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Abstract

We propose a flexible hierarchical Bayesian nonparametric modeling approach

to compare the spiking patterns of neurons recorded under multiple experimental

conditions. In particular, we showcase the application of our statistical methodol-

ogy using neurons recorded from the supplementary eye field region of the brains

of two macaque monkeys trained to make delayed eye movements to three differ-

ent types of targets. The proposed Bayesian methodology can be used to perform

either a global analysis, allowing for the construction of posterior comparative

intervals over the entire experimental time window, or a pointwise analysis for

comparing the spiking patterns locally, in a predetermined portion of the ex-

perimental time window. By developing our nonparametric Bayesian model we

are able to analyze neuronal data from three or more conditions while avoiding

the computational expenses typically associated with more traditional analysis

of physiological data.
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1 Introduction

The fundamental statistical question in this work, and in a wide range of similar stud-

ies involving distinct experimental conditions, revolves around the calibration of the

similarities of multiple firing patterns along with the identification of sharp differences

between them. This idea is motivated from the observation that the presence or ab-

sence of firing activity is considered as the main marker of the degree of involvement

of the neuron in the studied behavior. Our interest is in developing a method whereby

the overall pattern of activity across multiple conditions can be described which will

allow us to better define exactly what role these neurons play in variable sensorimotor

contexts. Consequently, it would be useful to devise a suitable statistical methodology

to address such comparative inquiries, mainly on two fronts: first, a global analysis over

the entire experimental time window, enabling neurophysiologists to decide whether

the neuron should be considered for further study; second, a pointwise analysis, to

pinpoint differential patterns at specific time points in the experimental time interval.

The method proposed in this work is well suited to address these scientific goals.

The need for a comparative study of spiking patterns in multiple conditions may

be justified by investigating the neuronal activities presented in Figure 1, where a

peri-stimulus time histogram (PSTH) for a single neuron recorded from an awake, be-

having monkey is plotted under three experimental conditions described below. A 4000

millisecond window is considered. The time is aligned on a saccadic eye movement.

Condition 1 (“Space” condition on the top panel) reflects a trimodal firing pattern: a

peak in firing activity in about 1000 millisecond prior to the saccade, followed by a

significantly less-pronounced peak at the saccade time, yielding to yet another strong

peak at about 1500 milliseconds after the saccade time. The response in condition 2

(“Dot” condition on the middle panel) is inherently different: A series of comparably

weaker bursts of activity, more like a random noise, nonetheless with a seemingly no-

ticeable decline in firing activity at the saccade time. Finally, in condition 3 (“Ring”

condition on the lower panel) a multimodal pattern is suggested with the most notice-
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able peak at the saccade time. We now can restate the main objectives of this work in

the context of the data presented in this figure: 1- Are the differences and similarities

in the spiking patterns of the three conditions in Figure 1 statistically significant or

should they be interpreted as perturbations due to chance and hence be ignored? 2-

When studied in predetermined slices of the entire time segment, could such differences

shed light on the sensorimotor properties? These are among the questions that moti-

vate the statistical strategies we adopt in order to compare the firing patterns of each

neuron in multiple conditions. Here, we address the above two questions by developing

a Bayesian nonparametric model that allows us to compare neuronal intensity rates

under a number of distinct experimental conditions within a coherent probabilistic

framework for inference.

Insert Figure 1 Here

The outline of the paper is as follows. Section 2 develops the methodology with

technical details on implementation included in an Appendix. In Section 3, we provide

more details for the experiment used to illustrate the proposed methodology, and in

Section 4, we present the results from the analysis of the corresponding data. Finally,

Section 5 concludes with an overview and discussion.

2 Models

In Section 2.1, we discuss the stochastic model underlying our approach and provide

a brief review of the class of models from the field of Bayesian nonparametrics that

provides the foundation for the proposed methodology. Section 2.2 develops the model-

ing approach for comparison of neuronal spiking patterns under multiple experimental

conditions.
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2.1 Motivation and Background

2.1.1 Poisson process modeling for neuronal firing intensities

Stochastic modeling and statistical estimation techniques for the analysis of data from

single-recording neurophysiological experiments have received considerable attention

in the neuroscience, as well as the statistics literature (see, e.g., Brillinger, 1992; Ven-

tura et al., 2002; Kass et al., 2005). Predominantly, the focus of statistical modeling

approaches is on the temporal evolution of the neuronal firing activity. Historically,

the stochastic modeling of spike trains may be traced back to the original forms of

the so-called Integrate and Fire (IF) models (Gerstein and Mandelbrot, 1964; Stein,

1965). In these stochastic models, the output is taken as a one dimensional voltage

while the inputs consist of current and membrane conductance. The error is typically

captured by a Brownian motion, representing the stochastic feature of the model. As

noted in Paninski et al. (2010), from the statistical point of view, the IF model may

also be studied via hidden Markov (or state space) models in which the unobserved

(hidden) voltage is modeled through a Markovian process evaluated at the observed

spiking times (Volgestein and Paninski, 2007; Brown et al., 1998).

An alternative approach, leading eventually to the methodology proposed in this

paper, is to view the spike train as a realization of a point process, a random sequence

of times associated with spike occurrences, and subsequently model the spike counts

with a time-varying intensity function formulated through a Non-Homogeneous Poisson

Process (NHPP) as described below. Reviews of the analysis of neuronal data using

point processes, from either a single neuron or from multiple neurons, can be found in,

e.g., Brillinger (1992), Brown et al. (2004), Kass et al. (2005).

Let N(ta,tb) denote the number of spike occurrences in the time interval (ta, tb). By

definition, a NHPP point process model is constructed over two conditions:

(a) For any interval (ta, tb), N(ta,tb) follows a Poisson distribution with mean
∫ tb
ta
λ(u)du.

Here, λ(·) is the NHPP intensity function, a non-negative and locally integrable
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function (i.e.,
∫
D
λ(u)du <∞ for any bounded subset D of the positive real line).

(b) For any non-overlapping intervals, (ta, tb), and (tc, td), the random variables

N(ta,tb), and N(tc,td) are independent.

Subsequently, if a generic set of n spike times, {s1, · · · , sn}, observed in time window

(A,B), is assumed to arise from a NHPP, the corresponding likelihood for the intensity

function is given by e−
∫B
A λ(u)du

∏n
i=1 λ(si).

Statistically, the problem of modeling the spike trains will then revolve around

estimating the NHPP intensity function λ(·) from which inference on several features

of the neuronal spiking pattern can be obtained. In this paper, we adopt a Bayesian

nonparametric point of view for such an estimation problem developing a practically

important methodological extension of the approach proposed in Kottas and Behseta

(2010). This approach and the relevant class of nonparametric Bayesian prior models

are reviewed in the following section.

