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Abstract

Although JavaScript is an important part of Web 2.0, it has historically been a major source of
security holes. Code from malicious advertisers and cross-site-scripting (XSS) attacks are particularly
pervasive problems. In this paper, we explore dynamic information flow to prevent the loss of confidential
information from malicious JavaScript code. In particular, we extend prior dynamic information flow
techniques to deal with the many complexities of JavaScript, including mutable and extensible objects
and arrays, dynamic prototype chains for field and method inheritance, functions with implicit this

arguments that are also used as methods and constructors, etc. We formally verify that our extended
dynamic analysis provides termination-insensitive non-interference.

1 Introduction

JavaScript has become a pillar of Web 2.0. But while it has been used to create many powerful applications,
JavaScript in the browser has also proven to be rife with security problems. The primary defense for
JavaScript is the same origin policy, which prevents code from accessing documents that originate from
outside the current domain [33]. However, this policy has failed to prevent attacks from malicious code
injected in a victim site.

As an example, consider a banking website that stores a customer’s account number in a JavaScript
variable called accountNumber. The following JavaScript code, if injected into the bank’s webpage, is
sufficient to steal this confidential value:

var img = new Image();

img.src = "http://evil.com/"+accountNumber;

Setting the src attribute on an image element causes the browser to open a connection to the specified URL.
Since the account number is included in the URL, the attacker can retrieve it from the web server logs on
evil.com.

We propose using information flow analysis in JavaScript as a defense against malicious JavaScript
code. Information flow analysis tracks sensitive information (such as accountNumber) as it flows though
the execution of a program by associating security labels with values and preventing values marked with
confidential labels from being leaked to a possible attacker. If accountNumber was tagged as confidential in
the above example, the leak to img.src would be prevented.
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Information flow has traditionally been analyzed statically, most commonly via specialized static type
systems [27, 44, 35, 34]. However, JavaScript is a dynamically typed language, making type-based approaches
difficult. Statically certifying code at runtime would lead to an undesirable performance penalty and is likely
to be overly restrictive. Because of JavaScript’s flexibility, offline certification is problematic; previously
unseen code injected by an attacker could modify certified code at runtime, invalidating any security claims.

In prior work, we investigated dynamic information flow analysis in the simplified setting of the lambda
calculus with mutable reference cells [6, 7]. However, Javascript is much more complex and involved language
than the lambda calculus, with many additional features and complexities that are not addressed in this
prior work. These features include mutable and extensible objects and arrays, prototype-based inheritance of
fields and methods with dynamic prototype chains, functions that also double as methods and constructors,
complex initial environment bindings, etc.

In this paper we address these additional complexities of JavaScript. We prove the security of our
analysis on an interesting subset of JavaScript called Featherweight JavaScript (FWJS) that retains many of
the interesting features of JavaScript, including its prototype-based object system, while being small enough
to facilitate formal reasoning.

Much as buffer overrun vulnerabilities have been eliminated through the use of memory-safe languages,
we hypothesize that information flow can provide a systemic defense against data confidentiality and integrity
violations, even in an adversarial environment that contains malicious JavaScript code.

The outline of this paper is as follows: Section 2 gives an overview of information flow analysis, Section 3
introduces Featherweight JavaScript, Section 4 presents our dynamic information flow analysis and non-
interference proof for Featherweight JavaScript, Section 5 gives an overview of related work in this area, and
Section 6 concludes.

2 Information Flow Overview

In this section, we review the basics of information flow analysis. While our discussion focuses on protecting
confidential information, the same techniques may be used to protect the integrity of information as well.

The standard guarantee of information flow analysis is termination-insensitive non-interference. Non-
interference means that the public outputs will be unaffected by private data, or for integrity, that trusted
outputs will not be affected by untrusted data. Termination-insensitive non-interference loosens this restric-
tion to allow for a single bit of private data to be lost, but only through the termination behavior of the
program.1

For our discussion, we will use the example of a government trying to determine the browsing habits of
its citizens. Specifically, the government wishes to know if any of its citizens have visited dissident.org,
revolution.org, or any number of other sites indicating disloyalty to the regime.

We assume that the government has been able to inject JavaScript code into another site, either through
an XSS vulnerability or through compromised advertising code. Our example uses a function getComputedColor(url)

that returns the color of a link to the specified URL, and a variable visited that denotes the color of visited
links. If a visitor has visited dissident.org, then

getComputedColor("dissident.org") === visited

evaluates to true2. However, the result of getComputedColor in our example is confidential, and as such the
government cannot directly export it to an external site.

Information flow analysis assumes that the attacker is able to inject arbitrary code into the webpage. In
an extreme case, the attacker might be in control of all the JavaScript code running on the webpage (for
example, when a user decides to visit evil.gov). As a result, it is not sufficient to analyze only explicit

1Askarov et al. [2] note that intermediary output channels can leak more than a single bit, but the attacker is reduced to a
brute-force assault.

2A common technique for learning the user’s browsing history is to look at the computed color of links. The latest versions
of browsers have begun to block this technique. Nonetheless, we use this example since it is particularly illustrative of the
challenges involved in information flow analysis.
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flows, where information leaks through direct assignment. We must also consider the much more problematic
implicit flows, where data is leaked through the control flow of the program.

For an example of explicit flows, consider the following snippet of code:

function declassify(c) {

var x = c;

return x;

}

declassify(getComputedColor("dissident.org"));

This function attempts to declassify the color of the link by reassigning it On the assignment of the color c to
the (implicitly) public variable x, the leak can be prevented simply by making x’s security label confidential.
However, with control of the source code, the government can attempt to deduce the variable without direct
assignment.

The following code uses implicit flows to determine whether a user has visited the specified URL. While
v is never assigned to directly, its value will surrender the secret that we wish to protect.

function wasVisited(url) {

var v = false;

if (getComputedColor(url) === visited)

v = true;

return v;

}

The bulk of information flow research has focused on static approaches, but as discussed in the introduction,
static analysis is a poor fit for JavaScript. Recent work [46, 6, 7] has addressed the perceived weakness
of dynamic information flow analysis and established the proper semantic checks to guarantee termination-
insensitive non-interference. The no-sensitive-upgrade check [46, 6] guarantees non-interference by disallow-
ing updates to public variables from code whose execution is conditional on sensitive data. In the wasVisited
function, the no-sensitive-upgrade check would cause the program to terminate on the assignment to v to
avoid leaking information about the link color.

Through termination, the government might still be able to learn whether the user had visited dissident.

org. Critically, however, they could not glean more than one bit of information per program execution. To
illustrate the importance of that restriction, consider the following example.

var sitesVisited = [

wasVisited("dissident.org"),

wasVisited("revolution.org"),

...

wasVisited("downWithTheMan.org")];

return sitesVisited;

Normal termination of the above code would reveal that a user had not visited any of the listed sites. Abrupt
termination due to a failed no-sensitive-upgrade check would reveal only that some site had been visited.
While that might be useful information, the government would not be able to learn which site was fostering
the most dissent. (The government could use intermediate output channels as part of the wasVisited

function, and could therefore identify which site caused execution to terminate; however, the government
would receive no information about sites later in the list of URLs).

Previous research on purely dynamic information flow analysis focused on variations of lambda calculus.
We apply dynamic information flow analysis to a substantial subset of JavaScript and show how to address
the complexities of a prototype-based object system in a secure manner.
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3 Featherweight JavaScript Language

The full JavaScript language is quite complex and difficult to reason about, and is a difficult foundation
for proving formal security guarantees. To circumvent these difficulties, we take a two-phase approach
to JavaScript specification. We first present a minimal core language called LambdaScript that captures
the essence of JavaScript: higher-order functions, prototype-based objects, and eval. LambdaScript is
intentionally minimalistic, facilitating formal security proofs. We then show how Featherweight JavaScript
(a substantial portion of the full JavaScript language, as shown in Figure 1) can be translated or desugared
into LambdaScript.

