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Abstract

There is increased interest in the use of color barcodes to
encode more information per area unit than regular, black-
and-white barcodes. For example, Microsoft’s HCCB tech-
nology uses 4 or 8 colors per patch. Unfortunately, the ob-
served color of a surface depends as much on the illuminant
spectrum (and other viewing parameters) as on the surface
reflectivity, which complicates the task of decoding the con-
tent of the barcode. A popular solution is to append to the
barcode a “palette” with the reference colors. In this pa-
per, we propose a new approach to color barcode decoding,
one that does not require a reference color palette. Our al-
gorithm decodes groups of color bars at once, exploiting
the fact that joint color changes can be represented by a
low-dimensional space. Decoding a group of bars (a “bar-
code element”) is thus equivalent to searching for the near-
est subspace in a dataset. We also propose algorithms to
select subsets of barcode elements that can be decoded with
low error probability. Our experimental results show that
our barcode decoding algorithm enables substantial infor-
mation rate increase with respect to system that display a
color palette, at a very low decoding error rate.
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1. Introduction
1-D and 2-D barcodes have become tremendously pop-

ular as a means for information embedding. The goal of a
barcode is to encode information with high spatial density
while ensuring robust reading by an optical system. Typical
barcode technology use dark ink on a light-colored surface
(or vice-versa); the resulting spatial pattern encodes the in-
formation.

In order to increase the density of information, differ-
ent ink colors could be used. For example, Microsoft’s
High Capacity Color Barcode (HCCB) technology [12]
uses 2-D barcodes enhanced with four or eight different
colors. This technology, marketed as “Microsoft Tag”
(tag.microsoft.com), is becoming increasingly widespread

in applications such as retail, publishing, and transit. The
density of information (in bits per area unit) is proportional
to log2 N , where N is the number of colors used. Thus, it
would be desirable to use a large number of colors to embed
more information in the same barcode. For example, using
16 colors instead of 4 would allow one to encode twice as
many bits in the same area.

The main problem with using many colors in a barcode
is that the observed surface color depends not only on the
surface reflectance spectrum, but also on the (unknown) il-
luminant spectrum, which thus represents a nuisance pa-
rameter. Consequently, determining the color index of each
surface patch in the barcode is a challenging operation, es-
pecially if multiple light conditions (indoor/outdoors) are
expected. Other nuisance parameters include: ; color drift
during printing; color fading; unknown or poorly calibrated
camera color response; camera non-linearity; color mix-
ing from two nearby patches due to blur; quantization and
noise.

The strategy adopted by the HCCB detection algo-
rithm [12] is to identify four clusters in color space using
mean shift, and to assign each cluster center to one of the
colors in a palette, contained in the barcode itself. Although
this strategy has proven effective for the limited number of
colors in an HCCB barcode, color clustering is not guaran-
teed to work well when many more colors are present. In
addition, this strategy only works for dense barcodes, with
the number of patches largely exceeding the number N of
colors available, so that the addition of the color palette to
the barcode has minimum impact on the spatial density of
information.

This contribution takes a different approach, and con-
siders color barcodes that can be decoded under multiple
illuminants without the need to display a color palette or
a reference color. Our strategy is to consider groups of k
color patches (with k ≥ 2), and model their evolution due
to changing illuminant using a low-dimensional linear sub-
space. Thus, each group of k colors (a barcode element) is
represented by one such subspace. When a group of k color
patches is observed, our algorithm does not attempt to de-
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Figure 1. An example of HCCB code. The rightmost four patches
in the last row (shown here with a gray border for display purpose)
represent the palette of reference colors.

code each color independently. Instead, the whole group is
decoded by finding the nearest subspace in a dataset. We
show experimentally that this algorithm enables relatively
information rate (average number of bits per bar) with very
low probability of incorrect detection. In particular, our re-
sults show that this algorithm has the potential to convey
more information for the same area than technology such
as HCCB that requires display of the reference colors for
correct decoding.

Note that this article focuses only on algorithms for de-
coding the color information in a barcode. Other important
issues such as detecting the presence of a barcode in the im-
age, or localizing each patch individually, are outside the
scope of this work.