2.1.2 Background on Bayesian nonparametric mixture models

A nonparametric modeling approach for the NHPP intensity treats the entire function

λ(·) as the unknown parameter, which under the Bayesian paradigm, necessitates plac-

ing a prior over a space of functions (i.e., over an infinite dimensional parameter). The

field of Bayesian nonparametrics deals with the problem of placing prior probability

models on spaces of distributions (or, in general, functions), including theory that stud-

ies the definition and properties of such priors (e.g., Ghosh and Ramamoorthi, 2003),

and methods for modeling and posterior inference with nonparametric priors (see,

e.g., Walker et al., 1999; Müller and Quintana, 2004; Hanson et al., 2005, for related

reviews). Nonparametric Bayesian methods combine the flexibility of data-driven mod-

eling, which is not restricted by specific parametric forms, with the inferential power of

the Bayesian statistical framework. In particular, in the context of modeling neuronal

firing intensities, a flexible Bayesian nonparametric model can uncover non-standard
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neuronal spiking patterns and at the same time provide full uncertainty quantification

for the intensity estimates, which does not rely on large-sample asymptotic results that

may be suspect for spike trains of small to moderate dimension.

The modeling approach of Section 2.2 utilizes Dirichlet process (DP) mixtures,

a widely applicable class of Bayesian nonparametric mixture models. The DP prior

(Ferguson, 1973) was the first nonparametric probability model developed for spaces

of random distributions (equivalently, distribution functions); informally, it can be

viewed as a stochastic process with realizations that are distributions. The DP prior

model, denoted by DP(α,G0), is characterized by two parameters: α a positive scalar

parameter, and G0 ≡ G0(ϕ), a distribution specified up to a number of parameters ϕ.

In particular, G0 is the center (or base distribution) of the process whereas α can be

interpreted as a precision parameter; the larger α is, the closer a DP realization is to

G0. The most useful definition of the DP is its constructive definition (Sethuraman,

1994), according to which a random distribution G generated from a DP(α,G0) prior

is (almost surely) given by

G(·) =
∞∑
j=1

ωjδθj(·). (1)

Here, δa(·) denotes a point mass at a, the θj are i.i.d. from G0, and the ωj are defined

through a stick-breaking procedure. Specifically, ω1 = ζ1, ωj = ζj
∏j−1

s=1(1−ζs), for j ≥ 2,

where the ζs are i.i.d. from a Beta(1, α) distribution; moreover, {ζs, s = 1,2,...} and

{θj, j = 1,2,...} are independent sequences of random variables. Hence, the DP yields

discrete distributions with a countable number of possible values drawn from G0 and

associated probabilities ωj generated as described above. Note that the DP parameter

α controls the effective number of probabilities ωj, in particular, small α values favor DP

realizations that are discrete distributions with most of their probability mass placed

on a small number of values. Moreover, DP realizations can be readily approximated

to any desired level of accuracy by truncation: G(·) ≈
∑J

j=1 qjδθj(·), where the finite

number of qj are normalized to sum up to 1; e.g., the stick-breaking construction can

be used for the first J − 1 of the qj with the last one set equal to 1−
∑J−1

j=1 qj.
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The discreteness of DP realizations is an asset when the DP prior is used for later

stages of a hierarchical model, as in DP mixture models,

f(·;G) =

∫
k(·; θ)dG(θ), G ∼ DP(α,G0),

where k(·; θ) is the density for a parametric family of distributions indexed by θ. DP

mixtures increase considerably the scope of mixture modeling, since they replace para-

metric specifications for the mixing distribution G with a general nonparametric prior,

which supports the entire space of possible mixing distributions. Note that f(·;G) is a

random density function since G is random. Moreover, using the constructive defini-

tion of the DP, we obtain f(·;G) =
∑∞

j=1 ωjk(·; θj), i.e., a representation for f(·;G) as

a countable mixture with the ωj and θj arising from the DP prior as discussed above.

Of course, this is the prior probability model for the random density; in practice, given

a sample of size n, the number of distinct components n∗ < n is driven by the data,

making the class of DP mixture models appealing for applications where clustering is

anticipated as in, e.g., density estimation, classification, and regression.

Kottas and Behseta (2010) proposed a DP mixture modeling approach for neuronal

firing intensities under the NHPP stochastic model setting discussed in Section 2.1.1.

Key to the approach is an equivalent representation for the NHPP intensity in terms

of a density function over a bounded interval (taken without loss of generality to be

(0, 1)), and a scale parameter (details are provided in Section 2.2). In Kottas and

Behseta (2010), a DP mixture of Beta densities is utilized for the NHPP density to

obtain flexible inference for neuronal firing intensities, and the methodology is applied

to neurons recorded from the primary motor cortex area of a monkey’s brain while

performing a sequence of reaching tasks under two distinct experimental conditions.

A limitation of the approach is that the mixture model was applied separately to the

neuronal data from each condition, that is, no borrowing of strength across different

conditions was allowed in the prior model. This aspect of the approach becomes more

restrictive as the number of experimental conditions increases, which will typically

result in unbalanced sample sizes for the condition-specific firing times. In Section
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2.2, we develop a methodologically novel and practically important extension of the

approach in Kottas and Behseta (2010), using a dependent DP mixture model, which

can be applied to neuronal firing times from any number of experimental conditions.

The hierarchical model structure retains the flexibility of the DP mixture setting for

each condition-specific neuronal firing intensity, and at the same time, enables borrow-

ing of strength in inference for the collection of firing intensities across the different

conditions. The key practical implication is with regard to uncertainty quantification

in the estimation of the neuronal firing intensities and of pairwise differences among

neuronal firing intensities for all conditions of interest.

2.2 The Nonparametric Bayesian Modeling Approach

In Section 2.2.1, we present the general framework for modeling collections of intensity

functions of neuronal firing times corresponding to a number of distinct experimental

conditions. In Section 2.2.2, this framework is utilized to build inference for contrasts

over pairs of condition-specific neuronal intensity functions.

2.2.1 A dependent nonparametric mixture model for collections of NHPP

intensity functions

Focusing on the data from a particular condition (which will be indexed by i = 1, ..., I),

the observed neuron spiking times comprise the data vector {ti,km : k = 1, ..., K; m =

1, ...,Mki}, where ti,km is the m-th firing time in the k-th trial under condition i.

Note that for the experiment considered here the number of trials is the same for all

conditions. To develop the statistical tools needed for comparing the condition-specific

firing intensities, it suffices to consider the firing times aggregated over all trials from

each condition. Consequently, within each condition, i = 1, ..., I, there will be ni =∑K
k=1Mki firing times from all trials.

The proposed dependent model for the collection of condition-specific intensity func-

tions is applied to vectors of responses (firing times) across conditions. These vectors
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of response replicates arise naturally under the experiment through (ti,km, ..., tI,km),

that is, by grouping firing times from the same trial across conditions. We denote the

response vectors by tj = {tij : i = 1, ..., I}, for j = 1, ..., n, where n =
∑K

k=1 maxiMki.

