate E(UL) and

Var(UL). Given a tolerance level for the approximation, the former expression yields

the corresponding value L. For both data examples of Section 4, we used a gamma(2, 1)

prior for α. Consequently, we set the truncation level to L = 50, which, after averaging

over the prior for α, results in E(U50) ≈ 0.000045, and Var(U50) ≈ 0.00000038.

To represent the mixture component with which each data point yij is associated,

configuration variables wij are introduced. Then, the hierarchical model for the data,

augmented with the latent continuous responses, can be written as follows:

yij | zij
ind.∼ 1ij(yij), i = 1, . . . , N ; j = 1, . . . , ni

zij | µ, τ 2,w
ind.∼ N(µwij

, τ 2wij
), i = 1, . . . , N ; j = 1, . . . , ni

wij | p
ind.∼

∑L
l=1 plδl, i = 1, . . . , N ; j = 1, . . . , ni

(µl, τ
2
l ) | ψ ind.∼ G0, l = 1, . . . , L,

(3)

where the prior distribution for p = (p1, ..., pL) is given by f(p | α) =

αL−1pα−1L (1− p1)−1(1− (p1 + p2))
−1 × · · · × (1−

∑L−2
l=1 pl)

−1. Here, µ = (µ1, . . . , µL),

τ 2 = (τ 21 , . . . , τ
2
L), and w = {wij : i = 1, . . . , N ; j = 1, . . . , ni}. In addition to the

gamma prior for α, we place normal N(mβ0 , s
2
β0

) and inv-gamma(Aσ2
0
, Bσ2

0
) priors on

β0 and σ2
0, respectively, and an exponential prior on δ0 with mean Bδ0 .

2.3 Prior Specification

Regarding the DP base distribution parameters, ψ = (β0, σ
2
0, δ0), empirical evidence

suggests robustness to their hyperprior choice. In general, we recommend setting the

shape parameter, c, of the inverse gamma distribution for the τ 2l , and of the inverse

gamma prior for σ2
0 to values that yield relatively dispersed distributions, but with
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finite variance. Then, working with the expressions for the marginal mean, E(z), and

variance, Var(z), of the latent responses under a single component of the mixture

model, we are able to define the hyperpriors through only the range of the dose levels.

In particular, E(z) = E{E(z|µ, τ 2)} = E(µ) = E{E(µ|β0, σ2
0)} = E(β0) = mβ0 , and

thus mβ0 can be specified by the midrange of the doses. Analogously, Var(z) = Var(µ)

+ E(τ 2) = Var(β0) + E(σ2
0) + (c− 1)−1E(δ0) = s2β0 + (Aσ2

0
− 1)−1Bσ2

0
+ (c− 1)−1Bδ0 .

Therefore, with c and Aσ2
0

specified, the variance components, s2β0 , Bσ2
0

and Bδ0 , can

be determined through a proxy for the marginal variance obtained by dividing the

range of the dose levels by 4 (or 6) and squaring.

The DP precision parameter α controls the number of distinct components, n∗, in

mixture model (3), that is, the number of distinct wij associated with the n′ =
∑N

i=1 ni

binary outcomes. In particular, for moderately large n′, E(n∗ | α) = α log{(α+n′)/α},

and such expressions can be used to guide prior choice for α. For the data examples of

Section 4.1 and 4.2, the gamma(2, 1) prior for α implies E(n∗) ≈ 10 and 16, respectively.

3. Posterior Inference

3.1 MCMC Posterior Simulation

We use blocked Gibbs sampling (Ishwaran and James, 2001) for simulation from the

posterior distribution of the DP mixture model in (3). Posterior samples for the model

parameters are used in inference for risk assessment as discussed in Section 3.2.

Each latent response zij is imputed based on the value of yij. If yij = 0 (yij = 1),

zij is drawn from a N(µwij
, τ 2wij

) distribution truncated below (above) at xi.

We denote the n∗ distinct values of w by w∗1, . . . , w
∗
n∗ , and let M∗

k = |{(i, j) : wij =

w∗k}|, for k = 1, . . . , n∗, and Ml = |{(i, j) : wij = l}|, for l = 1, . . . , L. Then, if l does

not correspond to a distinct component, the (µl, τ
2
l ) are sampled, given ψ, from G0. For
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the active components, that is, for l ∈ {w∗k : k = 1, . . . , n∗}, µw∗k arises from a normal

distribution with mean (σ−20 β0 + τ−2w∗k

∑∑
{(i,j):wij=w∗k}

zij)/(τ
−2
w∗k
M∗

k +σ−20 ) and variance

(τ−2w∗k
M∗

k + σ−20 )−1. Similarly, τ 2w∗k is drawn from an inverse gamma distribution with

shape parameter c+ 0.5M∗
k and scale parameter δ0 + 0.5

∑∑
{(i,j):wij=w∗k}

(zij − µw∗k)2.