2. Related Work

There is surprisingly little research work in the liter-
ature on the topic of color barcodes besides Microsoft’s
HCCB technology cited earlier. Perhaps the first reported
attempt to use color in a 2-D barcode can be found in a
patent by Han et al. [8], who used reference cells to pro-
vide standard colors for correct indexing. This technology,
named ColorCodeTM, is marketed by Colorzip Media (col-
orzip.com). A different type of color barcodes [14] is mar-
keted by ImageId (imageid.com). Bulan et al. [3] proposed
to embed data in two different printer colorant channels via
halftone-dot orientation modulation. Grillo et al. [7] used 4
or 16 colors in a regular QR code. PM codes [16] use color
to define layers, each of which makes up a 2-D barcode.
Kato et al. [9] select colors that are maximally separated
in a plane of the RGB color cube. The same type of color
barcode (named MMCC) was used in a study the effect of
JPEG compression on decoding [15]. Pei et al. used four
colors in a color barcode technology named “Continuous
Color Barcode Symbols” [13].

None of these previous works tried to model the changes
of the observed color due to changing illuminant, except
for the patent of Sali and Lax [14], which uses a k-means
classifier to assign the (R,G,B) value of a color patch to
one reference color. Note that existing color constancy al-
gorithms (e.g.[10, 6, 5, 4, 2]) are not of much use here.
Classic color constancy assumes that neither the surface

reflectance nor the illumination are known a priori, and
aims to infer the surface colors under some specific scene
hypotheses (e.g., gray world model, low-dimension illumi-
nant/reflectance spectra). In our case, we have full control
over the selection of the surface colors that can be part of a
barcode. This facilitates detection, but also poses the prob-
lem of which surface colors and color combinations are best
suited to the task. Closest to our work is a recent paper by
Wang and Manduchi [17], who studied the problem of infor-
mation embedding via printed color. Their algorithm used
one or more reference patches of known color, seen under
the same illuminant as the color to be decoded. Observation
of the reference patch(es) produces an estimate of a para-
metric color transformation between a canonical illuminant
and the current illuminant, which is then used to decode the
information-carrying color patches. The reference patches
thus play a similar role to the color palette attached to the
HCCB barcode, without the need to display all colors in the
palette (usually one or two reference color patches suffice).

Our study borrows the idea of statistical modeling of
joint color changes from the work on color eigenflows by
Miller and Tieu [11]. However, rather than trying to rep-
resent the variation of all printable colors as a function of
illuminant, we concentrate on the variation of small groups
of printed colors.

3. Information Rate
We assume that the patches in a color barcode are built

from a set CN of N reference patches1 A length k barcode
element is an ordered set of of k reference patches extracted
from CN . For reasons discussed in Sec. 5, we assume that
the patches in a barcode element are selected without re-
placement (i.e., all color patches in a barcode element are
different from each other). We also assume that only a sub-
set Bk,x of the set of all possible length k barcode elements
Bk can be used to build a barcode, where x denotes the pro-
portion of elements of Bk in Bk,x (with 0 < x ≤ 1).

A barcode is the juxtaposition (in any spatial pattern)
of n barcode elements, resulting in K = nk bars. The
information rate R of a barcode2 (measured in bits per bar)
is defined by the logarithm base 2 of the number of different
symbol that can be represented by the barcode, divided by
the number of bars:

R =
1

k
log2

xN !

(N − k)!
(1)

Note that if k � N , the following approximation holds:

R ≈ log2 N +
log2 x

k
(2)

1Note that the words “patch” and “bar” are used interchangeably in this
paper to mean a region with uniform color.

2Note that in communication theory, “information rate” usually rep-
resents the average entropy per symbol. Our definition assumes that all
symbols are equally likely.
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Figure 2. The maximum information rate R̄max(K) for a barcode
that displays its reference colors as a function of the barcode length
K.