Each vector tj can range in dimension from 1 to I. To account for this in the notation,

we use missing value indicators sij, where sij = 1, if there is a j-th response for condi-

tion i, and sij = 0, otherwise. Note that the sij are fully determined by the data, and∑n
j=1 sij = ni. Finally, we assume, without loss of generality, that the point patterns

of firing times are observed in the unit time interval; inference over the original time

interval can be readily obtained through transformation.

Our approach is based on a NHPP stochastic model for the underlying point process

generating the firing times under each condition. As has been documented in the

relevant literature (see, e.g., the discussion in Ventura et al., 2002), the NHPP provides

a plausible model for the aggregated firing times based on both empirical evidence as

well as theoretical results, which yield that pooled point patterns across a large number

of replicated trials follow approximately a NHPP model.

Under the NHPP assumption, and using conditional independence given the in-

tensity functions, λi(t), for i = 1, ..., I, the first-stage specification (likelihood) of the

Bayesian model for the neuronal data from all conditions is given by

I∏
i=1

exp{−
∫ 1

0
λi(u)du}

∏n
j=1{λi(tij)}sij . (2)

The full Bayesian model builds dependence across the different experimental conditions

through a dependent nonparametric prior for {λi(t) : i = 1, ..., I}, the collection of

neuronal intensities.

The modeling framework builds on a flexible nonparametric prior for each NHPP

intensity λi(t), which can provide full inference for the neuronal firing intensity under

the corresponding condition without relying on specific parametric forms or asymptotic

arguments. Moreover, the prior model allows for dependence between the different

intensities, which enables borrowing of strength in the posterior inferences given the

data from all conditions. In particular, we use a DP mixture formulation for a density
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function directly connected with the intensity function, and relate the DP mixture

models for the condition-specific densities through a dependent DP prior developed

by extending the DP constructive definition in (1). By casting the modeling in a

density estimation framework, we can use a flexible class of nonparametric mixture

models that allows relatively easy prior specification and Markov chain Monte Carlo

(MCMC) simulation for posterior inference. The approach was originally developed by

Kottas (2006) and Kottas and Sansó (2007) in the context of modeling a single NHPP

intensity defined over a time interval or a spatial region, respectively, and was extended

in Taddy and Kottas (2009) to model marked NHPPs. As discussed in Section 2.1.2,

Kottas and Behseta (2010) adapted the methodology in the context of neuronal data

analysis focusing on inference for global and local comparison of neuronal intensities

under two conditions. The modeling approach developed here offers a methodological

advance on modeling and inference for collections of related NHPP intensity functions.

The starting point for the modeling approach is an equivalent representation for

λi(t), t ∈ (0, 1), through the density function fi(t) = λi(t)/γi, t ∈ (0, 1), where γi =∫ 1

0
λi(u)du. The density function fi(·) (which may be referred to as the NHPP density)

fully controls the shape of the intensity function, since the parameter γi provides only

the scale for λi(·). Hence a flexible nonparametric prior model for fi(·) can capture

non-standard intensity shapes. Note that the NHPP density has bounded support

given by the unit interval. The model used in Kottas (2006) and Kottas and Behseta

(2010) was based on a DP mixture of Beta densities for the NHPP density. Here, we

work instead with a logit-normal density for the kernel of the DP mixture, that is,

k(t;µ, σ2) = (2πσ2)−1/2t−1(1− t)−1 exp{−[log(t/(1− t))− µ]2/2σ2}, t ∈ (0, 1).

Note that this density arises through the logistic transformation, t = exp(y)/(1 +

exp(y)), of a N(µ, σ2) density for y, and this provides a more convenient platform for

MCMC posterior inference than the Beta kernel, which is particularly important for

the model extension we are considering here. Hence, the model for the NHPP density
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fi(·), that defines the neuronal intensity under condition i, is given by

fi(t) ≡ f(t;Gi, σ
2
i ) =

∫
k(t;µ, σ2

i )dGi(µ), t ∈ (0, 1), (3)

that is, a location mixture of logit-normal densities with nonparametric random mixing

distribution Gi. The mixture specification in (3) strikes a good balance between model

flexibility and computational feasibility. Mixing over the location parameter of the

logit-normal kernel can result in skewness or multimodality for f(t;Gi, σ
2
i ) when such

features are suggested by the data; this may be at the expense of a larger number of

mixture components than what would be needed under the more general model that

includes mixing also with respect to the scale parameter of the logit-normal kernel.

However, this more general location-scale mixture requires a more complex prior model

for the Gi and more complicated methods for posterior simulation.

We build dependence in the prior model for the neuronal densities {fi(·) : i =

1, ..., I} through a dependent nonparametric prior for the collection of corresponding

mixing distributions G = {Gi : i = 1, ..., I}. Specifically, we use a dependent DP

prior (MacEachern, 2000) motivated by the DP constructive definition in (1), which

is extended from a nonparametric prior model for a single distribution to one for the

collection G. A powerful, and at the same time practical, way to accomplish this is to

retain the probabilities ωj exactly as defined in (1) through stick-breaking, but replace

the locations θj with vectors θj = (θj1, ..., θjI). Therefore, the univariate centering

distribution G0 needs to be replaced by a multivariate distribution G0 of dimension

I. In our context, a multivariate normal distribution provides a natural choice for G0;

in particular, we take G0 = NI(λ1I ,Λ), a normal distribution of dimension I with

common mean λ (1I denotes an I-dimensional vector with all its elements equal to 1)

and covariance matrix Λ. Hence, the dependent DP prior, denoted by DDP(α,G0),

yields (almost sure) realizations of the form

G =
∞∑
j=1

ωjδθj
, (4)
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where the θj are i.i.d. from G0. Dependence across i = 1, ..., I in the locations θj =

(θj1, ..., θjI) implies dependent Gi, i = 1, ..., I, in the prior model. At the same time,

for any i = 1, ..., I, the mixing distribution Gi admits the representation Gi(·) =
∞∑
j=1

ωjδθji(·), with the θji i.i.d. from G0i = N(λ,Λii), where the variance Λii is defined

by the i-th diagonal element of Λ. Hence, marginally, each Gi has a DP(α,G0i) prior,

thus retaining the flexibility and useful interpretation for the nonparametric mixture

in (3). This dependent DP prior construction – where the dependence is built through

the locations with the corresponding probabilities defined as in the regular DP prior

– is referred to as the “single-p” DDP prior. For further details on general properties

of single-p DDP models and a range of applications we refer to MacEachern (2000),

De Iorio et al. (2004), Gelfand et al. (2005), Kottas et al. (2008), Rodriguez and ter

Horst (2008), Kottas and Krnjajić (2009), and Fronczyk and Kottas (2010).