3.1 Featherweight JavaScript Syntax

The syntax of Featherweight JavaScript is presented in Figure 1, and captures a significant subset of the
JavaScript language. The language includes mutable variables, the this keyword, constants, object literals
{ xi : ei }, array literals [ ei ], and function definitions. It includes both direct (e.x) and computed (e[e])
object and array accesses and updates, as well as direct and computed method calls. FWJS captures much
of the complexity surrounding functions. In addition to being called as a method, functions can also be
called directly, as in e(fi), or as a constructor, as in new e(fi). The language includes a number of useful
features, such as conditional expressions, sequential composition, and binary operators. Given its prevalence
in JavaScript, we include dynamic code evaluation through eval . Finally, although it is not part of the
JavaScript language, we include the ability to add a security label k to an expression (〈k〉e) in order to
facilitate information flow analysis.

Although Featherweight JavaScript does not include every feature of JavaScript, it nonetheless captures
an extensive subset of the full language. While we could attempt to provide an operational semantics for
FWJS, the language still has more complexity than we wish to deal with directly. For example, consider the
steps involved in evaluating a method call e[x](a1,a2).

1. The expression e must first be evaluated to an object.

2. Next, the variable x must be evaluated to determine which property to fetch.

3. Now, the property that e[x] refers to must be fetched from the object. If not available, the prototype
chain must be searched for the desired property, since JavaScript objects include a prototype field for
member inheritence.

4. Once the property has been found and the proper function has been returned, the evaluation rules
must ensure that the this register binds correctly.

5. The parameters a1 and a2 must be evaluated and made available within the scope of the function.
Furthermore, the implicit arguments array must be allocated and initialized with the specified param-
eters.

6. Finally, the method call may be evaluated.

While the subtleties of this evaluation are far from insurmountable, we take a simpler approach of
translating or desugaring FWJS to its essential core in LambdaScript.

3.2 LambdaScript Syntax

Figure 2 lists the constructs for LambdaScript. We use the term registers for LambdaScript immutable
registers, to distinguish them from FWJS variables, which are stored in a mutable scope object. Expressions
include registers (a), lambda abstraction (λa.e), lambda application (e e), object allocation (new), object
access (e[e]), object update (e[e] = e), binary operators (e ⊕ e), dynamic code evaluation (eval(e)), and
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Figure 1: Featherweight JavaScript Syntax

e, f, g ::= Terms:
x variable
x = e variable update
this this register
c constants
true boolean true
false boolean false
{ xi : ei } object literal
[ ei ] array literal
function f( xi ) { var yi; return e; } function
e.x direct object access
e[e] computed object access
e.x = f direct object update
e[f ] = g computed object update

e.x( fi ) direct method call
e[f ]( gi ) computed method call

e( fi ) function invocation

new e( fi ) constructor invocation
if (e) {e} else {e} conditional
e; f sequential composition
e⊕ e binary operator
eval(e) dynamic evaluation
〈k〉e add security label

c ::= Constants:
s string
null null value
undefined undefined value

⊕ ::= +,==, ... Operators

x, y, z Variables/Fields
k, l,m Labels
s Strings

constants (c). Lambda abstractions, lambda applications, and registers, are not available to developers
within FWJS. Nonetheless, these constructs are crucial, since they are the building blocks for more complex
features.

Objects in LambdaScript rely on the proto field to provide inheritance. If a property is unavailable
in the current object, then it may be available in the object’s prototype, which is specified by proto . If
proto is undefined (indicating that the object is at the top of the hierarchy), then the value undefined

is returned.

3.3 Desugaring Featherweight JavaScript

LambdaScript is intentionally minimal. Nonetheless, its design allows us to formally define the semantics of
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Figure 2: LambdaScript Syntax

e, f, g ::= Terms:
a registers
λa. e abstraction
e e application
new object allocation
e[e] object selection
e[e] = e object update
e⊕ e binary operators
eval(e) dynamic evaluation
c constant
〈k〉e labeled expression

a, b Registers

FWJS via a translation or desugaring into this core language. Figure 3 shows how Featherweight JavaScript
constructs can be desugared in a manner that is consistent with JavaScript’s semantics.

An FWJS object allocation { si : ei } is desugared into separate operations that allocate a new object
(via new), initialize its proto to ObjectProto (the default initial value of the prototype field of the global
Object binding), and then initialize each field si.

{ si : ei }
def
= let a = new; a. proto = ObjectProto; a[si] = ei; a

Array allocations [ ei ] are desugared in a similar manner. The construct

rec a = { si : ei } in e

defines cyclic data structures in a convenient manner, where the register a can appear free in the ei, and is
extended in Figure 3 to simultaneously allocate and initialize multiple objects.

Much of the complexity in JavaScript centers around functions, which also double as constructors and
methods, and which are actually objects with (hidden) call and construct properties. The desugaring of
a FWJS function explicates that the call property contains a lambda abstraction that expects two (curried)
arguments: a binding for this, and an argument array args. The body of the lambda abstraction then creates
a new scope object scope that includes the local variables yi and the implicit variable arguments, and
the replaces references to local and argument variables with accesses to the scope object and the arguments
array, respectively. Consistent with JavaScript’s semantics, the parameters are also available through the
arguments variable.

A corresponding method invocation e.x( fi ) is then desugared (via several steps, as illustrated below)
into code that

1. binds a register a to the result of evaluating e;

2. extracts the function object at field “x”;

3. extracts the call field of that function object, which is a lambda abstraction, and

4. applies that lambda abstraction to two curried arguments: the object a itself (which will be bound to
this), and an array ([ fi ]) of argument expressions.
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Figure 3: Translating FWJS into LambdaScript

Note: Xi abbreviates Xi∈0..n−1
i

let a = e; f
def
= (λa. f) e

e; f
def
= let a = e; f a 6∈ FV (f)

true
def
= λx.λy.x

false
def
= λx.λy.y

if (e1) {e2} else {e3}
def
= (e1 (λd.e2) (λd.e3)) (λx.x)

e.x
def
= e[“x”]

e.x = f
def
= e[“x”] = f

e.x( fi )
def
= e[“x”]( fi )

x : e
def
= “x” : e

e[f ](gi)
def
= let a = e; (a[f ]. call )(a)[ gi ]

e( fi )
def
= (e. call )(GlobalObj )[ fi ]

new e(fi)
def
= (e. construct )[ fi ]

rec ai = { sij : eij } in e
def
= let ai = new in ai[sij ] = eij ; e

{ si : ei }
def
= let a = new; a. proto = ObjectProto; a[si] = ei; a

[ ei ]
def
= let a = new; a. proto = ArrayProto; a[“i”] = ei; a

function f( xi ) { var yi; return e; } def
=

rec a = {
prototype : {constructor : a},
proto : FunctionProto,
call : λthis. λargs.

let scope ={ proto :null, arguments :args};
e[ xi := args[“i”], yi := scope [“yi”],

arguments := scope [“arguments”] ],
construct : λargs. let b = { proto : a.prototype};

(a. call )(b)(args); b
} in a

The array expression [ fi ] in turn desugars into separate allocation and initialization operations, including
for the implicit proto field:

e.x( fi )

= e[“x”]( fi )

= let a = e; (a[“x”]. call )(a)[ fi ]

= let a = e; (a[“x”][“ call ”])(a)[ fi ]
= let a = e; (a[“x”][“ call ”])(a)

(let b = new; b. proto = ArrayProto; b[“i”] = fi; b)

A constructor invocation new e( fi ) invokes the special construct property of the function e. This
construct property is a lambda abstraction that allocates a new object b, sets b. proto to the prototype

field of the function, and then calls the call of the function to initialize the newly allocated object. The
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return value of a constructor invocation is then the newly created object.
Figure 4 shows the initial environment for FWJS programs. It includes the global object as well as initial

bindings for the variables Object, Array, and Function, and concisely captures many detailed aspects of
ECMAScript [29].

