
Automatic Transitional Animation Between Visualizations

Abstract

We present a generic framework for animating between

different visualizations using polygon morphing. The mo-

tivation for this work arises from using many different vi-

sualization techniques (e.g. scatter plots, parallel coordi-

nates, etc.) to view complex, multi-dimensional data. When

transitioning from a visual representation that the user is

familiar with to one that is new or one that the user is un-

familiar with, the semantics of the new representation are

not always clear. We provide a tool that can be used as a

learning aid for a user to use their understanding of one

representation to learn a new one. Using the Prefuse toolkit

[7] we have implemented a tool that allows developers to

easily create two or more representations and animate be-

tween them without explicitly describing paths or shapes in

the animation.

1. Introduction

With all kinds of data being collected at an ever increas-

ing rate for different applications and domains such as busi-

nesses, social media, bioinformatics and health-care, sci-

ences, government and others, there is a need for smarter

and more sophisticated visualization techniques to analyze

and learn useful insights about these data sets. It is therefore

not surprising to see more research published in topics such

as novel visual mapping of data. Unfortunately, these new

visualizations are not always immediately intuitive for us.

There is usually some learning curve when it comes to un-

derstanding the visualizations and interpreting the results.

The goal of this paper is to provide tools to facilitate the

learning process of new visualization techniques – through

the use of animation. The central idea is to introduce new

visual mappings to users by first showing them visual repre-

sentations of data using techniques that they are already fa-

miliar with. Then, we use animation to transform that visual

mapping to the novel visual mapping that they are trying to

learn, and vice versa, until the visual mapping of data us-

ing the two techniques becomes apparent. For example, if a

user is familiar with scatter plots, but not with parallel coor-

dinates [9], an animation showing how one or more scatter

plots is transformed into parallel coordinates and back can

illustrate the concept behind parallel coordinates. Learn-

ing based on something that the users are already familiar

with can speed up their understanding of new ideas. This

approach is also quite similar to one of the ways we learn

new concepts: learn by example. In this context, the task

of learning a new concept is replaced with identifying and

replacing the variables in the familiar concept with those in

the new concept. Using animation to find the connections

between the variables will further facilitate the learning pro-

cess.

In addition, we argue that animating between visualiza-

tions alleviates the cognitive task of switching between the

semantics of different visualizations. For example, when

looking at two visualizations: a familiar display and a novel

display, side-by-side, it may be the case that important data

points emphasized in the first view are not emphasized in

the second view and vice versa. This adds the cognitive task

of “switching” between the semantics of the new and old vi-

sualizations. Animation allows us to explicitly “connect the

dots” between the two visualizations by illustrating how the

visual representation of one datum moves or transforms to

a different visual representation for the same datum.

Since we expect new visualization techniques to be cre-

ated on a regular basis, we want to be able to create the

animations that transforms from one representation into an-

other fairly quickly without too much custom coding, be-

yond specifications of how data in each representations are

mapped visually. So, the goal is to automate the process

of transforming from one mapping to another. Using the

scatter plot to/from parallel coordinates example, each data

point in a scatter plot corresponds to a line segment between

two parallel coordinates corresponding to the two axes of

the scatter plot. Thus, we need to provide a means of trans-

forming a data point at P(x,y) in a scatter plot illustration

to a line segment from P1(x,y) to P2(x,y) in a parallel coor-

dinate illustration. This can be achieved by having both P1

and P2 be co-located at P when they are in the scatter plot

display; and have the two end points of the line segment

move to their correct positions as the scatter plot display

is transformed into a parallel coordinate display. However,

what if the user is given a new visualization where each

multivariate data point is represented by, say, an ellipse with

the first and second axes of the ellipse mapped to different

data attributes? Can we transform from the scatter plot to

this new view? What about from parallel coordinates? Our

animation framework gives a simple solution to such a prob-

lem.