Each subject-specific configuration variable wij is drawn from a discrete distribution

with probabilities proportional to plN(zij | µl, τ 2l ), for l = 1, . . . , L. The updates for

the vector of weights, p, and the precision parameter, α, are the same with a generic

DP mixture model (e.g., Ishwaran and Zarepour, 2000).

The conditionally conjugate priors used for the parameters of G0 lead to standard

updates for the components of ψ. Specifically, the posterior full conditional for β0 is

normal with mean (s−2β0 mβ0 + σ−20

∑L
l=1 µl)/(σ

−2
0 L+ s−2β0 ) and variance (σ−20 L+ s−2β0 )−1,

and for σ2
0 it is given by an inverse gamma distribution with shape parameter 0.5L+Aσ2

0

and scale parameter Bσ2
0

+ 0.5
∑L

l=1(µl − β0)2. Finally, δ0 has a gamma posterior full

conditional with shape parameter Lc+ 1 and rate parameter B−1δ0 +
∑L

l=1 τ
−2
l .

3.2 Inference for Risk Assessment

The most important inference under the quantal bioassay setting is for the dose-

response relationship. Expressed in terms of the tolerance distribution, and under the

DP truncation approximation, the dose-response curve in (2) becomes

D(x) ≡ Pr(y = 1 | G, x) = Pr(z ≤ x | G) =
∑L

l=1
plΦ ((x− µl)/τl) .

Section 2.1 elucidates the monotonicity property for the dose-response curve in terms

of the γ1 > 0 restriction, which carries over to the tolerance distribution formulation.

Another inferential objective is inversion, where interest lies in estimation of the
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dose-level, xq, corresponding to a specified probability, q. Posterior draws for xq are

obtained by numerically inverting the posterior realization of the dose-response curve

at each iteration of the MCMC algorithm.

An important feature of the linear-DDP mixture modeling framework is that it lends

itself to inference for calibration, which is a key risk assessment inferential objective for

certain types of experiments. Here, we consider a specified vector of responses, y0 =

{y0j : j = 1, ..., n0} and seek to estimate the dose level, x0, which is associated with this

new vector of responses. This inference can be obtained by augmenting the hierarchical

model with the components associated with y0 and expanding the parameter vector to

include the unknown dose x0. Because the DDP prior is defined over the uncountable

space X , it induces a proper hierarchical model formulation for any x0. Specifically,

the full hierarchical model, p({yij} | {zij}, x0)p({zij} | {wij},µ, τ 2)p({wij} | p), for

calibrating dose x0 is given by:

N∏
i=0

ni∏
j=1

{
1ij(yij)N(zij | µwij

, τ 2wij
)

L∑
l=1

plδl(wij)

}

where the prior for the (µl, τ
2
l ) and for p, and the hyperpriors for α andψ, are equivalent

to model (3). In Section 4, we experiment with both normal and uniform priors, p(x0),

for x0, obtaining empirical evidence that a plausible prior range for the calibrated dose

level suffices for robust posterior inference.

Regarding posterior simulation, conditional on x0, the main MCMC updates are

as in Section 3.1 now extended to i = 0, 1, . . . , N . The full conditional for x0 is

proportional to p(x0)
∏n0

j=1 10j(y0j), where 10j(y0j) = 1 (0) if z0j ≤ x0 (z0j > x0).

Hence, draws from the full conditional of x0 arise from a truncated version of its prior

distribution, truncated below at max{z0j : y0j = 1} and above at min{z0j : y0j = 0}.
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4. Data Illustrations

The performance of the linear-DDP mixture model was evaluated using two

synthetic data sets generated from tolerance distributions that exhibit skewness and

multimodality. Inference results were also contrasted with the single-p DDP prior

setting, discussed in Section 2.1, which supports increasing dose-response curves only

in prior expectation. In both cases, the linear-DDP model recovers successfully the

true dose-response curve with narrower uncertainty bands than the general DDP prior

model. Details from this simulation study are provided in Web Appendix A.

Here, we illustrate the methodology with two data sets, one studied throughout

the literature and the other an application to cytogenetic dosimetry.