An implementation of FWJS is available online [21] that desugars FWJS into LambdaScript and evaluates
the resulting LambdaScript program, allowing us to verify that our semantics is consistent with the intended
behavior of JavaScript programs.

Figure 4: Initial Environment

rec GlobalObj = { proto : ObjectProto,
Object : Object ,
Function : Function,
Array : Array
}

and Object = { proto : FunctionProto,
prototype : ObjectProto,
call : λthis. λargs. { },
construct : λargs. { }

}
and Function = { proto : FunctionProto,

prototype : FunctionProto,
call : λthis. λargs. function (){ return undefined; },
construct : λargs. function (){ return undefined; }

}
and Array = { proto : FunctionProto,

prototype : ArrayProto,
call : λthis. λargs. args
construct : λargs. args

}
and ObjectProto = { proto : undefined,

constructor : GlobalObj .Object
}

and ArrayProto = { proto : ObjectProto,
constructor : GlobalObj .Array
}

and FunctionProto = { proto : ObjectProto,
prototype : { constructor : FunctionProto },
call : λthis. λargs. undefined,
construct : λargs. undefined,
constructor : GlobalObj .Function,
call : function(t, a) { return (this. call )(t)(a); }
}

in •

3.4 Basic Evaluation Rules

We formulate the rules for evaluating LambdaScript using a big-step operational semantics. Figure 5 shows
the basic rules for evaluating FWJS without non-interference guarantees.

The rules defining this evaluation relation are mostly straightforward, The [n-const] rule evaluates a
constant to itself. The [n-fun] rule evaluates a lambda (λx.e) to a closure (λx.e, θ) that captures the
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Figure 5: No Labeling for FWJS

Evaluation Rules: σ, θ, e ⇓ σ′, v

σ, θ, c ⇓ σ, c
[n-const]

σ, θ, (λx.e) ⇓ σ, (λx.e, θ)
[n-fun]

σ, θ, x ⇓ σ, θ(x)
[n-var]

σ, θ, e1 ⇓ σ1, (λx.e, θ′)
σ1, θ, e2 ⇓ σ2, v1

σ2, θ
′[x := v1], e ⇓ σ′, v
σ, θ, e1 e2 ⇓ σ′, v

[n-app]

σ, θ, e1 ⇓ σ1, c
σ1, θ, e2 ⇓ σ2, d
r = c[[⊕]]d

σ, θ, e1 ⊕ e2 ⇓ σ′, r
[n-binop]

p 6∈ dom(σ)

σ, θ, new ⇓ σ[p := {}], p
[n-new]

σ, θ, e ⇓ σ1, s
e1 = stringtoexp(s)
σ1, θ, e1 ⇓ σ′, v

σ, θ, eval(e) ⇓ σ′, v
[n-eval]

σ, θ, e1 ⇓ σ1, p
σ1, θ, e2 ⇓ σ′, s
R = σ′(p)
s ∈ dom(R)
v = R(s)

σ, θ, e1[e2] ⇓ σ′, v
[n-get-direct]

σ, θ, e1 ⇓ σ1, p
σ1, θ, e2 ⇓ σ2, s
R = σ2 (p)
s 6∈ dom(R)

” proto ” ∈ dom(R)
q = R(” proto ”)
σ2, θ, q[s] ⇓ σ′, v
σ, θ, e1[e2] ⇓ σ′, v

[n-get-parent]

σ, θ, e1 ⇓ σ1, p
σ1, θ, e2 ⇓ σ′, s
R = σ′(p)
s 6∈ dom(R)

” proto ” 6∈ dom(R)

σ, θ, e1[e2] ⇓ σ′, undefined
[n-get-undefined]

σ, θ, e1 ⇓ σ1, p
σ1, θ, e2 ⇓ σ2, s
σ2, θ, e3 ⇓ σ′, v
R = σ′(p)

R′ = R+ (s : v)

σ, θ, e1[e2] = e3 ⇓ σ′[p := R′], v
[n-set]

9



current substitution. The [n-var] rule for a variable reference a extracts the corresponding value θ(a)
from the environment. The [n-app] rule applies a closure to an argument. The [n-binop] rule applies binary
operators, where [[⊕]] has the expected meaning for the operator. For instance, "no"+"table" would produce
"notable". The [n-eval] rule creates a new expression from a string and then executes that expression.

State in FWJS is handled through mutable objects. The [n-new] rule allocates a new object in the
environment and returns a pointer to it. The [n-set] rule updates a field in a object with a new value.

One of the more complex areas of JavaScript is combining extensible objects with prototype-based inher-
itance. Instead of class definitions, objects contain a reference to a parent object. When getting a field from
an object, its own available fields are checked first, represented by the [n-get-direct] rule. If the field is not
available, then the field will be retrieved from the parent object, handled by the [n-get-parent] rule. This
evaluation will continue until it reaches the global object, which has no parent, in which case undefined is
returned, as indicated by the [n-get-undefined] rule.

4 Information Flow Analysis for FWJS

We next study information flow for Featherweight JavaScript. Because we translate Featherweight JavaScript
into LambdaScript, it suffices to first study dynamic information flow for LambdaScript itself, and this anal-
ysis will directly extend to FWJS as well.

We formalize our analysis as an evaluation semantics for LambdaScript programs that tracks the security
label of each value. Labels include H for high-security (confidential) data and L for low-security (public)
data, with a join operator t. Although a more complex security lattice [16] might be useful in practice, this
two-element lattice suffices to illustrate our approach.

As shown in Figure 6, a store is a map from pointers to objects. An object is a collections of fieldname
strings and associated values. Since JavaScript objects are extensible, each object includes a security label
k that implicitly applies to fields that are not yet defined in the object. A value is a pair of a raw value
and a security label, and a raw value is either a constant, a pointer, or a closure that combines a lambda
abstraction with a substitution or environment θ that provides bindings for the free registers of the lambda
abstraction.

We formalize LambdaScript semantics via the judgement

σ, θ, e ⇓pc σ′, v

which states that evaluating the expression e from the store σ and substitution θ terminates with the value
v and the (possibly modified) store σ′. Here, pc captures the security level of the program counter. The
evaluation rules defining this judgement are shown in Figure 6.

For clarity, these rules present a universal-labeling strategy, though we note that a sparse-labeling strat-
egy [6] would provide the same guarantees with less overhead. We include an equivalent sparse variant of
our rules in the appendix.

There are a number of subtleties on how labels are handled in these rules. In particular, we adopt the
invariant that the label on the resulting value v is at least as secure as the program counter (pc v label(v)).
Thus, for example, the [const] rule evaluates a constant c to the labeled value cpc . The [fun] rule evaluates
a lambda abstraction (λa.e) to a closure (λa.e, θ)pc that captures the current substitution and includes
the program counter label. The [var] rule for a register a extracts the corresponding value θ(a) from the
environment and strengthens its label to be at least pc, using the following overloading of the join operator:

(rl) t k def
= r(ltk)

The [app] rule applies a lambda to a value; the label on the result will be at least as secure as the label
on the closure. The [binop] rule applies binary operators, where [[⊕]] applies to two raw values and has the
expected meaning for the operator. The labels on both values are joined together and applied to the result.
The [label] rule for 〈k〉e explicitly tags the result of evaluating e with the label k.
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Figure 6: LambdaScript Semantics with Dynamic Information Flow

Runtime Syntax: p, q, r ∈ Pointer
σ ∈ Store = Pointer →p Object
θ ∈ Subst = Register →p Value
r ∈ RawValue ::= c | p | (λx.e, θ)
v ∈ Value ::= rk

R ∈ Object = {s : v}k

Evaluation Rules: σ, θ, e ⇓pc σ′, v

σ, θ, c ⇓pc σ, cpc
[const]

σ, θ, (λx.e) ⇓pc σ, (λx.e, θ)pc
[fun]