To complete the dependent DP prior formulation and obtain the full Bayesian

model, we place priors on the scale parameters γi for the NHPP intensities, on the scale

parameters σ2
i of the mixture kernels for the NHPP densities, and on the DDP prior

hyperparameters. In particular, key are hyperpriors for λ and Λ, since these parameters

define G0, where the covariance matrix in particular specifies the dependence of the

centering distribution for the DDP prior. We assign a normal prior to λ and an inverse-

Wishart prior to Λ. Moreover, we place a gamma prior distribution on α. Regarding

parameters γi, a convenient form for their priors is given by a gamma distribution with

parameters that can be specified based on the role γi plays as the mean of the NHPP

over the observation time interval. Alternatively, a more automatic choice arises by

using the reference prior for each γi, which can be shown to be given by p(γi) ∝ γ−1
i ,

for γi > 0 (Kottas and Behseta, 2010). Finally, we place a hierarchical inverse-gamma

prior distribution on the σ2
i . More details on the form of the priors above as well as on

specification of their parameters are provided in the Appendix.
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2.2.2 Inference for comparison of multiple experimental conditions

Given neuronal firing times arising under I distinct experimental conditions, we em-

ploy the Bayesian nonparametric approach of Section 2.2.1 to model the collection of

corresponding neuronal intensity functions through λi(t) ≡ γif(t;Gi, σ
2
i ), t ∈ (0, 1),

for i = 1, ..., I, where f(t;Gi, σ
2
i ) is the logit-normal mixture in (3), and the collection

of mixing distributions G = {Gi : i = 1, ..., I} is assigned the dependent DP prior

developed in the previous section.

The full Bayesian model involves the collection of mixing distributions G, the DDP

hyperparameters (α, λ,Λ), the vector of NHPP mean parameters, γ = (γ1, ..., γI), and

the vector of mixture kernel scale parameters, σ2 = (σ2
1, ..., σ

2
I ). Samples from the joint

posterior distribution, p(γ,σ2,G, α, λ,Λ | data), where data = {tj : j = 1, ..., n}, yield

full inference for each neuronal firing intensity, γif(t0;Gi, σ
2
i ), at any collection of points

t0 in the observation time window. Based on the form of the NHPP likelihood, it can be

shown that the joint posterior distribution factorizes into the marginal posterior for γ

and the posterior distribution for all other model parameters, p(σ2,G, α, λ,Λ | data).

This is evident from the expression for the likelihood in (2) which can be rewritten as∏I
i=1 exp(−γi)γni

i

∏n
j=1

∏I
i=1{f(tij;Gi, σ

2
i )}sij . In particular, under a gamma prior or

the reference prior for each γi, the posterior distribution for γ is available analytically

as p(γ | data) =
∏I

i=1 p(γi | data), where p(γi | data) is given by a gamma distribution,

for instance, a gamma(ni, 1) distribution under the reference prior p(γi) ∝ γ−1
i . The

technical details on MCMC posterior simulation from p(σ2,G, α, λ,Λ | data) can be

found in the Appendix.

In addition to inference for each condition-specific neuronal firing intensity, our

interest is in comparison of all pairs of firing intensities λi(·) and λi′(·), for i, i′ = 1, ..., I

with i 6= i′. Note the key advantage of working with the NHPP density functions as

opposed to the intensity functions. Because firing activities on each pair of conditions

are expressed in terms of their densities, they are scale-free and hence can be contrasted

directly either locally at a small number of time points of interest, or globally over the
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observation time interval. Therefore, for any pair (i, i′) of distinct conditions, posterior

realizations for the neuronal firing densities fi(·) and fi′(·) can be used to launch both

point as well as interval estimation for comparing the respective firing intensities λi(·)

and λi′(·). For example, we may construct point estimates and associated posterior

uncertainty bands for the function fi(·) − fi′(·) over the entire experimental window,

as well as obtain the posterior distribution for fi(t0) − fi′(t0) for specific points t0 in

the experimental time interval.

3 Experimental design and methods

In primates, the supplementary eye field (SEF) is a brain region involved in sensori-

motor and cognitive processing. Neurons in this region exhibit changes in firing rate

in relation to a number of sensory (e.g., upon the presentation of visual stimuli), cog-

nitive (e.g., during the maintenance of spatial memories), and behavioral (e.g., during

the generation of eye movements) factors. Intracortical microstimulation at moderate

levels of current (40-50 A) elicits eye movements (Fujii et al. 1995; Lee and Tehovnik

1995; Mann et al. 1988; Martinez-Trujillo et al. 2003a; Martinez-Trujillo et al. 2004;

Martinez-Trujillo et al. 2003b; Missal and Heinen 2001, 2004; Mitz and Godschalk

1989; Russo and Bruce 1993; Schall 1991a; Schlag and Schlag-Rey 1985, 1987a, b;

Tehovnik and Lee 1993; Tehovnik et al. 1994; Tehovnik and Slocum 2000; Tehovnik

et al. 1999; Tehovnik et al. 1998; Tehovnik and Sommer 1996, 1997; Tian and Lynch

1995). Single neurons in the area are active during the planning and execution of eye

movements toward targets in restricted response fields (Bon and Lucchetti 1991, 1992;

Chen and Wise 1995a, b, 1996, 1997; Coe et al. 2002; Fujii et al. 2002; Hanes et al.

1995; Lee and Tehovnik 1995; Moorman and Olson 2007; Mushiake et al. 1996; Olson

and Gettner 1995, 1999, 2002; Olson et al. 2000; Olson and Tremblay 2000; Russo

and Bruce 1996, 2000; Schall 1991a, b; Schlag-Rey et al. 1997; Schlag and Schlag-Rey

1985, 1987b; Schlag et al. 1992; Tremblay et al. 2002). Targets, however, may be
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represented in multiple ways. For example, saccade targets may be physically present

as in the case of a dot on a screen, or they may be internally-represented, as in the case

of a remembered location in empty space. The question of how neurons in the SEF

respond during eye movements planned to internally – vs. externally – represented

targets has not been investigated until now. In the results described here, we recorded

from neurons of the SEF of two monkeys during performance of memory-guided sac-

cades to one of three target-types (see below). These results are a subset from a larger

study (Moorman, Medler, and Olson, in preparation). In that study there were four

conditions in each target type: targets were located at one of four cardinal locations on

each condition resulting in 12 conditions to analyze. The task and targets are shown

in Figure 2. Here, however, we focus on three conditions per recording: one direction

per condition, matched across condition (so, for example, dots, ring, and space targets

located at one position to the left of the screen center). We chose to focus specifically

on variations in target type so as to directly address the issue of whether changes

in firing pattern related to the targets could be statistically described. This type of

classification would be particularly interesting given that, in the conditions studied,

manipulations are categorical, not parametric (as might be seen in changes of target

size or brightness). In the latter case, direct relationships between neuronal activity

and target dimensions might be more easily observed. The goal of the analysis of the

present data, therefore, was to develop a means for characterizing the activity of sin-

gle neurons under categorically different conditions. Two adult male rhesus monkeys

were used. Experimental procedures were approved by the Carnegie Mellon University

Animal Care and Use Committee and were in compliance with the guidelines set forth

in the United States Public Health Service Guide for the Care and Use of Laboratory