4.1 Trypanosome Data

Ashford and Walker (1972) first analyzed data reporting the death rate of protozoan

trypanosome found in Table 1. Trypanosomes are parasites which do not grow readily

in artificial culture (when they do grow, they change from the blood form to the

insect form) and no reliable quantitative genetic characters have been found nor have

accurate methods been available to assess characters such as drug resistance. Here,

we look at results from the trypanosome sensitivity to the log concentrations of pure

neutral acriflavine (Walker, 1966).

Following the prior specification approach discussed in Section 2.3, we implemented

model (3) setting c = 5 and placing a N(5.1, 0.22) prior on β0, an inv-gamma(4, 0.07)

prior on σ2
0, and an exponential prior with mean 0.2 on δ0.

The posterior mean and 90% uncertainty bands for the dose-response curve are

shown in the left panel of Figure 1. The posterior mean estimate follows closely the

path of the observed data, and the interval bands include the majority of the points.
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The extremes of the observed proportions are at 0 and 1, which are known to be

burdensome for most parametric models. In general, the linear-DDP mixture model

captures well the non-standard, bimodal shape for the tolerance distribution.

The middle panel of Figure 1 includes the posterior estimates for dose levels, xq, for

inversion probabilities q = 0.05, 0.15, 0.25, and 0.5. The spread of the densities depends

on the width of the probability intervals around the dose-response curve at the given

response probability. The posterior range for x0.25 is comparable to that obtained by

Mukhopadhyay (2000), using a DP prior for the dose-response function.

Finally, we consider inference for the calibrated dose level, x0, which corresponds

to a new response vector comprising 26 positive responses from 52 subjects, that

is, n0 = 52 and
∑n0

j=1 y0j = 26, in the notation of Section 3.2. This new response

vector resembles the observed counts at dose 5.1, thus offering a useful setting for

study of sensitivity to the prior specification for x0. The right panel of Figure 1 plots

the posterior density for x0 under three different priors: a normal prior with mean

5.1 and standard deviation 0.07, a uniform prior on (4.9, 5.25), and a uniform prior

over the entire dose range. The general uniform prior results in the largest spread

and the spread decreases as the uniform support shrinks or switches to the normal

distribution. The specific normal prior leads to a relatively small amount of learning in

the resulting posterior density for the calibrated dose level. However, it is encouraging

that the normal prior and the uniform prior on the relatively wide range (4.9, 5.25)

yield similar posterior densities.

4.2 Cytogenetic Dosimetry Application

Cytogenetic dosimetry is a biological tool for dose assessment in cases of radiological

accidents and suspected overexposures. The main focus of these studies is to determine
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the relationship between the dosage of exposure to radiation and some measure of

genetic aberration. The typical experiment considers samples of cell cultures exposed

to a range of levels of an agent with some measure of cell disability recorded as the

response. The two main inferential objectives are prediction of response at unobserved

exposure levels, and inference for unknown dose levels given observed responses.

For an illustration, we consider part of a larger data set where blood samples from

individuals were exposed to 60Co radiation at doses of 0, 20, 50, 100, 200, 300, 400,

and 500 cGy (centograms). The resulting cultures were tested for binucleated cells

with a recorded number of micronuclei (MN). The full data set, found in Madruga

et al. (1996), groups the outcomes into none, one, or two or more MN; see Table 2

for the subset we work with here from healthy, older subjects. This particular ordinal

classification is used because when many MN are present, they can be difficult to count

exactly. We collapse to two classification groups, no MN and one or more MN, in order

to apply the linear-DDP Bernoulli mixture model. In particular, model (3) is fitted

setting c = 5 and using a N(200, 852) prior for β0, an inv-gamma(4, 500) prior for σ2
0,

and an exponential prior with mean 500 for δ0.

Plotted in the top panels of Figure 2 are posterior estimates of the dose-response

curve, and the inversion dose levels for q = 0.05, 0.15, 0.25 and 0.3. The 90% probability

bands of the dose-response curve are much tighter than those found in the trypanosome

data, as here the number of subjects per dose level is roughly 20 times larger. The data

is only observed to about 40% of the full curve, and therefore the intervals get much

wider beyond the largest experimental dose level. The inversion inference is interesting

in that at the smaller levels of q (0.05 and 0.15), the estimates of the corresponding

dose level have relatively narrow densities, whereas the larger values (0.25 and 0.3)

result in densities with heavier tails and substantially larger spread. This coincides
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with the uncertainty bands around the dose-response curve in these areas.