σ, θ, x ⇓pc σ, (θ(x) t pc)
[var]

σ, θ, e1 ⇓pc σ1, (λx.e, θ′)k
σ1, θ, e2 ⇓pc σ2, v1

σ2, θ
′[x := v1], e ⇓k σ′, v

σ, θ, e1 e2 ⇓pc σ′, v
[app]

σ, θ, e1 ⇓pc σ1, ck
σ1, θ, e2 ⇓pc σ2, dl

r = c[[⊕]]d

σ, θ, e1 ⊕ e2 ⇓pc σ′, rktl
[binop]

σ, θ, e ⇓pc σ′, v
σ, θ, 〈k〉e ⇓pc σ′, v t k

[label]

σ, θ, e ⇓pc σ1, sk
e1 = stringtoexp(s)
σ1, θ, e1 ⇓k σ′, v

σ, θ, eval(e) ⇓pc σ′, v
[eval]

p 6∈ dom(σ)

σ, θ, new ⇓pc σ[p := {}pc ], ppc
[new]

σ, θ, e1 ⇓pc σ1, pk
σ1, θ, e2 ⇓pc σ′, sl

R = σ′(p)
s ∈ dom(R)

rm = R(s) t label(R)

σ, θ, e1[e2] ⇓pc σ′, rmtktl
[get-direct]

σ, θ, e1 ⇓pc σ1, pk
σ1, θ, e2 ⇓pc σ2, sl

R = σ2 (p)
s 6∈ dom(R)

" proto " ∈ dom(R)
qm = R(" proto ") t label(R)

σ2, θ, q[s] ⇓mtktl σ′, v
σ, θ, e1[e2] ⇓pc σ′, v

[get-parent]

σ, θ, e1 ⇓pc σ1, pk
σ1, θ, e2 ⇓pc σ′, sl

R = σ′(p)
s 6∈ dom(R)

" proto " 6∈ dom(R)
m = label(R)

σ, θ, e1[e2] ⇓pc σ′, undefinedmtktl
[get-undefined]

σ, θ, e1 ⇓pc σ1, pk
σ1, θ, e2 ⇓pc σ2, sl
σ2, θ, e3 ⇓pc σ′, v

R = σ′(p)
R′ = R+ (s : v t l)

k v label(R)
l v label(R, s)

σ, θ, e1[e2] = e3 ⇓pc σ′[p := R′], v
[set]

Derived Evaluation Rules for Select Encodings:

σ, θ, e1 ⇓pc σ1, (true, θ)
k

σ1, θ, e2 ⇓k σ′, v
σ, θ, (if (e1) {e2} else {e3}) ⇓pc σ′, v

[then]

σ, θ, e1 ⇓pc σ1, (false, θ)k

σ1, θ, e3 ⇓k σ′, v
σ, θ, (if (e1) {e2} else {e3}) ⇓pc σ′, v

[else]

σ, θ, e1 ⇓pc σ1, v1
σ1, θ[x := v1], e2 ⇓pc σ′, v

σ, θ, (let x = e1 in e2) ⇓pc σ′, v
[let]

σ, θ, e1 ⇓pc σ1, v1
σ1, θ, e2 ⇓pc σ′, v

σ, θ, (e1; e2) ⇓pc σ′, v
[seq]

.
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The [eval] rule uses the function stringtoexp to parse a string argument into a LambdaScript expression,
which is then evaluated normally. This rule highlights one of the key benefits of a purely-dynamic analysis,
which is the simplicity of handling eval. In contrast, many other security measures must outlaw the use of
eval, despite its wide popularity [36].

State in FWJS is handled through mutable objects. The [new] rule allocates a new object in the store
and returns a pointer to it. Both the pointer and the object use the program counter (pc) as their label.

The rules for fetching properties have the same complexity as in our basic semantics: the [get-direct] rule
retrieves values from an object; the [get-parent] rule searches the prototype chain from missing properties;
and the [get-undefined] rule returns undefined if the property is not available and there is no parent object.
In all cases, the labels on e1 and e2, plus the labels on all accessed objects and fields, are attached to the
final value.

The [set] rule for e1[e2] = e3 updates a field in an object with a new value. The first check (k v label(R))
blocks any attempt to update a low-security object in a high-security context. This part of the check is
identical to the handling of references in the more traditional no-sensitive-upgrade check.

However, an attacker could also attempt to leak data through the keys. In the following snippet of code,
the public object nums could be used to leak the value of secretNum unless additional checks are put in
place:

nums[secretNum] = true;

The needed check is l v label(R, s), where label(R, s) is defined as:

label(R, s) =

{
label(R(s)) if s ∈ dom(R)
label(R) otherwise

This check will cause program execution to terminate, unless the previous value for nums[secretNum] is
high-security. If the assignment is successful, the label l from evaluating e2 is attached to the newly stored
value, so that a field may never be made less secure.

From these core rules, it is straightforward to derive corresponding evaluation rules for FWJS, some
of which are shown in Figure 6. Critically, the [then] and [else] rules use the security label k of the test
argument as the program counter label when evaluating the then or else branches, and so will get stuck if
the conditional could potentially lead to an information leak via an implicit flow.

4.1 Termination-Insensitive Non-Interference

We now show that our evaluation semantics guarantees non-interference. In particular, if two program states
differ only in H-labeled data, then these differences cannot propagate into L-labeled data.

To formalize this idea, we say two values are H-equivalent (written v1 ∼H v2) if either:

1. v1 = v2, or

2. both v1 and v2 have the label at least H, or

3. v1 = (λx.e, θ1)k and v2 = (λx.e, θ2)k and θ1 ∼H θ2.

Similarly, two substitutions are H-equivalent (written θ1 ∼H θ2) if they have the same domain and

∀x ∈ dom(θ1). θ1(x) ∼H θ2(x)

We also define equivalence for objects. If R1 ∼H R2, then dom(R1) = dom(R2), and ∀s ∈ dom(R1)
R1(s) ∼H R2(s) or H v label(R1) and H v label(R2).

Lemma 1 (Equivalence). The two ∼H relations on values and substitutions are equivalence relations.

12



We define an analogous notion of H-compatible stores: two stores σ1 and σ2 are H-compatible (written
σ1 ≈H σ2) if they are H-equivalent at all common addresses, i.e.,

σ1 ≈H σ2
def
= ∀a∈(dom(σ1) ∩ dom(σ2)). σ1(a) ∼H σ2(a)

Note that the H-compatible relation on stores is not transitive, i.e., σ1 ≈H σ2 and σ2 ≈H σ3 does not imply
σ1 ≈H σ3, since σ1 and σ3 could have a common address that is not in σ2. However, there is a limited degree
of transitivity, provided that the domains are monotonically increasing. Critically, our evaluation rules will
monotonically increase the domain of the store.

Lemma 2 (Limited Transitivity of Compatibility).
If σ1 ≈H σ2 and σ2 ≈H σ3 and dom(σ1) v dom(σ2) and dom(σ2) v dom(σ3) then σ1 ≈H σ3.

Lemma 3 (Evaluation Increases Store Domains).
If σ, θ, e ⇓pc σ′, v then dom(σ) v dom(σ′)

The evaluation rules enforce a key invariant, namely that the label on the result of an evaluation always
includes at least the program counter label:

Lemma 4 (Label Invariant).
If σ, θ, e ⇓pc σ′, rk then pc v k.

Another important property of our dynamic analysis is that any value pulled from a H-labeled object
will produce and H-labeled value.

Lemma 5 (Secure Objects Produces Secure Values).
If H v label(R) then ∀s. H v label(R(s))

As long as the program is evaluated in a secure context (pc = H), the evaluation rules preserve H-
compatibility of the store.

Lemma 6 (Evaluation Preserves Compatibility).
If σ, θ, e ⇓H σ′, v then σ ≈H σ′.

Proof. By induction on the derivation of σ, θ, e ⇓H σ′, v and case analysis on the final rule in the derivation.