Animals. The aim of this task was to require monkeys to make memory guided sac-

cades under conditions in which the possible target locations were either marked with

visible detail or unmarked. There were four possible target locations surrounding the

central fixation point at 90 intervals although, for the purposes of the present analysis,
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we focus on one direction per recording (direction was determined post-hoc based on

the directional selectivity of the recorded neuron). Marking could take any of three

forms. Space: the targets were unmarked. Dot: the targets were marked by individual

dots. Ring: an annulus centered on fixation intersected all four target locations. The

timing of events is summarized in Figure 2. Each trial began with presentation of a

central fixation spot and attainment of fixation. After 400 ms, white marks appeared

in the dot and ring conditions whereas the peripheral screen remained blank in the

space condition. After an additional 500 ms, a green cue spot was presented at one of

the possible target locations for 100 ms. Following a random delay of 800 to 900 ms,

the fixation spot was extinguished and the monkey was required to make a saccade to

the previously cued location. Reward was delivered only if the monkey made a saccade

directly to the cued location within 150 ms of breaking fixation and then fixated on

the cued location for 200-300 ms. The cue stimulus reappeared as a visual feedback

target during reward presentation. The twelve conditions were presented in pseudo-

random interleaved sequence until, typically, 16 trials had been completed successfully

under each condition. Recordings from single neurons in the SEF were conducted as

described previously (Moorman and Olson, 2007a,b). The data for our analysis consist

of the counts, accumulated across trials, beginning 2000 ms before the onset of the

spatial cue and extending 2000 ms after.

Insert Figure 2 Here

4 Results

Results are presented from an application of the analysis to three neurons recorded

from the SEF of one monkey during different recording sessions and serve as examples

of how firing-rate data analysis might benefit from its use. Figure 1 shows the firing

rate histograms of the activity of a single SEF neuron (sp259a.1) recorded in three

conditions: 1) saccades directed to an unmarked location (Space, top), 2) saccades
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directed to one of four marked targets (Dot, middle), and 3) saccades directed to a

location on a peripheral ring (Ring, bottom) (see Section 3 for details). In all cases,

the saccade target was positioned at the same location. A qualitative inspection of

the data reveals a number of differences in firing patterns across the three conditions.

For example, in the Space condition only, activity is moderate until the period of time

just at and after the saccade (around 1000 ms) at which point the neuron fires a large

burst of activity. In the Ring condition, on the other hand, neural activity builds

up prior to the cue onset (time 0) and the neuron fires a robust, brief response just

after cue onset. Intriguingly, neural activity in the Dot condition is moderate across

the whole trial, and the neuron fires no salient bursts. The firing patterns of this

neuron across multiple conditions underscore a number of difficulties in interpretation

of firing rate data. First, neurons fire differentially across conditions and a different

time points across conditions. So, for example, this neuron exhibits more activity

in the Space than Dot conditions, but only at select periods in time (e.g., around

the saccade). Thus characterizing this neuron as firing more in the Space condition

than the Dot condition is correct only if we focus on the peri-/post-saccade epoch. In

comparing the Ring condition to the Dot condition, on the other hand, it is clear that

the differentiation between the two conditions primarily occurs around the time of the

visual stimulus/cue onset.

A question arises, consequently, as to what portion of the firing patterns should be

compared across conditions in analysis. One common solution to this question, which

has been employed in multiple studies (e.g., Moorman and Olson, 2007a,b), is to choose

epochs on the basis of either periods of behavioral interest (e.g., +/- 500 ms around

the cue) or based on regions in the histogram that display clear differences across con-

ditions (e.g., comparing the peri-saccadic epoch between Space and Dot conditions).

Ultimately, these solutions are subjective in nature and may ignore subtle differences

that exist across conditions. This issue is both exemplified and potentially solved by

considering the difference of density function plots shown in Figure 3. These plots
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display the posterior mean (solid red lines) and 95% interval bands (dashed lines) for

the difference of neuronal firing density functions between any pair of conditions. The

x-axis shows time across the trial, and the y-axis shows difference of posterior proba-

bility densities. Functionally speaking the figures characterize the difference in firing

between the two histograms compared, with the black horizontal line demarcating no

difference, curves above that line demarcating stronger firing in the first condition (e.g.,

Space in Figure 3, top panel) and curves below the black line demarcating stronger

firing in the second condition (Dot in Figure 3, top panel). The probability interval

bands produced by the Bayesian model are key for proper uncertainty quantification,

as they represent statistically significant differences in firing patterns between the two

conditions. In particular, the analysis presented in this figure advances our under-

standing of the differences between two firing rates in a number of major ways. First,

the graph displays the periods of time at which there are differences in firing between

the two conditions and, in particular, it describes the periods that firing patterns are

statistically different from one another. Second, it does so in a continuous fashion over

the entire experimental time interval. This allows transitional time points, such as

onset or offset of statistical differences, to be calculated. It also precludes the necessity

to compare average data culled from arbitrarily-defined epochs.

Insert Figure 3 Here

Perhaps most importantly, the analysis reveals subtle effects not necessarily observ-

able by qualitatively comparing firing patterns. This is well-exemplified in Figure 3.

Roughly, between the time-points −1000 and 1000 ms, there is a prominent, and statis-

tically significant, difference in firing between Space and Dot conditions, with stronger

firing occurring in the Dot, as compared to the Space, condition. Although this dif-

ference is somewhat apparent in the histograms, the onset, duration, and consistency

of the difference is hard to identify without aid of the model-based formal inference

reported in Figure 3. Of interest from a functional perspective, this significant differ-

ence appears at approximately at or after fixation onset (approximately −1000 ms)
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and persists throughout the duration of fixation until saccade onset (approximately

+1000 ms). After saccade onset, firing is significantly stronger in the Space condition,

and this predominance of Space persists until reward/reward-cue presentation. From a

comparison of these two conditions one might come to a number of conclusions regard-

ing the sensorimotor properties of this neuron: that it is, in some way, visually driven,

exemplified by the Dot-condition-bias preceding the saccade (with the array of target

dots potentially driving neural activity) as well as by the onset of Space selectivity in

the period of time around or following the saccade (with the presentation of the reward-

cue stimulus potentially driving activity). The hypothesis that this neuron is driven

by visual stimuli is further advanced by comparing the Space and Ring conditions

(histograms in the top and the bottom panels of Figure 1, and difference of densities

plot in Figure 3). Focusing on the difference of densities plot, it is clear that activity

in the Ring condition is stronger at the onset of the ring stimulus approximately -500

ms, decays following stimulus onset, and increases again during cue presentation. A

similar pattern is seen when comparing Ring and Dot conditions (histograms in mid-

dle and lower panels of Figure 1, and difference of densities plot in Figure 3), and it

may be assumed that the ring stimulus produces a stronger visual response based on

something as simple as the fact that it is a larger, brighter stimulus. Interpreting this

neuron as solely visually-responsive, however, is precluded by the fact that there is a

strong burst of activity following the spatial cue in the Ring condition compared to

the Dot and Space conditions, despite the fact that the spatial cue is the same in all

three conditions.