The goal of a barcode decoder is to infer the index of
each observed barcode element in Bk,x. The mainstream
approach to color barcode decoding (e.g. [8, 12]) assumes
that N patches in the barcode are reserved to display the
reference colors. This allows for faithful decoding by com-
paring the color of the patches in the barcode against the
displayed reference colors. However, this solution comes
at the cost of reduced information rate, since the N refer-
ence patches cannot be used to encode information. The
information rate in this case is (assuming that each patch is
decoded independently):

R̄(K,N) =

(
1− N

K

)
log2 N (3)

It is instructive to compute the maximum information rate
achievable with this system as a function of the barcode
length K (shown in Fig. 2 for K ≤ 120):

R̄max(K) = max
N

R̄(K,N) (4)

For example, the maximum information rate of a a length
60 barcode that displays its reference colors is of about 3
bits/bar, meaning that this barcode cannot carry more than
180 bits. This value of information rate is obtained for
N=16 reference colors. Increasing the number of refer-
ence colors decreases the information rate for this barcode
length, as the gain due to the higher number of symbols that
can be represented by each bar is undermined by the fact
that fewer patches are available for carrying information.

Along with the information rate, it is important to con-
sider the error rate. Let PE(k, x) be the probability of de-
coding error (incorrect identification) of a generic barcode
element in Bk,x. The probability of decoding error for the
whole barcode, assuming that decoding errors for the in-
dividual barcode elements in the barcode are statistically

independent events, is:

PE(K, k, x) = 1− (1− PE(k, x))K/k (5)

Note that, though a convenient working hypothesis, the as-
sumption of independent decoding error may not hold true
in all situations, and should be tested experimentally.

Some qualitative considerations can be drawn from (1)
and (5). The information rate R grows linearly with log2 N
(as long as k � N ) and with log2 x. Increasing k in-
creases the information rate (note that the second term in
the r.h.s. of (1) is negative), and this increase is all the more
noticeable for small values of x. For example, if x = 0.02,
then increasing k from 3 to 4 adds almost 0.5 bits per bar.
For what concerns the probability of incorrect decoding, it
grows with the number of bars K in the barcode. The de-
pendence of PE(k, x) on k and x is more complex, and is
the object of the work described in the next sections.

In conclusion of this section, we point out that we are not
considering any form of channel coding to reduce the de-
coding error rate at the cost of increased redundancy. Chan-
nel coding, which is used commonly for barcodes, could
certainly be implemented in the barcodes considered here
as well.

4. Barcode Element Decoding
4.1. The Dimensionality of Joint Color Spaces

Decoding a barcode element means finding its index in
Bk,x based on the observed colors c = [c1, . . . , ck]T of its
patches, where ci = [cRi , c

G
i , c

B
i ]T is an (R,G,B) color vec-

tor. As well known, a variation of the illuminant spectrum
determines a variation of the perceived colors. A popular
model to describe the observed color of a Lambertian sur-
face [10] assumes that the spectra of the surface reflectances
and of the illuminants live in finite-dimensional spaces of
dimension Nref and Nill respectively. Thus, the observed
color of a surface s under a given illuminant is equal to

c(v) = Φsv (6)

where v is a vector of length Nill containing the coefficients
of the illuminant with respect to the chosen basis, and Φs

is a full-rank 3 × Nill matrix whose entries are a function
of the illumination and reflectance basis vectors as well as
of the spectral sensitivities of the camera. Note that, since
Nill ≥ 3 in general, the rank of Φs is 3, making the de-
coding of an individual color c hopeless without some prior
knowledge of the scene or of the illuminant. If, however,
multiple colors seen under the same illuminant are decoded
at once, the task is less daunting. For example, consider the
vector c(v) formed by the colors in the barcode elements as
defined above. Then c(v) = Φv with

ΦT = [ΦT
1 | . . . |ΦT

k ] (7)
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where
rank(Φ) = min(3k,Nill) (8)

Hence, the vector c ∈ R3k is constrained to live in a sub-
space S of dimension of at most Nill. This observation is
critical for our decoding algorithm, as discussed next.