• [const], [fun], [var]: σ′ = σ.

• [app], [binop], [get-direct], [get-parent], [get-undefined], [label], [eval] By induction.

• [new]: Then σ′ = σ[p := {}k] Therefore, σ and σ′ agree on their common domain.

• [set]: Then e = (e1[e2] = e3) from the antecedents of this rule we have:

σ, θ, e1 ⇓H σ1, p
k

σ1, θ, e2 ⇓H σ2, s
l

σ2, θ, e3 ⇓H σ3, v
R = σ3(p)
R′ = R+ (s : v t l)
k v label(R)

By induction we know that:
σ ≈H σ1
σ1 ≈H σ2
σ2 ≈H σ3

13



By Lemma 2 and 3 σ ≈H σ3.

By Lemma 4 H v k and H v l and H v m.

Since σ′ = σ3[p := R′], we know that ∀p′ ∈ dom(σ3) where p′ 6= p, σ′(p′) ∼H σ3(p′). It therefore
suffices to show that R′ ∼H R.

We know that ∀s′ where s′ 6= s,R(s′) = R′(s′). Therefore to prove that R ∼H R′, it suffices to show
that R(s) ∼H R′(s). Since H v label(R), by Lemma 5 we know that H v label(R(s)). Because H v l
we also know that H v label(R′(s)), and therefore R(s) ∼H R′(s).

With these critical lemmas established, we now state non-interference for LambdaScript more formally.

Theorem 1. If
σ1 ≈H σ2
θ1 ∼H θ2
σ1, θ1, e ⇓pc σ′1, v1
σ2, θ2, e ⇓pc σ′2, v2

then
σ′1 ≈H σ′2
v1 ∼H v2

The full proof of non-interference is available in the appendix.

5 Related Work

Denning [16, 18] first brought many of the challenges with information flow analysis to light, including the
complexities involved in implicit flows. Sabelfeld and Myers [40] give an overview of much of the research in
this area.

Type systems for information flow analysis have been a popular approach. Some examples include Heintze
and Riecke’s SLam Calculus [27] and Volpano et al.’s type system [44]. Pottier and Simonet [35] introduce a
more complex system for Core ML. Jif [30], one of the most production worthy information flow languages,
was created using many ideas developed in Myers’ JFlow [34]. Swamy et al. [15] develop a type system to
handle dynamic policies.

More recent interest has arisen in dynamic approaches. Though Fenton [23] and Denning [17] both
offered some hints in this direction, Zdancewic [46] first produced the evaluation rules to correctly handle
mutable reference cells dynamically. The critical rule (later dubbed the no-sensitive-upgrade check [6]) is
to forbid assignments to a public variable within a confidential context because the analysis cannot predict
how the program would have behaved on different confidential input that executed a different control-flow
path. Given this confusion, to avoid the potential for an information leak, the analysis halts execution.

An alternate strategy, pioneered by Le Guernic et al. [24], examines the code from branches that were
not taken. This strategy increases precision, at the expense of run-time overhead. Shroff et al. [42] present

yet another approach: with their purely-dynamic λdeps, soundness is not guaranteed. However, over time
their analysis will track and record dependencies between variables. Their analysis will not reject any valid
programs, and will reject more and more insecure programs over time. Shinnar et al. [41] use a write-
oracle to dynamically handle implicit flows, which provides soundness at some overhead cost. Chudnov and
Naumann [13] show how to inline an information-flow monitor, with the long-term goal of applying their
techniques to JavaScript.

Some work has been done regarding information flow in JavaScript. Vogt et al. [43] apply information
flow analysis to JavaScript within Firefox. However, their system uses a static analysis phase at branch
points, adding unnecessary overhead to the performance of the JavaScript engine. Chugh et al. [14] use
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a static approach for analyzing JavaScript but have “holes” for dynamically generated code. Russo et al.
study both the DOM [39] and timeout mechanisms [37].

Askarov and Sabelfeld [4] study dynamic code evaluation and declassification. Magazimius et al. [32]
focus on JavaScript mashups and challenges of declassifying information. Devriese and Piessens [19] take
the approach of executing the same program twice with both a high and a low security level, cleanly offering
noninterference as well as protecting against the termination channel and timing channels. Askarov et al. [5]
discuss defenses against timing channels.

Bandhakavi et al. [9] statically analyze Firefox plugins for information leaks, helping reviewers to identify
potential issues with new plugins. Dhawan and Ganapathy [20] discuss JavaScript-based browser extensions
(JSEs) and the associated risks. The authors modify Firefox to dynamically track information flow in
GreaseMonkey scripts.

Hunt and Sands [28] describe a flow-sensitive type system. Hammer and Snelting [26] use program
dependence graphs to analyze JVM bytecode to precisely guarantee termination-insensitive non-interference.
Russo and Sabelfeld discuss the trade-offs between static and dynamic analyses; among other things, they
prove that purely-dynamic analysis can only achieve a limited degree of flow-sensitivity, and therefore cannot
be both sound and precise [38].

It has been argued that any real system for protecting confidentiality must provide a mechanism for
declassifying data [4, 32]. Zdancewic [45] adds integrity labels to the security lattice and permits declassifi-
cation only when the decision to do so is high-integrity. Askarov and Myers [3] use a similar approach, but
also consider endorsement; they argue that checked endorsements are needed to prevent an attacker from
endorsing an unauthorized declassification. Chong and Myers [12] instead propose using a framework for
specifying application-specific declassification policies.

Featherweight JavaScript is one of several JavaScript subsets designed for formal analysis. Concurrent
with our work, Guha et al. [25] use a similar approach of desugaring to a small core language they call λJS .
Their work handles a larger subset than FWJS, and has been tested on large portions of Mozilla’s JavaScript
test suite. Maffeis et al. [31] describe an operational semantics for JavaScript as defined in the ECMAScript
3rd edition standard. Taking a different approach, Bohannon and Pierce [11] define a formal semantics for
the entire browser called Featherweight Firefox.

One of the challenges in working with JavaScript lies in determining what features of JavaScript are used,
and just as importantly, how they are be used. Richards et al. [36] do an extensive survey of JavaScript
usage. They show that many difficult to analyze features, such as eval and with, are used extensively on
production code. In a similar vein Jang et al. [1] survey a number of sites for information flow leaks; among
the more interesting attacks, a number of sites use “heat maps” to track users’ mouse movements.

6 Conclusions and Future Work

This paper presents a dynamic information flow analysis that addresses many of the complexities of JavaScript,
including mutable and extensible objects and arrays, dynamic prototype chains for field and method inheri-
tance, functions with implicit this arguments that are used as methods and constructors, etc. Our approach
desugars Featherweight JavaScript into a small core language LambdaScript that then is the focus of our
analysis; this modular approach facilitates the development of formal correctness proofs.

Future work involves extending FWJS to cover a fuller subset of JavaScript and designing a comprehen-
sive security policy to guarantee the confidentiality of information in the browser. In ongoing work with
Mozilla [22], we are exploring how to incorporate these ideas into Firefox.
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A Sparse-Labeling Variant of FWJS

A sparse-labeling strategy can be used to reduce the overhead of our information flow controls [6]. In this
section, we modify our evaluation rules to follow a sparse strategy.

The rules in Figure 7 are mostly the same as the universal labeling rules. However, whenever possible,
the program counter is used in place of storing labels on values. The [*-slow] rules are used only when
values include a label.

B Non-Interference Proof

In this section, we prove termination-insensitive non-interference. First, we note some key lemmas:

Lemma 7 (Labeling Equivalence).
If v1 ∼H v2 then v1 t k ∼H v2 t k.

Lemma 8 (Evaluation of Get With Constants).
If σ, θ, p[s] ⇓pc σ′, v then σ′ = σ, since evaluating p and s will not modify the store in any of the get rules.