Clearly SEF neurons fire with complex patterns under different conditions, and the

activity of SEF neurons have been correlated with numerous sensorimotor and cognitive

behaviors (see Experimental Design and Methods). This fact is further exemplified in

observing the firing rate histograms and inference for the difference in densities for the

other tested neuron (sp220b.1) shown in Figures 4 and 5. Figure 4 shows an example of

a neuron that responds both to the presentation of visual stimuli as well as to saccades

20



directed to visually-marked targets. This can be seen as increased firing following

the onset of stimuli and during saccades in Dot and Ring histograms (middle and

lower panels of Figures 4) as well as in the difference of densities plots, which reveal

statistically significant differences between these conditions and the Space condition

(top and middle panels of Figure 5).

Insert Figures 4 to 5 Here

For each of the two neurons, Figure 6 plots posterior mean estimates and 95% in-

terval bands for the firing intensities associated with each of the three conditions. The

estimates of the firing intensity functions arising from the Bayesian nonparametric

model smooth the PSTH histograms, but at the same time, uncover multimodal pat-

terns, most notably, for the Ring condition. It is also noteworthy that the uncertainty

bands have more uniform width across conditions compared to the interval estimates

(not shown) obtained from the model in Kottas and Behseta (2010), which is applied

separately to the data from each condition. This result highlights the borrowing of

strength across conditions facilitated by the dependent nonparametric mixture model

developed in Section 2.2.

Insert Figure 6 Here

The results from these two neurons, both the traditional histogram-based data

representation as well as difference of densities plots representing significance char-

acterized by the analysis described here, demonstrate the complexity, both temporal

(across trials) and categorical (across conditions), of firing patterns of (here SEF) neu-

rons even in relatively simple eye-movement tasks. A thorough characterization of the

firing properties of the population of SEF neurons from which these were selected is

beyond the scope of this paper and will be presented in a separate manuscript (Moor-

man, Medler, and Olson, in preparation). These data demonstrate, however, how the

proposed statistical methodology can be used to identify differences in firing patterns

across multiple conditions, with appropriate uncertainty quantification.
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5 Discussion

The problem of comparing neuronal intensity rates of a neuron recorded under two

or more experimental conditions has been examined in Behseta and Chenouri (2011),

Behseta et.al (2007), Behseta et al. (2005), and Behseta and Kass (2005). To model

PSTH, the authors employ a technique called Bayesian Adaptive Regression Splines

or BARS (DiMateo et.al, 2001). BARS utilizes Bayesian generalized linear modeling

over a natural cubic spline basis via the reversible-jump Markov Chain Monte Carlo

(MCMC) technique of Green (1995). Subsequently, a test statistic is developed to

compare the firing intensities of two conditions. A modified form of Hotelling’s T 2

test-statistic, as well as Bayes factors were employed to test the hypothesis that the two

curves behave the same (Behseta and Kass, 2005). To test the hypothesis of equality of

more than two curves – specifically more than two firing intensity functions – Behseta

et al. (2007) developed a functional Multivariate Analysis of Variance (fMANOVA)

paradigm that may be applied over a population of functional neuronal data estimated

with BARS.

In more recent work Behseta and Chenouri (2011) showed that a test based on a non-

parametric spatial signed-rank statistic of Möttönen and Oja (1995) attains a very high

power. Also, in the case of more than two conditions, tests constructed based on like-

lihood ratio statistics are shown to be quite powerful (Behseta et.al, 2007). The works

cited above rely on asymptotic properties of the proposed testing procedures. Also, as

discussed in Behseta et al. (2007), in multi-trial neurophysiological data, there are sce-

narios in which trial-averaged firing rates may be misleading. Alternatively, this paper

provides a more general framework through developing fully inferential nonparametric

Bayesian models for temporal point patterns assumed to arise from non-homogeneous

Poisson processes over time.

Understanding how neurons fire under different behavioral contexts is often chal-

lenging, particularly when studying neurons in complicated sensorimotor cortex such

as the SEF. While such neurons may have selectivity for a particular movement di-
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rection or a particular visual stimulus, responses are often complex combinations of

the two (Bon and Lucchetti 1991, 1992; Chen and Wise 1995a, b, 1996, 1997; Coe et

al. 2002; Fujii et al. 2002; Hanes et al. 1995; Lee and Tehovnik 1995; Moorman and

Olson 2007a,b; Mushiake et al. 1996; Olson and Gettner 1995, 1999, 2002; Olson et al.

2000; Olson and Tremblay 2000; Russo and Bruce 1996, 2000; Schall 1991a, b; Schlag-

Rey et al. 1997; Schlag and Schlag-Rey 1985, 1987b; Schlag et al. 1992; Tremblay et

al. 2002). Furthermore, as exemplified by the data presented in this paper, neuronal

responses often change over time with selectivity for one condition (manifested by se-

lectively enhanced firing rate) predominating during one timepoint in a behavioral task

and selectivity for another condition predominating at another. Identifying periods of

time during a trial for analysis is a somewhat uncontrolled process. Although in some

cases an investigator can be guided by behavioral epochs (e.g., period of time when

stimulus is on), using predetermined analysis epochs could bias investigators to see

effects only where they are expected. Previous experimental electrophysiology studies

(e.g., Moorman and Olson 2007a,b) have used multivariate ANOVA and its associated

post hoc analyses for comparing the differences in firing rate across conditions, the use

of which is computationally expensive simply due to the fact that in the presence of k

experimental conditions,
(
k
2

)
pairwise comparisons need to be considered. This is typi-

cally coupled by the familiar problems associated with multiple testing requiring some

sort of a type-I error adjustment. In sharp contrast to the above approach, under the

methodology presented in this work, statistically significant differences across multiple

conditions are evaluated at multiple time points in a continuous fashion. One can easily

imagine applying this technique to multiple neurons recorded from the same area, per-

haps in combination with an awareness of periods of behavioral significance, to better

understand how neurons in a region differentially characterize behavioral conditions.

In addition to defining specific time periods for further analysis, the methodology

presented here provides additional benefits by virtue of being a continuous data anal-

ysis technique. For example, precise onset and offsets of specific differences across
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conditions can be quantified based on significant differences in firing rate. Future de-

velopments will consist of utilizing the differences between selected pairs of conditions

to develop a clustering paradigm to quantitatively identify subsets of neurons whose

firing intensity rates share common patterns. These types of clustering can be used not

only to characterize differences across neurons but to identify the precise features in

differential firing maximally distinguishing neurons in a population using, for example,

principal components analysis to identify primary distinguishing characteristics. Char-

acterization based on clustering will also be invaluable in understanding results from

model-based simultaneous analysis of more than three conditions, noted above. These

extensions of the current model are currently under investigation in order to further

develop the sophistication and general utility of the methodology.