4.2. Joint Subspace Generation

Our decoding algorithm begins by modeling the sub-
spaces S(i) of all length k barcode elements. We have
considered two approaches to build these subspace. In the
first case, each barcode element is seen under a wide vari-
ety of illuminants, and a subspace of suitable dimension M
is built from these observations via Principal Component
Analysis. In practice, one only needs to take images un-
der multiple illuminants of the N reference patches, build
vectors c from these images for each barcode element, and
compute the SVD of the resulting matrix. This procedure
produces accurate subspace modeling; in practice, however,
it may be unwieldy, because each subspace depends on the
color patches as well as on the characteristics of the camera
used to observe them. This means that the whole training
procedure (including taking pictures of the patches under
different illuminants) would have to be repeated each time
a different camera is used or the colors are printed with a
different printer. We thus consider a second approach to
subspace modeling, which, albeit less accurate, enables a
much sample training procedure. This approach relies on
the diagonal (or Von Kries) model of color changes, which
assumes that each color channel changes as a result of an il-
luminant change by a multiplicative factor that depends on
the illuminant but not on the reflectant:

cs(v2) = Dv1→v2cs(v1) (9)

where Dv1→v2 is a diagonal matrix. It is easy to see that, in
this case, c(v) = Φv with

ΦT =

 cR1 0 0 cR2 0 0 cR3 . . .
0 cG1 0 0 cG2 0 0 . . .
0 0 cB1 0 0 cB2 0 . . .

 (10)

The three columns of Φ form an orthogonal basis of the
subspace. In practice, calibrating the algorithm for a new
camera or a new set of reference colors can be performed
simply by taking a single picture of all N reference patches
under any illuminant. This allows the system to immedi-
ately generate a basis for each barcode element by building
the corresponding matrix Φ.

4.3. Nearest Subspace Decoding

Given the observed color vector c of a barcode element,
we decode it by assigning it to the subspace S(i) that has the
minimum distance to c (where the distance of c to S(i) is
defined in the usual way by the Euclidean distance between

c and its projection onto S(i)). Nearest subspace search is
a common technique in Computer Vision. It was shown by
Basri et al. [1] that it is possible to map subspace S and
query item c to points in Rd′

for some d′, in such a way that
the Euclidean distance between these two points increases
monotonically with the distance of c to S, thereby enabling
the use standard nearest neighborhood techniques (e.g. k-d
trees) for barcode element decoding.

4.4. Barcode Elements Subset Selection

Nearest subspace decoding produces a certain probabil-
ity of error PE , defined as the average probability of de-
coding error over all barcode elements. Note that PE con-
tributes to the probability of decoding error for a barcode
formed by n barcode elements as by (5). If PE is larger
than desired, one may reduce the cardinality of the subspace
elements by only selecting a subset Bk,x of Bk. Intuitively,
a smaller set provides fewer opportunities for misclassifica-
tion, at the cost of reduced information rate.

Selection of a proportion x of barcode elements that min-
imizes the associated PE is computationally very expensive.
In particular, if one barcode element is removed from Bk,
the new empirical probability of error needs to be recom-
puted for all barcode elements. We have considered several
techniques to reduce the complexity associated with subset
selection. One possible approach is to use subspace dis-
tance as an indicator of the probability that two barcodes
could be confused with each other. We adopt the follow-
ing definition of distance between two subspaces S1 and S2
with dimension d1 and d2, respectively [18]:

dist2(S1,S2) = max(d1, d2)− ‖ΦT
1 Φ2‖F (11)

where Φ1, Φ2 are any orthonormal basis matrices of S1 and
S2, respectively, and ‖ · ‖F represents the Frobenius norm.
Fig. 3 shows the effect of pairwise subspace distance on
the probability of error. More precisely, we considered all
barcode elements that could be built with N = 24 patches
and k bars (see Sec. 5 for details about our experimental
dataset). We then estimated (via cross-validation over mul-
tiple illuminants) the probability that the barcode element
i is incorrectly decoded as j with i 6= j. Obviously, the
sum of all these probabilities, divided by the number of bar-
code elements, gives the probability of incorrect decoding
PE . To build the plot in Fig. 3, we ordered all length k bar-
code element pairs according to decreasing distance. Then
we computed the cumulative sum of all probabilities of de-
coding i as j, divided by the number of barcodes. The plot
clearly shows that the contribution to the overall probability
of decoding error PE is due for the most part to the bar-
code element pairs that are closest to each other. This sug-
gests that barcode element subset selection could be accom-
plished based on pairwise subspace distance. For example,
for small k, we adopt the following greedy strategy. Start
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Figure 3. The cumulative probability of incorrect decoding as a
function of the proportion of ordered barcode element pairs con-
sidered for k = 3 (see text). All subspaces have dimension of
2.