2. Related Work

Animation has been used in many different ways within

visualization from visualizing the performance of algo-

rithms [4] to an automatic approach for visualizing time

varying data [13]. This section will cover research related

to using animation as a “learning” aid. We will also briefly

cover some of the research in polygon morphing, though

our primary contribution is a framework for automatic ani-

mation between visualizations. Before we delve into these

though, we first describe some similarities and differences

between our approach and those provided by brushing and

linking [6]. This is an interactive technique used in conjunc-

tion with multiple views (usually using different visualiza-

tion techniques e.g. scatter plots and parallel coordinates,

etc.) wherein the user selects (brushes) a portion of the data

in one display, and the corresponding (linked) data in the

other displays are highlighted. This is an excellent tech-

nique for learning about how portions of a data set appear in

different displays, and indirectly learn about the visual map-

ping of the different displays as well. Compared to what we

present in this paper, brushing and linking are similar in that

both use multiple views, and both are capable of showing

relationships between multiple views. They are different in

that brushing is typically used on parts of the data. Selecting

the entire data set is possible but it would defeat the purpose

of learning about relationships among the multiple views.

Another aspect where the two are different is that brush-

ing and linking is an interaction technique primarily geared

towards understanding the data, while our animation tech-

nique is geared primarily towards understanding the novel

visual mapping.

2.1 Animation as a Learning Aid

While some research indicates that animation can in fact

be detrimental to learning [14], there is also research to sug-

gest the contrary: that animation can be an effective tool

used to help convey information that is difficult, if not im-

possible, to understand with static images [13]. Bartram

also explains in her thesis that “Movement is reported as

improving the visibility of targets embedded in ‘random or

cluttered’ fields especially away from the center.” In other

words, animation can be an effective tool in noisy/cluttered

displays. This is of particular importance with high dimen-

sional datasets due to their often complex representations.

Of course, one cannot forget the ACM distinguished doc-

toral dissertation of Marc Brown on algorithm animation. It

has inspired many of the highly informative and educational

videos of various sorting algorithms and other software al-

gorithms.

2.2 Polygon/Mesh Morphing

There are a number of options available for creating an-

imations of visualizations. Yu et al. were able to automate

animations for time-varying data [15]. Their approach gen-

erates an event graph which, combined with story-telling

techniques, is used to create animation.

Both VisIt [1] and ParaView [11] use a keyframe system

where the user can setup a series of “key frames” and then

use various types of interpolation to animate between them.

This system can remove a great deal of work from creat-

ing an animation; however, as Akiba et al. [2] point out,

creating such keyframes can be very difficult, especially if

the task is required of someone not familiar with computer

animation. Instead, Akiba et al. propose a template based

animation system, which they argue is easier to use and “en-

courages expressiveness.”

Our work is different in that the transformations and the

resulting animations are derived based on the specifications

of data mapping in individual displays. On the other hand,

our work is similar in the sense we are aiming for an auto-

matic animation as a learning tool. However, the tools men-

tioned thus far focus on creating animation from the data

exploration process to help understand the data being visu-

alized. Our work focuses on helping the user understand the

semantics of the visualization.

Earlier, we mentioned the simple case of transforming

points and line segments. A more general problem is the

task of morphing n-sided polygons. Two of the methods we

considered for morphing such polygons were the Extended

Circular Image (ECI) [10] and mesh parameterization [8].

The method developed by Kamvysselis works by map-

ping the normals of each side of the source and target shapes

onto the unit circle. He then interpolates between normals

to compute the intermediate shapes. This technique pro-

duces very desirable results, however, it is constrained to

convex polygons, and our morphing algorithm must handle

both convex and concave polygons. While it is possible to

transform concave polygons into a series of convex poly-

gons, we felt this added an unnecessary complication for

what we needed.

Mesh parameterization involves parameterizing the sur-

face of the source and target mesh, often using Barycentric

coordinates, and then developing a mapping between the

two parameterizations. This technique is prevalent in 3D

graphics, and if we extend our technique to 3D, this may

be the method we use. However, since we are only dealing

with 2D polygons in our current work, it was not necessary

to use this technique here.