Now we restate Theorem 1 for the reader’s convenience.
If

σ1 ≈H σ2
θ1 ∼H θ2
σ1, θ1, e ⇓pc σ′1, v1
σ2, θ2, e ⇓pc σ′2, v2

then
σ′1 ≈H σ′2
v1 ∼H v2
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Figure 7: Sparse Labeling Semantics for FWJS

Big-Step Evaluation Rules: σ, θ, e ↓pc σ′, v

σ, θ, c ↓pc σ, c
[s-const]

σ, θ, x ↓pc σ, θ(x)
[s-var]

σ, θ, (λx.e) ↓pc σ, (λx.e, θ)
[s-fun]

σ, θ, e1 ↓pc σ1, (λx.e, θ′)
σ1, θ, e2 ↓pc σ2, v2

σ2, θ′[x := v2], e ↓pc σ′, v

σ, θ, (e1 e2) ↓pc σ′, v
[s-app]

σ, θ, e1 ↓pc σ1, (λx.e, θ′)k
σ1, θ, e2 ↓pc σ2, v2

σ2, θ′[x := v2], e ↓pctk σ
′, v

σ, θ, (e1 e2) ↓pc σ′, 〈k〉pc v
[s-app-slow]

σ, θ, e1 ↓pc σ1, c
σ1, θ, e2 ↓pc σ2, d

r = c[[⊕]]d

σ, θ, e1 ⊕ e2 ↓pc σ′, r
[s-binop]

σ, θ, e1 ↓pc σ1, ck
σ1, θ, e2 ↓pc σ2, dl

r = c[[⊕]]d

σ, θ, e1 ⊕ e2 ↓pc σ′, 〈k t l〉pc r
[s-binop-slow]

σ, θ, e ↓pc σ1, s
e1 = stringtoexp(s)
σ1, θ, e1 ↓pc σ′, v

σ, θ, eval(e) ↓pc σ′, v
[s-eval]

σ, θ, e ↓pc σ1, sk
e1 = stringtoexp(s)
σ1, θ, e1 ↓pctk σ

′, v

σ, θ, eval(e) ↓pc σ′, v
[s-eval-slow]

σ, θ, e1 ↓pc σ1, p
σ1, θ, e2 ↓pc σ2, s
σ2, θ, e3 ↓pc σ′, v

R = σ′(p)
R′ = R+ (s : 〈pc〉label(p) v)

pc v label(R, s)

σ, θ, e1[e2] = e3 ↓pc σ′[p := R′], v
[s-set]

σ, θ, e1 ↓pc σ1, pk
σ1, θ, e2 ↓pc σ2, sl
σ2, θ, e3 ↓pc σ′, v

R = σ′(p)
v′ = 〈k t l〉label(R,s) v
R′ = R+ (s : v′)

(pc t k) v label(p)
l v label(R, s)

σ, θ, e1[e2] = e3 ↓pc σ′[p := R′], v
[s-set-slow]

σ, θ, e ↓pc σ′, v

σ, θ, 〈k〉e ↓pc σ′, 〈k〉pc v
[s-label]

p 6∈ dom(σ)
label(p) = pc

σ, θ, new ↓pc σ[p := {}pc ], p
[s-new]

σ, θ, e1 ↓pc σ1, p
σ1, θ, e2 ↓pc σ′, s

R = σ′(p)
s ∈ dom(R)

rm = R(s) t label(p)

σ, θ, e1[e2] ↓pc σ′, 〈m〉pc r
[s-get-direct]

σ, θ, e1 ↓pc σ1, pk
σ1, θ, e2 ↓pc σ′, sl

R = σ′(p)
s ∈ dom(R)

rm = R(s) t label(p)

σ, θ, e1[e2] ↓pc σ′, 〈m t k t l〉pc r
[s-get-direct-slow]

σ, θ, e1 ↓pc σ1, p
σ1, θ, e2 ↓pc σ2, s

R = σ2(p)
s 6∈ dom(R)

" proto " ∈ dom(R)
qm = R(" proto ") t pc

σ2, θ, q[s] ↓m σ′, v

σ, θ, e1[e2] ↓pc σ′, 〈m〉pc v
[s-get-parent]

σ, θ, e1 ↓pc σ1, pk
σ1, θ, e2 ↓pc σ2, sl

R = σ2(p)
s 6∈ dom(R)

" proto " ∈ dom(R)
qm = R(" proto ") t pc t k t l

σ2, θ, q[s] ↓m σ′, v

σ, θ, e1[e2] ↓pc σ′, 〈m〉pc v
[s-get-parent-slow]

σ, θ, e1 ↓pc σ1, p
σ1, θ, e2 ↓pc σ′, s

R = σ′(p)
s 6∈ dom(R)

" proto " 6∈ dom(R)
m = label(p)

σ, θ, e1[e2] ↓pc σ′, 〈m〉pc undefined
[s-get-undefined]

σ, θ, e1 ↓pc σ1, pk
σ1, θ, e2 ↓pc σ′, sl

R = σ′(p)
s 6∈ dom(R)

" proto " 6∈ dom(R)
m = label(p)

σ, θ, e1[e2] ↓pc σ′, 〈m t k t l〉pc undefined
[s-get-undefined-slow]
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Figure 8: Sparse Labeling for Encodings

σ, θ, e1 ↓pc σ1, v1
σ1, θ[x := v1], e2 ↓pc σ′, v

σ, θ, (let x = e1 in e2) ↓pc σ′, v
[s-let]

σ, θ, e1 ↓pc σ1, v1
σ1, θ, e2 ↓pc σ′, v

σ, θ, (e1; e2) ↓pc σ′, v
[s-seq]

σ, θ, e1 ↓pc σ1, true
σ1, θ, e2 ↓pc σ′, v

σ, θ, (if (e1) {e2} else {e3}) ↓pc σ′, v
[s-then]

σ, θ, e1 ↓pc σ1, truek

σ1, θ, e2 ↓k σ′, v
σ, θ, (if (e1) {e2} else {e3}) ↓pc σ′, v

[s-then-slow]

Proof. By induction on the derivation σ1, θ1, e ⇓pc σ′1, v1 and case analysis on the last rule used in that
derivation.

• [const]: Then e = c and σ′1 = σ1 ≈H σ2 = σ′2 and v1 = v2 = c.

• [fun]: Then e = λx.e′ and σ′1 = σ1 ≈H σ2 = σ′2 and v1 = (λx.e′, θ1) ∼H (λx.e′, θ2) = v2.

• [var]: Then e = x and σ′1 = σ1 ≈H σ2 = σ′2 and v1 = θ1(x) ∼H θ2(x) = v2.

• [app]: In this case, e = (ea eb), and from the antecedents of this rule, we have that for i ∈ 1, 2:

σi, θi, ea ⇓pc σ′′i , (λx.ei, θ′i)ki

σ′′i , θi, eb ⇓pc σ′′′i , v′i
σ′′′i , θ

′
i[x := v′i], ei ⇓ki

σ′i, vi

By induction:
σ′′1 ≈H σ′′2
σ′′′1 ≈H σ′′′2
(λx.e1, θ

′
1)k1 ∼H (λx.e2, θ

′
2)k2

v′1 ∼H v′2

– If k1 and k2 are both at least H then v1 ∼H v2, since they both have labels at least H.

By Lemma 6, σ′1 ≈H σ′′′1 ≈H σ′′′2 ≈H σ′2, and we need to conclude that σ′1 ≈H σ′2.

We know that dom(σ′i) ⊇ dom(σ′′′i ), since execution only allocates additional reference cells.
Without loss of generality, we assume that the two executions allocate reference cells from disjoint
parts of the address space,3 i.e.:

(dom(σ′1) \ dom(σ′′′1 )) ∩ dom(σ′2) = ∅
(dom(σ′2) \ dom(σ′′′2 )) ∩ dom(σ′1) = ∅

Under this assumption, the only common addresses in σ′1 and σ′2 are also the common addresses
in σ′′′1 and σ′′′2 , and hence we have that σ′1 ≈H σ′2.