With regard to the stochastic model for the point process of firing times, a more

realistic approach would consider modeling λ(t|Ht), the instantaneous firing rate at

time t given Ht, the spiking history preceding time t. The main reasoning behind this

strategy is to avoid pooling spike trains over multiple trials. Conditioning on the history

allows one to take into account the effects of refractory period and bursting delays,

which in turn would contribute to the departure from the NHPP assumption. A natural

starting point for development of Bayesian nonparametric methodology is structured

non-Poisson point process models, for instance, in the spirit of the inhomogeneous

Markov interval (IMI) and the additive IMI models of Kass and Ventura (2001), or the

time-rescaled renewal process model of Brown et al. (2002). Future work will explore

this methodologically interesting and scientifically relevant research direction.

Finally, in early sensory or motor areas, neurons have more direct response prop-

erties: a neuron in primary visual cortex, for example, will parametrically fire based

on variations in visual stimulus properties (see, for example, Chen et al., 2009 and

references therein); though certain secondary factors such as attention have recently

been shown to produce more complex responses (Roelfsema et al., 2007; Smith et al.,

2007). Neurons in associative cortex, such as in the SEF, respond conjunctively, based
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on interactions of sensory and motor variables, as well as dynamically, with selectivity

changing over the course of a single trial. Analytical techniques used to disentangle

the relative contributions of behavioral variables are critical in understanding what role

these complex cortical areas play in shaping behavior. The approach to statistical mod-

eling and inference presented here is a first step in a new line of analyses designed to

address this complexity and to identify key components in neuronal activation driving

behavior.
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Appendix: Implementation details

Here, we provide technical details on prior specification and the approach to posterior

inference for the Bayesian nonparametric model developed in Section 2.2.

Based on the definition of the logit-normal distribution, note that fitting the location

mixture of logit-normals model,
∫
t−1(1 − t)−1N(log(t/(1 − t));µ, σ2

i )dGi(µ) (where

t ∈ (0, 1)), to the data tij on the unit interval is equivalent to fitting the location mixture

of normals model,
∫

N(y;µ, σ2
i )dGi(µ) (for which y ∈ R), to the logit-transformed data

yij = log(tij/(1− tij)). The latter is computationally more efficient, and we thus work

with the logit-transformed data. Of course, all the inferences can be reported on the

original scale by applying the inverse logistic transformation to evaluate the neuronal

firing densities f(t0;Gi, σ
2
i ), for i = 1, ..., I, at any grid of time points t0.
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Prior specification

Regarding the hyperparameters of the DDP prior, we place a gamma(aα, bα) prior dis-

tribution on α (with mean aα/bα), a N(aλ, b
2
λ) prior distribution on λ, and an inverse

Wishart prior distribution on Λ with scale and matrix parameters aΛ and BΛ, respec-

tively (thus, p(Λ) ∝ |Λ|−(aΛ+I+1)/2 exp(−0.5tr(BΛΛ−1))). For each of the NHPP mean

parameters γi, we used the reference prior given in Section 2.2.1. Finally, the mixture

kernel scale parameters σ2
i are assigned a hierarchical inverse gamma prior distribution,

inv-gamma(c, β), with fixed shape parameter c and random scale parameter β (such

that the mean is β/(c − 1), provided c > 1); an exponential prior with mean mβ is

placed on β.

To specify the parameters of the prior distributions discussed above, we work with

a single component of the mixture model (i.e., the limiting case of the DDP prior with

α → 0+) and use a relatively noninformative approach based on a guess, say R, at

the range of values for the logit-transformed data. In fact, we take the same range for

the data from all conditions, thus resulting in the same prior for all condition-specific

parameters. Then, based on the prior structure, we can use the following approximation

to the variance of the population:

(R/4)2 ≈ Var(Y ) = E(Var(Y |θji, σ2
i )) + Var(E(Y |θji, σ2

i ))

= E(σ2
i ) + Var(θji) = E(E(σ2

i |β)) + Var(E(θji|λ,Λii)) + E(Var(θji|λ,Λii))

= E((c− 1)−1β) + Var(λ) + E(Λii) = (c− 1)−1mβ + b2
λ + (aΛ − I − 1)−1Bii

Λ

where Bii
Λ is the i-th diagonal element of matrix BΛ. We set aλ = 0 and c = 2, the

latter providing an infinite prior variance for each σ2
i . We set aΛ = 5, which is the

smallest value for the degrees of freedom of an inverse Wishart distribution having a

well-defined mean. From the range, we subtract a value of 0.5, and allocate it to the

first term, which represents the prior expectation of σ2
i . The remaining amount of

the range is divided equally between the second and third terms. Solving the three

terms provides values for mβ, b2
λ, and Bii

Λ . Matrix BΛ is then specified by setting
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its off-diagonal elements to 0. Prior sensitivity analysis indicated that this default

specification does not effect the model’s ability to capture the required correlations

implied by the posterior distribution for Λ. Finally, we use a relatively dispersed

gamma prior for α, setting aα = 3 and bα = 0.5.

MCMC posterior simulation

As discussed in Section 2.2.2, the marginal posterior distribution for the NHPP mean

parameters γi, which provide the scale for the firing intensity functions, is available

analytically. Here, we develop the approach to MCMC simulation from the posterior

distribution of all other model parameters.

To sample the posterior distribution of the dependent DP mixture model, we utilize

an extension of blocked Gibbs sampling for standard DP mixtures (e.g., Ishwaran and

James, 2001). The approach builds from a finite truncation approximation to the

DDP(α,G0) prior, using its stick-breaking constructive definition. Specifically, we can

approximate G in (4) with GL =
∑L

`=1 p`δθ`
, where the θ` = (θ`,1, ..., θ`,I) are again

i.i.d. from G0 = NI(λ1I ,Λ), and the p` arise from a truncated version of the stick-

breaking construction. In particular, based on variables V`, ` = 1, ..., L − 1, which

are i.i.d. from a Beta(1, α) distribution, we define: p1 = V1; p` = V`
∏`−1

r=1(1 − Vr),

for ` = 2, ..., L − 1; and pL =
∏L−1

r=1 (1 − Vr) = 1 −
∑L−1

`=1 p`. Under this particular

truncation definition for the vector of probabilities p = (p1, ..., pL), the implied prior

for p is given by the generalized Dirichlet distribution with density

h(p;α) = αL−1pα−1
L (1− p1)−1(1− (p1 + p2))−1 × ...× (1−

∑L−2

`=1
p`)
−1.

The approximation can be made accurate to any desired tolerance, with the choice of

the truncation level L facilitated through use of relevant DP properties. For instance,

for the probabilities in the countable representation for DDP(α,G0) realizations in

(4), we have E(
∑∞

j=L ωj | α) = {α/(α + 1)}L−1. Given a suitable tolerance level

and averaging the expectation over the prior distribution for α, this expression pro-
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vides the corresponding truncation value L. For the neuronal data analysis results

reported in Section 4, we used L = 100, which implies E(
∑L

j=1 ωj) ≈ 0.99986 under

the gamma(3, 0.5) prior for α (posterior inference results were robust to values of L in

the range 50 - 100).