3. Animation of Information Visualization

Techniques

To demonstrate animations among different methods of

displaying data, we consider the problem of using four

different visualizations to understand a high-dimensional

dataset. The four techniques used are:

• Multiple scatter plots

• Parallel coordinates

• Comparative column [5]

• Bullseye [5]

Scatter plots are very common and have been in use in

various disciplines through the ages. Parallel coordinates

is a fairly new invention and is popular in the visualization

community, but is not as well known in other disciplines

e.g. statistics community. The latter two visualization tech-

niques were introduced just this year and is unfamiliar to

most readers at this time. We briefly explain these two tech-

niques before proceeding with discussions on how to ani-

mate from one type of display to another.

The comparative column is a technique for visualizing

the difference between two attributes (or dimensions) with

respect to a third attribute. The difference is shown via the

x-axis while the third attribute is mapped to the y-axis. For

example, when comparing the average price of a gallon of

gasoline in different states to the national average, the dif-

ference is displayed along the x-axis. If there’s no differ-

ence, then the data point is located halfway between the

left and right borders. If the state’s average is higher or

lower than the national average, then it is placed either to

the left or right of the central line. The vertical axis could

be mapped to another variable such as the variability of the

price, or the rising/declining trend of the price, etc. We also

added color as a redundant color coding for this represen-

tation. A point’s hue and saturation is determined by its

horizontal position while vertical positioning is mapped to

brightness. This gives us the following color regions: left =

red, right = green, center = white, top = bright, bottom =

black (see Figure 4).

The bullseye is used to compare several different graphs

or attributes in a circular layout. In this case we are using

each sector of the bullseye to represent a different attribute.

One could think of these sectors as a series of scatter plots

lined up side by side and then transformed into polar coordi-

nates. We are visualizing three attributes in all the examples

shown in this paper, which we will call a1,a2,a3. For the

Figure 1. Example of an animation from two

scatter plots to parallel coordinates.

scatter plots, the left scatter plot is a2 vs a1 and the right

scatter plot is a3 vs a2. In general if we have n attributes,

then the extents of the ith scatter plot from the left would be

s(i) = [iW,(i+1)W]× [0,H] where W and H are the width

and height of each scatter plot respectively. We then define

the the extent b of the ith sector in the bullseye in polar coor-

dinates as follows: b(i) =
[

i 2π
n−1

,(i+1) 2π
n−1

]

× [0,R] where

R is the radius of the bullseye and n > 1 is assumed. See [5]

for more detailed information on how these techniques can

be used.

Now that we have introduced the less familiar tech-

niques used, we continue with the animations among

them. We first note that if we were to create transi-

tional animations between m visualizations, we would

need to manually create
m−1

∑
i=1

i =
m(m−1)

2
anima-

tions, hence requiring 6 animations to be created for

the examples shown in this paper. Some of these are

shown in Figures 1 to 5. The animations among the

Figure 2. Example of animation from a com-

parative column display to parallel coordi-

nates. Notice that early on in the animation

we can get a sense of the mapping between

points and polylines. For example, it is easy

to see which type of polyline corresponds to

darker (low valued) points.

different visualization techniques are available from:

http://avis.soe.ucsc.edu/images.anim/morphAnims.ogg

Also, if we added another new visualization, we will

need to manually create m new animations. Even using

a keyframe-like system, this would become extremely

tedious. A keyframe system would make automatic inter-

polation between similar shapes possible. For example,

animating from one scatter plot to one bullseye sector is

simply a matter of interpolating between shape positions

and should only require two keyframes: a start and end

position. However, what if we want to animate between a

scatter plot and parallel coordinates or elliptical glyphs as

described in the introduction? Simple keyframes are not a

viable option in these situations.

We will now explore some of our examples more closely.

Consider the blue dot in the bottom right of the left scatter

plot in Figure 1 as well as the blue dot in the top right of

the right scatter plot in the same figure. The animation

gives the user a sense of the slope of each line associated

with these points (please see the associated animation at

http://avis.soe.ucsc.edu/images.anim/morphScatterPCoord.ogg).