from a barcode element chosen at random. At each itera-
tion, add to the subset the barcode element that maximizes
the minimum subspace distance to all barcode elements al-
ready selected. For larger values of k, even this procedure
may become too computationally intensive, and we resort to
a simpler strategy. First, we compute the probability of in-
correct decoding for each barcode element. Then, we build
the subset from the barcode elements that have the smallest
probability of incorrect decoding.

5. Experiments
The reference color patches for our experiments were se-

lected from a checkerboard of 512 colors, uniformly sam-
pled in (R,G,B) color space, printed on paper by a regu-
lar printer. Images were taken of the checkerboard with a
Canon EOS 350D camera in raw (CR2) format under 69
different lighting conditions (including direct sunlight, dif-
fuse skylight with overcast sky or under cast shadow, and
various types of artificial light). We selected ten representa-
tive illuminants by k-means clustering of the observed color
values of a white patch in the set.

We then selected two sets of reference color patches, C24
and C12 ⊂ C24 for N = 24 and N = 12 respectively, us-
ing the greedy strategy introduced in Sec. 4.4. The selected
colors are shown in in Fig. 4. Synthetic images of all bar-
code elements for k ranging between two and five were built
from the average color values of the images of the reference
color patches seen under the ten representative illuminants
(where all patches forming a barcode elements were seen
under the same illuminant). For each set of length k bar-
code elements, we extracted subsets with various propor-
tion x as discussed in Sec. 4.4. For each such subset, we
computed the probability of incorrect decoding PE(k, x) as
follows. We ran five rounds of cross-validation, each time

Figure 4. The 24 color patches selected for our tests. The first two
columns contain the colors for the tests with N=12.
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Figure 5. For each one of the 24 reference colors, the plot shows
the number of barcode elements selected with k = 5 and x =
0.003 containing that color.

picking five illuminants at random, learning the subspaces
for each barcode element considered based on its images
under these illuminants, and testing each barcode element in
turn on one of the remaining illuminants, randomly chosen.
We counted the number of times any barcode element was
incorrectly decoded, and divided the result by the number of
cross-validation rounds (five) and by the number of barcode
elements in the subset (equal to x · 24!/(24− k)!). We also
tested the decoding algorithm based on the diagonal model
discussed in Sec. 4.2. In this case, the color subspaces
were built from observation of the reference colors under
just one illuminant. We ran five rounds of cross-validation,
each time selecting one illuminant at random (without rep-
etition), training our model on such illuminant and testing it
with barcode elements seen under another randomly chosen
illuminant.

Fig. 5 shows the number of barcode elements (selected
for k = 5 and x = 0.003 using the selection algorithm dis-
cussed at the end of Sec. 4.2) containing each one of the 24
reference colors in C24. Note that 22 reference colors are
chosen with comparable probability; one color had much
higher probability of being selected, while another color
was selected much less often than the others.

Fig. 6 shows the probability of incorrect decoding PE for
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Figure 6. The probability PE of incorrect decoding as a function
of the barcode element length k and subspace dimension M from
1 (white bars) to 5 (black bars).

barcode length k between two and five and for subspace di-
mension M between one and four (see Sec. 4.2). Note that,
for each k, there is an optimal value of the subspace dimen-
sion M , and that the error increases for larger values of M .
This may be due to the fact that increasing the subspace di-
mension M may lead to overfitting and poor generalization.
In the experiments presented below, we chose to use M = 2
for k = 2, 3 and M = 3 for k = 4, 5.