– If k1 and k2 are not both at least H, then θ′1 ∼H θ′2 and e1 = e2 and k1 = k2. By induction,
σ′1 ≈H σ′2 and v′′1 ∼H v′′2 , and hence v′1 ∼H v′2.

3We refer the interested reader to [10] for an alternative proof argument that does use of this assumption, but which involves
a more complicated compatibility relation on stores.
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• [binop]: In this case, e = (ea ⊕ eb), and from the antecedents of this rule, we have that for i ∈ 1, 2:

σi, θi, ea ⇓pc σ′′i , c
ki
i

σ′′i , θi, eb ⇓pc σ′i, d
li
i

ri = ci[[⊕]]di

By induction:
σ′′1 ≈H σ′′2
σ′1 ≈H σ′2
ck1
1 ∼H ck2

2

dl11 ∼H dl22

– If either k1 = k2 = H or l1 = l2 = H, then both v1 and v2 will be H-labeled, and so v1 ∼H v2.

– Otherwise, it must be the case that c1 = c2, k1 = k2, d1 = d2, and l1 = l2. Since the raw values
are identical, we know that r1 = r2. Therefore v1 = v2.

• [new]: In this case, e = new. Without loss of generality, we assume that both evaluations allocate
the same pointer p 6∈ dom(σ1) ∪ dom(σ2), and so ppc = v1 = v2. Therefore: σ′1 = σ1[p := {}pc ]
and σ′2 = σ2[p := {}pc ]. Since σ1 ≈H σ2, we know that ∀p′ ∈ dom(σ′1) ∩ dom(σ′2) where p′ 6= p,
σ′1(p′) ∼H σ′2(p′). Finally, since σ′1(p) = σ′2(p), we know that σ′1 ≈H σ′2.

• [get-direct]: In this case, e = (ea[eb]) and from the antecedents of this rule, we have that for i ∈ 1, 2:

σi, θi, ea ⇓pc σ′′i , p
ki
i

σ′′i , θi, eb ⇓pc σ′′′i , s
li
i

Ri = σ′′′i (pi)

Also by the antecedents:
s1 ∈ dom(R1)
rm1
1 = R1(s1) t label(R1)

v1 = rm1tk1tl1
1

σ′1 = σ′′′1

By induction:
σ′′1 ≈H σ′′2
σ′′′1 ≈H σ′′′2
pk1
1 ∼H pk2

2

sl11 ∼H sl22

– If s2 ∈ dom(R2) then rm2
2 = R2(s2)t label(R2). We also know that σ′′′2 = σ′2 ≈H σ′1. Therefore it

suffices to prove that v1 ∼H v2. We prove this by contradiction. Assume v1 6∼H v2 then v1 6= v2
and either H 6v v1 or H 6v v2. Then either H 6v m1 t k1 t l1 or H 6v m2 t k2 t l2, where
m2 = label(R2)t label(R2(s2)). This can only be true if sl11 = sl22 and pk1

1 = pk2
2 . Because p1 = p2

and σ′′′1 ≈H σ′′′2 , we know that R1 ∼H R2. Since R1 ∼H R2 and s1 = s2, we know that m1 = m2.
Therefore, it must be the case that H 6v v1 and H 6v v2. But since R1 ∼H R2, r1 = r2, which
means v1 = v2. This is a contradiction. Thus we know that v1 ∼H v2.

– If s2 6∈ dom(R2) and ” proto ” 6∈ dom(R2) then σ′′′2 = σ′2 ≈H σ′1. Therefore it suffices to prove
that v1 ∼H v2. We prove this by contradiction. Assume v1 6∼H v2 then v1 6= v2 and either H 6v v1
or H 6v v2. Then either H 6v m1 t k1 t l1 or H 6v m2 t k2 t l2, where m2 = label(R2). This
can only be true if sl11 = sl22 and pk1

1 = pk2
2 . Because p1 = p2 and σ′′′1 ≈H σ′′′2 , we know that

R1 ∼H R2. Since R1 ∼H R2 and H 6v m1 or H 6v m2, H 6v label(R1) and H 6v label(R2). Then
s1 ∈ dom(R2), and since s1 = s2, s2 ∈ dom(R2). This is a contradiction. Thus we know that
v1 ∼H v2.
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– Otherwise, s2 6∈ dom(R2) and ” proto ” ∈ dom(R2) and so:

qm2
2 = R2[” proto ”] t label(R2)
σ′′′2 , θ2, q[s] ⇓m2tk2tl2 σ

′
2, v2

By Lemma 8, we know that σ′2 = σ′′′2 , and therefore σ′1 ∼H σ′2. It suffices to show that v1 ∼H v2.
We prove this by contradiction. Assume v1 6∼H v2. Then v1 6= v2 and either H 6v v1 or H 6v v2.
Therefore H 6v l1 t k1 tm1 or H 6v l2 t k2 tm2. This can only be true if sl11 = sl22 and pk1

1 = pk2
2 .

Because p1 = p2 and σ′′′1 ≈H σ′′′2 , we know that R1 ∼H R2. Since R1 ∼H R2 and either H 6v m1

or H 6v m2, it must be the case that H 6v label(R1) and H 6v label(R2). But then s1 ∈ dom(R2).
Since s1 = s2, s2 ∈ dom(R2), which is a contradiction. Thus, we know that v1 ∼H v2.

• [get-undefined]: In this case, e = (ea[eb]) and from the antecedents of this rule, we have that for
i ∈ 1, 2:

σi, θi, ea ⇓pc σ′′i , p
ki
i

σ′′i , θi, eb ⇓pc σ′′′i , s
li
i

Ri = σ′′′i (pi)

Also by the antecedents:
s1 6∈ dom(R1)
” proto ” ∈ dom(R1)
m1 = label(R1)
v1 = undefined

σ′1 = σ′′′1

By induction:
σ′′1 ≈H σ′′2
σ′′′1 ≈H σ′′′2
pk1
1 ∼H pk2

2

sl11 ∼H sl22

– If s2 ∈ dom(R2) the proof holds by reciprical argument from the first subcase of [get-direct].

– If s2 6∈ dom(R2) and ” proto ” 6∈ dom(R2) then σ′′′2 = σ′2 ≈H σ′1. Therefore it suffices to prove
that v1 ∼H v2. We prove this by contradiction. Assume v1 6∼H v2 then v1 6= v2 and either
H 6v v1 or H 6v v2. Then either H 6v m1 t k1 t l1 or H 6v m2 t k2 t l2, where m2 = label(R2).
This can only be true if sl11 = sl22 and pk1

1 = pk2
2 . Because p1 = p2 and σ′′′1 ≈H σ′′′2 , we know

that R1 ∼H R2. Since R1 ∼H R2, we know that m1 = m2. Therefore, it must be the case that
H 6v v1 and H 6v v2, and since R1 ∼H R2, s1 6∈ dom(R2). But since s1 = s2 this means that
s2 6∈ dom(R2), and therefore v2 = undefinedm2tk2tl2 . However this means v1 = v2, which is a
contradiction. Thus we know that v1 ∼H v2.

– Otherwise, s2 6∈ dom(R2) and ” proto ” ∈ dom(R2) and so:

qm2
2 = R2[” proto ”] t label(R2)
σ′′′2 , θ2, q[s] ⇓m2tk2tl2 σ

′
2, v2

By Lemma 8, we know that σ′2 = σ′′′2 , and therefore σ′1 ∼H σ′2. It suffices to show that v1 ∼H v2.
We prove this by contradiction. Assume v1 6∼H v2. Then v1 6= v2 and either H 6v v1 or H 6v v2.
Therefore H 6v l1 t k1 tm1 or H 6v l2 t k2 tm2. This can only be true if sl11 = sl22 and pk1

1 = pk2
2 .