Figure 2 shows a similar result. Once again it

is fairly easy to see the final shape a point will

turn into early on in the animation (please see

Figure 3. Example of animation from a scatter

plot to a bullseye. This frame is near the end

of the animation sequence.

Figure 4. Example of animation from a scatter

plot to a comparative column.

http://avis.soe.ucsc.edu/images.anim/morphCCPCoord.ogg).

Figures 3 and 4 show the final frames of animating from

multiple scatter plots to a bullseye and comparative column

respectively while Figure 5 shows how the (x,y) coordinates

of points map to (θ ,r) in the bullseye.

4. Animation Framework

In order to provide an automated means of transforming

a data point in one visual representation to another, the key

ingredient is the ability to morph between two different rep-

resentations of the same data point. We achieve this using

a general interface described in Figure 7 using an abbrevi-

ated Unified Modeling Language (UML) [3] diagram. This

represents the core design of our framework while Figure 8

describes the overall concept of the TransitionRenderer.

Our design is modeled directly from Figure 8. When a

developer wishes to create a new visualization, he or she

will create a new realization of the Representation inter-

face where a method of the form

getShape(data:Datum):RepresentationItem

must be implemented. The RepresentationItem is a sim-

Figure 5. Example of animation from parallel

coordinates to a bullseye display. This frame

is near the end of the animation sequence.

As in Figure 2, it is easy to see the mapping

between points and lines. In this case, there

is one line segment per point, unlike Figure

2 where one point is mapped to two line seg-

ments.

Figure 6. An illustration explaining how the

projections are created. Each point circled in

red is a point making part of the outline of the

transition projection.

Figure 7. UML overview of the transition

framework. The TransitionRenderer acts as

the Prefuse renderer [7] and is initialized with

one or more Representations. A developer can

then animate between Representations by sim-

ply setting the from and to fields in the Tran-

sitionRenderer instance and calling the ani-

mation (e.g. using the ItemAction class in

Prefuse).

ple container which stores an array of polygons, colors, and

sizes. For example, the scatter plot and bullseye representa-

tions in the examples provided in this paper would return a

RepresentationItem containing two polygons, each poly-

gon in the shape of a circle. For the parallel coordinates im-

plementation there would be two rectangles, and the com-

parative column representation would contain a single cir-

cle.

Once a developer has all of his or her Representations

created, he or she then passes them to the TransitionRen-

derer. Once this step is complete, all that is needed to ani-

mate between representations are the following steps (each

being one method call to the TransitionRenderer):

1. setFrom(r:Representation) sets the source repre-

sentation

2. setTo(r:Representation) set the target represen-

tation

3. runAnimation(t:Double) start the animation last-

ing for t milliseconds

Figure 8. The TransitionRenderer can take in

several Representations, but only interpolates

between two of them for a single animation.

4.1 Polygon Interpolation

As Figure 7 might suggest, within the TransitionRen-

derer is where the whole of the polygon morphing work is

done as well as interpolation between color and any other

visual features contained within the RepresentationItem.

As mentioned earlier, each datum is described as an array

of polygons, and our algorithm for interpolating between

these two arrays of polygons is as follows:

1. Make all polygons in each array have the same number

of points

2. Linearly interpolate between the points of matching

polygons (see Figure 9)

Matching polygons can be described as follows: let the

source and target arrays of polygons be polys1 and polys2

respectively and let polys1.length ≥ polys2.length,

then

polys1[i] matches polys2[min(i,polys2.length−1)]
(1)

or

polys1[i] matches polys2[

⌊

i
polys2.length

polys1.length

⌋

] (2)

Either can be used.

There is an optional intermediate step between 1 and 2

which is to ensure that the points of each matching polygon

line up. That is, to avoid a point on the left side of the

source polygon getting interpolated with a point on the right

side of the target shape. If this were the case, the result

would be a “flipping” or “mirroring” effect of each datum’s

representation in the animation. We have left this step out

for now since such an effect may be desirable.