Fig. 7 shows the probability of decoding error PE(k, x)
for a generic barcode element of length k between 2 and 5,
using N = 12 and N = 24 reference colors, and for var-
ious values of the subset proportion x, as a function of the
resulting information rate (as by (1)). Both types of sub-
space modeling (via PCA or via the diagonal model) are
considered. Fig. 8 shows the probability of decoding error
PE(K, k, x) for a K length barcode, computed using Eq.
(5) for K = 60, 120, and 240.

The main observation that can be drawn from these re-
sults is that it is possible to reach relatively high informa-
tion rate with very low error rate. For example, PCA-based
subspace modeling for k = 5 and N = 24 results in a prob-
ability less than 0.001 of incorrect decoding of a length 60
barcode, while allowing one to encode information at a rate
of about 3.8 bits per bar. To put this result in context, let
us recall from Fig. 2 that the maximum information rate of
a length 60 barcode that displays its reference colors is of
less than 3 bits per bar. Thus, our system allows one to pack
about 0.8 additional bits per bar (or 48 bits overall) in a
length 60 barcode with very low decoding error probability.
One can easily infer from Eq. (1) that an information rate
of 3.8 bits/bar for a length 5 barcode element and N = 24
colors is achieved for x = 0.103, and thus decoding each
barcode element requires finding the nearest subspace in a
database of 524,288 elements.

The effect of the number of reference colors N , bar-
code element length k, and subspace modeling algorithm
on the resulting information rate and decoding error prob-
ability are clear from Fig. 7 and 8. Increasing the num-
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Figure 7. The probability incorrect detection PE(k, x) (on a log-
arithmic scale) for length k barcode elements versus the informa-
tion rate R (1). For each value of the barcode element length k,
a variable number of subset size proportions x were tested. ‘∗’:
k=2; ‘+’: k=3; ‘�’: k=4; ‘◦’: k=5. Continuous line: subspaces
learnt via PCA over five illuminants. Dashed line: diagonal model
(10).

ber of reference colors N allows one to achieve higher val-
ues of information rate. Longer barcode elements result in
lower decoding error probability for the same information
rate. For this reason, we do not allow color repetition in a
barcode element. Repeating a color in a length k barcode
is equivalent (for what concerns decoding) to include Bk−1
in Bk, leading to a substantial increase of the decoding er-
ror for Bk. Using the diagonal model to build joint color
subspaces (which, as discussed in Sec. 4.2, allows for a fast
calibration procedure) leads to an increase of the decoding
error rate by a factor of 10. Even so, for moderately long
barcodes (e.g. K = 60 bars), the decoding error probability
remains low (the probability of decoding error for a barcode
with 60 bars is equal to 0.01 at R = 3.8 bits per bar).

6. Conclusions
We have proposed a new algorithm for decoding barcode

elements in a color barcode that does not display its refer-
ence colors. Our experiments have shown that, by care-
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Figure 8. The probability incorrect detection PE(K, k, x)(on a
logarithmic scale) for a length K barcode element formed by mul-
tiple length k barcode elements versus the information rate (1).
For each value of the barcode element length k, a variable num-
ber of subset size proportions x were tested. ‘∗’: k=2; ‘+’: k=3;
‘�’: k=4; ‘◦’: k=5. Blue line: K=60; red line: K=120; cyan
line: K=240. Continuous line: subspaces learnt via PCA over five
illuminants. Dashed line: diagonal model (10).

fully selecting a subset of barcode elements, it is possible to
achieve good information rate at low decoding error proba-
bility. Thus, this approach represents a serious competitor
to mainstream barcode technology that requires display of
the reference colors, thereby limiting the effective informa-
tion rate.

More research work is needed to compare the decoding
error rate achieved by our system with other sources of er-
ror in practical situations (for example, errors due to blur-
induced color mixing from two nearby patches or to printed
color drift and fading). Our current research is also address-
ing the issue of fast decoding. As mentioned in Sec. 4.3,
nearest neighbor search techniques can be used for finding
the closest subspace to a color vector by means of a map-
ping into a higher dimensional space. Our goal is to im-
plement a system that can reliably decode length 5 barcode
elements on a smart phone at less than one tenth of a sec-
ond, thus enabling reading of a complete barcode with 50

bars in less than one second.
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