As also done with finite mixture models, MCMC sampling proceeds by breaking

the mixture through introduction of latent configuration indicators that identify the

mixture components. Denote by w = {wj : j = 1, ..., n} the configuration variables

taking values in {1, ..., L} such that wj = `, for ` = 1, ..., L, signifies that the j-th

response vector yj = {yij : i = 1, ..., I} is assigned to the `-th mixture component. Let

θ = {θ` : ` = 1, ..., L}. Then, the hierarchical model for the logit-transformed data

can be written as follows:

yj | w,θ
ind∼

I∏
i=1

{N(yij; θwj ,i, σ
2
i )}sij , j = 1, ..., n

wj | p
iid∼

L∑
l=1

plδl(wj), j = 1, ..., n

(p,θ) | α, λ,Λ ∼ h(p;α)×
L∏
`=1

NI(θ`;λ1I ,Λ)

σ2
i | β

iid∼ inv-gamma(c, β), i = 1, ..., I,

with the hyperpriors for (α, λ,Λ) and β discussed above.

Now, Gibbs sampling can be applied to draw from the posterior distribution

p(σ2,G, α, λ,Λ,w, β | data), where G is defined through (p,θ) based on its trun-

cation approximation. Details on the required posterior full conditional distributions

are provided below.

Regarding the Gibbs sampling updates for the θ`, ` = 1, ..., L, let n∗ be the number

of distinct values in vector w, denote the distinct elements by w∗k, for k = 1, ..., n∗, and

let M` = |{wj : wj = `}| be the number of configuration variables corresponding to

mixture component ` = 1, ..., L. Then, all the θ` for which ` /∈ {w∗k : k = 1, ..., n∗} are

generated from the prior, that is, they are drawn independently from the NI(λ1I ,Λ)
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distribution. The posterior full conditional for θ` corresponding to an active compo-

nent, that is, ` = w∗k for some k = 1, ..., n∗, is given by

NI(θw∗k ;λ1I ,Λ)
∏

{j:wj=w∗k}

I∏
i=1

{N(yij; θw∗k,i, σ
2
i )}sij .

We extend the Gibbs sampler to each component of vector θw∗k = (θw∗k,1, ..., θw∗k,I),

where the posterior full conditional for θw∗k,i, i = 1, ..., I, is normal with mean (miσ
2
i +

S2
i

∑
{j:wj=w∗k}

sijyij)/(σ
2
i +S

2
i

∑
{j:wj=w∗k}

sij) and variance σ2
i S

2
i /(σ

2
i +S

2
i

∑
{j:wj=w∗k}

sij).

Here, mi and S2
i denote the mean and variance, respectively, of the conditional distri-

bution for θw∗k,i, given all the other θw∗k,i′ , i
′ 6= i, arising from the joint NI(θw∗k ;λ1I ,Λ)

distribution.

Each configuration variable wj, j = 1, ..., n, has a discrete posterior conditional

distribution taking values in {1, ..., L} with probabilities which are proportional to

p`
∏I

i=1{N(yij; θ`,i, σ
2
i )}sij , for ` = 1, ..., L. The Gibbs sampling updates for vector p

are the same with a generic DP mixture model (see, e.g., Ishwaran and James, 2001).

The priors assigned to the DDP prior hyperparameters are conditionally conju-

gate. Specifically, λ has a normal posterior full conditional distribution with mean

(aλ + b2
λ1

T
I Λ−1(

∑n∗

k=1 θw∗k))/(1 +n∗b2
λ1

T
I Λ−11I) and variance b2

λ/(1 +n∗b2
λ1

T
I Λ−11I); the

posterior full conditional distribution for Λ is inverse Wishart with updated scale pa-

rameter aΛ +n∗ and matrix parameter BΛ +
∑n∗

k=1(θw∗k −λ1I)(θw∗k −λ1I)
T ; and α has

a gamma posterior full conditional distribution with shape parameter L + aα − 1 and

rate parameter bα − log pL.

Finally, the posterior full conditional distribution for each σ2
i is inverse gamma with

shape parameter c+ 0.5
∑n

j=1 sij and scale parameter β+ 0.5
∑n

j=1 sij(yij− θwj ,i)
2, and

β has a gamma posterior full conditional distribution with shape parameter 1 + Ic and

rate parameter m−1
β +

∑I
i=1 σ

−2
i .
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Figure 1: Neuron sp259a.1. PSTH is shown for three experimental conditions (conditions 1, 2, and

3). A 4000 millisecond window is considered. The time is aligned on the spatial cue onset. Conditions

1 (Space, top panel), 2 (Dot, middle panel), and 3 (Ring, lower panel) demonstrate different responses.
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Figure 2: The experiment. The three different memory-guided saccade tasks performed in the

variable target experiment. Saccades were made to one of three different target types at one of four

locations separated by 90 degree angles. Note for the analyses described here, only one target location

per target type is described. Monkeys fixated a central spot to initiate the trial (figures A1-2, B1-2,

C1-2). Small central square represents the fixation spot, and the dotted ring indicates the location

of the monkey’s gaze. After 400 ms following attainment of fixation, one of three events occurred:

an array of four dots representing the four potential targets appeared (Dot condition, C2), a circular

ring appeared at equal eccentricity to and passing through the positions of the array of dots (Ring

condition, B2), or no targets appeared (Space condition, A2). After an additional 500 ms a green cue

spot was flashed in one of the four target locations for 100 ms (A3-C3). Following a random delay of

800 to 900 ms (A4-C4), the fixation spot was extinguished and the monkey was required to make a

saccade to the previously cued location (A5-6, B5-6, C5-6). Arrow represents the executed saccade.

Reward was delivered after the monkey made a saccade directly to the cued location within 150 ms

of breaking fixation and then fixated on the cued location for 200-300 ms.
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Figure 3: Pairwise differences in firing densities for neuron sp259a.1. The top panel contains the

posterior mean difference (solid red line), along with 95% posterior bands (dashed lines) for conditions

1 and 2. Conditions 1 and 3 are compared in the middle panel, and conditions 2 and 3 in the lower

panel. The solid black line is placed at the 0 difference mark.
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Figure 4: Neuron sp220b.1. PSTH is shown for three experimental conditions (conditions 1, 2, and

3). The time is aligned on the spatial cue onset. Conditions 1 (Space, top panel), 2 (Dot, middle

pattern), and 3 (Ring, lower panel) demonstrate different responses.
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Figure 5: Pairwise differences in firing densities for neuron sp220b.1. The top panel contains the

posterior mean difference (solid red line), along with 95% posterior bands (dashed lines) for conditions

1 and 2. Conditions 1 and 3 are compared in the middle panel, and conditions 2 and 3 in the lower

panel. The solid black line is placed at the 0 difference mark.
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Figure 6: Posterior mean (solid line) and 95% interval estimates (dashed lines) for the neuronal

intensity function of each condition for neuron sp259a.1 (left column) and neuron sp220b.1 (right

column).
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