We will now describe the morphing method more for-

mally. Let the method which does the shape morphing de-

scribed above be called φ . We will also use the following

notation:

Figure 9. Illustrating how points are added to

polygons to make all polygons have an equal

number of points.

• P
k
n1,n2,...nk

= k polygons where ni is the number of

points in the ith polygon

• P
k
n = k polygons where each polygon p ∈ P

k
n has n

points.

• Let p : Pk
n1,n2,...nk

, then pi[j] ∈ R
2 = the jth point in the

ith polygon of p

• Let p : Pk
n1,n2,...nk

, then |pi| = the number of points in

the ith polygon

P
k
n1,n2,...nk

and P
k
n are synonymous with the array of poly-

gons in a RepresentationItem. Then φ has the following

type:

φ : Pk
n1,n2,...nk

×P
l
m1,m2,...ml

×R 7→ P
k
n

where n = max(n1,n2, . . . ,nk,m1,m2, · · · ,ml) and k ≥ l.

The general process of φ in pseudo code is as fol-

lows:

φ(p1:Pk
n1,n2,...nk

, p2:Pl
m1,m2,...ml

, t:R):

(pHighRes1, pHighRes2) ← γ(p1, p2)
return(φ ′(pHighRes1, pHighRes2, t))

The method γ ensures all polygons have the same

number of points (i.e. step one of the algorithm described

at the beginning of section 4.1) and has the following type:

γ : Pk
n1,n2,...nk

×P
l
m1,m2,...ml

7→ P
k
n×P

l
n

γ does the following given two arrays of polygons:

1. Find the polygon with the most points. Call this poly-

gon M.

2. For each polygon p in each array, insert points into p

until |p| = |M| (i.e. p has the same number of points

as M).

φ ′ does the actual work of morphing each polygon within

the two arrays and has the following type:

φ ′ : Pk
n×P

l
n×R 7→ P

k
n

The algorithm is quite simple. Assuming that every poly-

gon has the same number of points, φ ′ linearly interpolates

between the points of matching polygons (where matching

is the same as described in equations 1 and 2). In pseudo

code:

φ ′
(

p1 : Pk
n,p2 : Pl

n,t:R
)

:

Let p:Pk
n

Then

for i ← 1 to k

Let i′←
⌊

i l
k

⌋

for j ← 1 to n

pi[j]← p1i[j]+ t (p2i′ [j]−p1i[j])
return p

Where k ≥ l is assumed.

5. Implementation

For visualizations and animations, we are building off of

the Prefuse framework created by Heer et al. [7] using Java.

While Prefuse uses Java2D to render, our technique can be

applied to any system which uses polygons for rendering,

and could (in theory) easily translate to a system such as

OpenGL using a polygon triangulation method [12].

Since we are using Java2D as the rendering engine, per-

formance is limited to a relatively small number of items.

On a modern desktop, performance starts to lag consider-

ably at around 200 polygons, with 13 points per polygon.

This is not necessarily a problem since our aim is to help

understand the semantics of new visualizations with respect

to old ones, which may be more successful with less clutter

on the screen.

6. User Study

We performed a short, informal user study with four par-

ticipants with the following backgrounds: PhD visualiza-

tion student, retired high school math teacher, chemist, and

the managing editor of a PR firm. We will refer to them as

V, M, C, and E respectively. The task for each participant

was to match the points in two scatter plots to their respec-

tive line segments in parallel coordinates (essentially what

is happening in figure 1). They were first given two static

images to work with (the start and end of the animation).

Then, each participant was asked the following questions

before watching the animation:

1. How long did it take to finish?

2. Are you confident in your answers?

After these questions were answered, each participant was

asked to watch the animation from scatter plot to parallel

coordinates, both forward and reverse. After this was done,

they were asked:

1. Is it easier to tell which points correspond to which

lines after watching the animation?

2. Would watching the video first have reduced the time

it took to match each line? If so, by how much?