Because p1 = p2 and σ′′′1 ≈H σ′′′2 , we know that R1 ∼H R2. Since R1 ∼H R2 and either H 6v m1

or H 6v m2, it must be the case that H 6v label(R1) and H 6v label(R2). But then since R1 ∼H R2,
” proto 6∈ dom(R2) which is a contradiction. Thus, we know that v1 ∼H v2.
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• [get-parent]: In this case, e = (ea[eb]) and from the antecedents of this rule, we have that for i ∈ 1, 2:

σi, θi, ea ⇓pc σ′′i , p
ki
i

σ′′i , θi, eb ⇓pc σ′′′i , s
li
i

Ri = σ′′′i (pi)

Also by the antecedents:
s1 6∈ dom(R1)
” proto ” ∈ dom(R1)
qm1
1 = R1(” proto ”) t label(R1)
σ′′′1 , θ1, q1[s1] ⇓m1tk1tl1 σ

′
1, v1

By induction:
σ′′1 ≈H σ′′2
σ′′′1 ≈H σ′′′2
pk1
1 ∼H pk2

2

sl11 ∼H sl22

By Lemma 8 σ′1 = σ′′′1 .

– If s2 ∈ dom(R2) then this holds by a reciprical argument of the third subcase of [get-direct].

– If s2 6∈ dom(R2) and ” proto ” 6∈ dom(R2), then this holds by a reciprical argument of the third
subcase of [get-undefined].

– Otherwise s2 6∈ dom(R2) and ” proto ” ∈ dom(R2). Therefore:

qm2
2 = R2(” proto ”) t label(R2)
σ′′′2 , θ2, q2[s2] ⇓m2tk2tl2 σ

′
2, v2

By Lemma 8, σ′1 = σ′′′1 ≈H σ′′′2 = σ′2. Therefore, it suffices to prove that v1 ∼H v2.

∗ If H v m1 t k1 t l1 or H v m2 t k2 t l2, then H v m1 t k1 t l1 and H v m2 t k2 t l2. By
Lemma 6, H v v1 and H v v2.

∗ Otherwise pk1
1 = pk2

2 and sl11 = sl22 . Since p1 = p2 and σ′′′1 ≈H σ′′′2 , R1 ∼H R2. Because
R1 ∼H R2 and H 6v m1 and H 6v m2, qm1

1 = qm2
2 . Then v1 = v2 by induction.

• [label]: In this case, e = 〈k〉e′, and from the antecedents of this rule, we have that for i ∈ 1, 2:
σi, θi, e

′ ⇓pc σ′i, v′i. By induction, σ′1 ≈H σ′2 and v′1 ∼H v′2. Since v1 = v′1 t k and v2 = v′2 t k, by
Lemma 7 we know that v1 ∼H v2.

• [set]: In this case, e = (ea[eb] = ec), and from the antecedents of this rule, we have that for i ∈ 1, 2:

σi, θi, ea ⇓pc σ′′i , p
ki
i

σ′′i , θi, eb ⇓pc σ′′′i , s
li
i

σ′′′i , θi, ec ⇓pc σ′′′′i , vi
Ri = σ′′′′i (pi)
R′i = Ri + (si : vi t li)
ki v label(Ri)
σ′i = σ′′′′i [pi := R′i]

By induction:
σ′′1 ≈H σ′′2
σ′′′1 ≈H σ′′′2
σ′′′′1 ≈H σ′′′′2

pk1
1 ∼H pk2

2

sl11 ∼H sl22
v1 ∼H v2
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– IfH v k1 andH v k2, then it must be the case thatH v label(σ′′′′1 (p1)) andH v label(σ′′′′2 (p2)).Since
σ′′′′1 ≈H σ′′′′2 , we know that ∀p′dom(σ′1) ∩ dom(σ′2) where p1 6= p′ 6= p2, σ

′
1(p′) ∼H σ′2(p′).

∗ If p1 6∈ dom(σ′′′′2 ) and p2 6∈ dom(σ′′′′1 ), then σ′1 ≈H σ′2.

∗ If p1 ∈ dom(σ′′′′2 ) and p2 ∈ dom(σ′′′′1 ), then since σ′′′′1 ≈H σ′′′′2 we know thatH v label(σ′′′′1 (p2))
and H v label(σ′′′′2 (p1)). Therefore, σ′1 ≈H σ′2.

∗ If p1 ∈ dom(σ′′′′2 ) and p2 6∈ dom(σ′′′′1 ), then since σ′′′′1 ≈H σ′′′′2 we know thatH v label(σ′′′′2 (p1)).
Also, since p2 6∈ dom(σ′1), we know that σ′1 ≈H σ′2.

∗ If p1 6∈ dom(σ′′′′2 ) and p2 ∈ dom(σ′′′′1 ), then this holds with a similar argument to the previous
sub-case.

– Otherwise, pk1
1 = pk2

2 . In this case, it suffices to show that R′1 ∼H R′2. Since R1 ∼H R2, we know
that ∀s′ where s1 6= s′ 6= s2 it must be the case that R′1(s′) ∼H R′2(s′). Therefore, we only need
to prove that R′1(s1) ∼H R′2(s1) and R′1(s2) ∼H R′2(s2).

∗ If H v l1 and H v l2, then:

· if s1 ∈ dom(R1) and s2 ∈ dom(R2), then H v label(R1(s1)) and H v label(R2(s2)).Since
R1 ∼H R2, it must be the case that H v label(R′1(s2)) and H v label(R′2(s1)). Since
R′1(s1), R′2(s1), R′1(s2), and R′2(s2) are all H-labeled, we know that R′1(s2) ∼H R′2(s2).

· if s1 6∈ dom(R1) and s2 6∈ dom(R2), then H v label(R1)) and H v label(R2)).Therefore
H v label(R′1) and H v label(R′2), which means that R′1 ∼H R′2.

· if s1 ∈ dom(R1) and s2 6∈ dom(R2), then H v label(R2)) and H v label(R1(s2)).Since
R1 ∼H R2, it must be the case that H v label(R′1(s2)) and H v label(R′2), which means
that R′1 ∼H R′2.

· if s1 6∈ dom(R1) and s2 ∈ dom(R2), then this holds with a similar argument to the
previous sub-case.

∗ Otherwise, sl11 = sl22 . Therefore, R′1(s1) = R′1(s2) = v1 t l1 and R′2(s1) = R′2(s2) = v2 t l1
Since v1 ∼H v2, we know that R′1 ∼H R′2.

• [eval]: In this case, e = eval(e′), and from the antecedents of this rule, we have that for i ∈ 1, 2:

σi, θi, e
′ ⇓pc σ′′, ski

i

ei = stringtoexp(si)

By induction, σ′′1 ≈H σ′′2

– If k1 = k2 = H, then for i ∈ 1, 2:
σ′′i , θi, e

′ ⇓H σ′i, vi

By Lemma 4 we know that H v label(v1) and H v label(v2). Therefore v1 ∼H v2.

By Lemma 6, σ′1 ≈H σ′′1 ≈H σ′′2 ≈H σ′2, and we need to conclude that σ′1 ≈H σ′2.

We know that dom(σ′i) ⊇ dom(σ′′i ), since execution only allocates additional reference cells.
Without loss of generality, we assume that the two executions allocate reference cells from disjoint
parts of the address space i.e.:

(dom(σ′1) \ dom(σ′′1 )) ∩ dom(σ′2) = ∅
(dom(σ′2) \ dom(σ′′2 )) ∩ dom(σ′1) = ∅

Under this assumption, the only common addresses in σ′1 and σ′2 are also the common addresses
in σ′′1 and σ′′2 , and hence we have that σ′1 ≈H σ′2.

– Otherwise s1 = s2 and k1 = k2. Since s1 = s2 we know that e1 = e2. Then for i ∈ 1, 2:

σ′′i , θi, e1 ⇓k1
σ′i, vi

Since σ′′1 ≈H σ′′2 , we know by induction that σ′1 ≈H σ′2 and v1 ∼H v2.
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