To illustrate inference for calibration, we consider two vectors of new responses

which are equivalent to the observed vectors at 400 cGy and 500 cGy. In each case, we

used a relatively dispersed normal prior for x0 centered at the corresponding observed

dose level with variance 452. Figure 2 provides results from the model fitted to the full

data set in Table 2, but also to the reduced data with the respective observations at

400 cGy and 500 cGy excluded. In the former case (Figure 2, bottom left panel), the

calibrated dose level posterior density captures fairly well the value of 400 cGy, and

interestingly, with a relatively small increase in uncertainty when the corresponding

data vector is not included in the model fit. For the 500 cGy dose level, excluding

the respective observations yields a challenging extrapolation test for the model with

data available up to dose 400 cGy and with less than 35% of the dose-response curve

observed. The value of 500 cGy is contained in the support of the resulting calibrated

dose distribution, but the corresponding density (Figure 2, bottom right panel) shows

a more noticeable effect from the extrapolation with a larger increase in uncertainty.

5. Discussion

We have presented a Bayesian nonparametric approach to the analysis of quantal data

from bioassay studies. The modeling approach is built from nonparametric mixing

driven by a simplified version of a dependent Dirichlet process prior, the linear-DDP

prior. The implied dose-response curve is increasing, the inversion inferential objective

becomes straightforward to address, and the calibration objective can be implemented

without immense computational complexity. We have provided illustration with a

commonly used data example which bears evidence of multiple modes and skewness

in the dose-response curve. Further demonstration through portions of a cytogenetic
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dosimetry data set reveals the practicality of the model.

Note that, under the single-p DDP mixture modeling approach discussed in Section

2.1, if the collection of mixing distributions {Gx : x ∈ X} is stochastically ordered in

x, then Pr(y = 1 | Gx) =
∫

Φ(θ)dGx(θ) is increasing in x. This provides a general

sufficient condition to create mixture models that support monotonic dose-response

curves through stochastic processes for the DDP atoms ηlX with increasing sample

paths. Of methodological interest are extensions of the linear-DDP prior based on more

general specifications for the DDP atoms, using structured Gaussian processes with

increasing realizations. This extension is not likely to offer significant practical utility to

the standard quantal bioassay setting where the entire dose-response curve is typically

observed. However, it has potential for more flexible calibration inference in cytogenetic

dosimetry where extrapolation for the dose-response relationship is necessary.

The cytogenetic dosimetry application provides the motivation for another

extension of the methodology to modeling for dose-response studies with outcomes

comprising an ordinal classification, as in the original experiment considered in Section

4.2. In this context, fully nonparametric mixture modeling is particularly attractive as

it enables different shapes for the distinct dose-response curves, and a more practical

modeling approach for a moderate to large number of ordinal categories than the model

in Kottas et al. (2002) based on stochastically ordered DP priors.

6. Supplementary Materials

Web Appendix A referenced in Section 4, and the Fortran 90 code for implementing

the MCMC algorithm presented in Section 3.1 are available with this paper at the

Biometrics website on Wiley Online Library.
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Table 1: Trypanosome data reported in Ashford and Walker (1972).

Log concentration 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4
Exposed 55 49 60 55 53 53 51 50
Dead 0 8 18 18 22 37 47 50



Table 2: Cytogenetic dosimetry data. The cell counts for the binucleated cells from
healthy, older subjects, as reported in Madruga et al. (1996).

60Co radiation ≥ 2 MN 1 MN 0 MN
0 cGy 2 31 920
20 cGy 8 41 989
50 cGy 14 56 933
100 cGy 32 114 939
200 cGy 67 176 794
300 cGy 59 209 683
400 cGy 107 256 742
500 cGy 143 327 771
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Figure 1: Trypanosome data. Left panel: posterior mean estimate (solid line) and 90%

uncertainty bands (dashed lines) for the dose-response curve. Middle panel: inversion

estimates xq for q = 0.05, 0.15, 0.25, 0.5. Right panel: posterior densities for the calibrated

dose level, given n0 = 52 and
∑n0

j=1 y0j = 26, under a N(5.1, 0.072) prior (dotted line), a

uniform prior on (4.9, 5.25) (dashed-dotted line), and a uniform prior across the full dose

range (solid line).
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Figure 2: Cytogenetic dosimetry data. Top left panel: posterior mean estimate (solid line)

and 90% uncertainty bands (dashed lines) for the dose-response curve. Top right panel:

inversion estimates xq for q = 0.05, 0.15, 0.25, 0.3. Bottom left panel: posterior densities for

the calibrated dose level given the observed vector at dose 400 cGy including the data vector

(dotted line) and leaving the vector out (solid line). Bottom right panel: posterior densities

for the calibrated dose level given the observed vector at dose 500 cGy including the data

vector (dotted line) and leaving the vector out (solid line).