V was the only participant with prior knowledge of paral-

lel coordinates. Both V and M took about ten minutes and

were both fairly confident in their answers (M more than

V). C took about two minutes with moderate confidence. E

answered the first two questions only after watching the an-

imation, but took about 7 minutes and was very confident.

V felt the animation didn’t help very much, but also said

it was essentially “stating the obvious.” M said that under-

standing the mapping between each visualization was most

important for understanding how parallel coordinates work,

but that the animation made this mapping “very clear.” E

felt that understanding the mapping between the two visu-

alizations was “impossible” without the animation. C was

not entirely sure how useful the animation was as C had to

replay it several times for it to make sense, and even then C

was unsure about a few points.

We realize that this study is quite informal and very pre-

liminary. It does show some promise of our approach. We

plan to polish the animations further and run a more formal

user study.

7. Conclusion and Future Work

In summary, we have implemented a framework in Java

that automatically animates between different displays us-

ing polygonal representations. With the ever-increasing

number of visualizations of complex and high-dimensional

data, it is often difficult to jump from the semantics of one

visualization to the next. Providing a mechanism to auto-

matically animate between these visualizations drastically

reduces the work required of the developer (by a factor of
m(m−1)

2
) as well as reduces the cognitive load of the user.

We believe there is much room for improving the per-

formance of the mesh interpolation algorithm in order to

accommodate large-scale visualizations. We are also cur-

rently working on a version which uses hardware rendering

which should greatly increase performance.

References

[1] VisIt, https://wci.llnl.gov/codes/visit/.

[2] H. Akiba, C. Wang, and K.-L. Ma. Aniviz: A template-

based animation tool for volume visualization. IEEE Com-

puter Graphics and Applications, 30:61–71, 2010.

[3] G. Booch, I. Jacobson, and J. Rumbaugh. OMG Unified

Modeling Language Specification, 2000.

[4] M. Brown and R. Sedgewick. Techniques for algorithm an-

imation. IEEE Software, 2:28–39, 1985.

[5] N. Cesario, A. Pang, and L. Singh. Visualizing node at-

tribute uncertainty in graphs. In SPIE Conference on Visu-

alization and Data Analysis (VDA), 2011.

[6] S. G. Eick and G. J. Wills. High interaction graphics. Eu-

ropean Journal of Operational Research, 81(3):445 – 459,

1995.

[7] J. Heer, S. K. Card, and J. A. Landay. prefuse: a toolkit

for interactive information visualization. In Proceedings of

the SIGCHI conference on Human factors in computing sys-

tems, CHI ’05, pages 421–430, New York, NY, USA, 2005.

ACM.

[8] K. Hormann, B. Lévy, and A. Sheffer. Mesh parameteriza-

tion: theory and practice. In ACM SIGGRAPH 2007 courses,

SIGGRAPH ’07, New York, NY, USA, 2007. ACM.

[9] A. Inselberg, B. Dimsdale, A. Chatterjee, and C.-K. Hung.

Parallel coordinates: survey of recent results. In Human

Vision, Visual Processing, and Digital Display IV, volume

1913, pages 582–599, Feb. 1993.

[10] M. Kamvysselis. 2d polygon morphing using the extended

gaussian image, 1997.

[11] Kitware. ParaView Guide. Kitware, Version 3 (February

2008). http://www.paraview.org.

[12] J. O’Rourke. Computational Geometry in C. Cambridge

University Press, 1998. Hardback ISBN: 0521640105; Pa-

perback: ISBN 0521649765.

[13] B. L. Ruth, L. R. Bartram, and S. F. University. Enhancing

information visualization with motion, 2001.

[14] B. Tversky, J. B. Morrison, and M. Btrancourt. Anima-

tion: can it facilitate? International Journal of Human-

computer Studies / International Journal of Man-machine

Studies, 57:247–262.

[15] L. Yu, A. Lu, W. Ribarsky, and W. Chen. Digital story-

telling: Automatic animation for time-varying data visual-

ization. Computer Graphics Forum (Special Issue of Pacific

Graphics 2010), 34(5), 2010.

