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Abstract

Multistreaming events are of great interest to astrophysics because they are as-
sociated with the formation of large scale structures (LSS) such as halos, filaments
and sheets. Until recently, these events were studied using scalar density field
only. In this paper, we present a new approach that takes into account the veloc-
ity field information in finding these multistreaming events. Six different velocity
based features are defined and studied. We find that these velocity based feature
extractors show different aspects of multistreaming and provide us with a richer
knowledge about the formation of LSS.

1 Introduction
Over the last two decades cosmology has made extremely rapid progress. There
now exists a cosmological “Standard Model” that is in very good agreement with a
large number of observational datasets at better than the 5−10% level of accuracy.
A key feature of the model is the existence of a “dark” sector that is not directly
observable by emission or absorption of light but may be inferred via effects such
as gravitational lensing and by its dynamical effects, especially in the formation
of cosmic structure. Observations indicate that 70% of the Universe consists of a
mysterious dark energy, 25% of a yet unidentified dark matter component (CDM),
and only 0.4% of the remaining 5% of ordinary (atomic) matter is visible. Un-
derstanding the physics of the dark sector is the foremost challenge in cosmology
today.

The evolution and dynamics of the dark matter distribution can be investigated
by following the formation of LSS as observed in the distribution of galaxies today,
and in the past. LSS such as galaxy clusters (0D), filaments (1D), and surface-
like pancakes (2D) can be considered to correspond to nodes, edges, and faces
respectively, in a tessellation of the topology of the universe. A hint of the complex
geometry and topology of cosmic structure is illustrated in Figure 1.

Precision dark matter simulations are a key foundation of cosmological studies.
These simulations track the evolution of the dark matter with very high resolution
in time, force, and mass. At the scales of interest to structure formation, a Newto-
nian approximation in an expanding universe is sufficient to describe gravitational
dynamics. The evolution is given by a collisionless Vlasov-Poisson equation [4],

1



Figure 1: Large scale cosmological structures of the universe.

a six-dimensional partial differential equation. This is solved using an N-body ap-
proach. The six-dimensional phase space distribution is sampled by “tracer” par-
ticles and these particles are evolved by computing the inter-particle gravitational
forces.

The starting point of the simulations is a Gaussian random density field which
imprints small perturbations on a uniform density, isotropic universe. The simula-
tions start in the linear regime of the density fluctuations which then evolve under
the influence of gravity. At any given length scale, during the early stages, the evo-
lution remains linear but as time progresses, evolution first enters the quasi-linear
regime (where perturbation theory can be applied) before finally reaching the fully
nonlinear regime at which point all analytic descriptions break down. There is sub-
stantial interest in determining and characterizing the transitions between linear,
quasi-linear, and nonlinear dynamics in the simulations by tracking the dynamics
of dark matter tracer particles. At the start of the simulation, the velocity disper-
sion is initially zero, and the phase-space distribution is a three-dimensional sub-
manifold of the phase space (only one velocity direction at a given spatial point).
As the 3-hypersurface evolves, it folds, leading to the occurrence of singularities
in the density field corresponding to the appearance of regions with multistream
flow.

Finding multistreaming regions in cosmological simulations is an important
endeavor for several reasons. The onset of multistreaming and the evolution of
multistreaming regions as part of the theory of nonlinear structure formation is cer-
tainly interesting in of itself. Additionally, it is becoming an increasingly important
aspect in understanding the formation of galaxy clusters where several “cold flows”
combine. Different cosmological models and theories of structure formation will
make different predictions for multistreaming.

The determination of the onset of multistreaming with respect to time and
length scale is important in predicting the validity of approximate methods such as
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perturbation theory. Since running large cosmological simulations is very costly,
cosmologists are always searching for methods that provide accurate answers at
certain scales that do not require expensive simulations. For example, consider
a key cosmological statistic measured from simulations: the density fluctuation
power spectrum. The power spectrum can be predicted over a range of (large)
length scales by perturbation theory. Multistreaming, however, cannot be de-
scribed within perturbation theory. Thus, it is important to study the relationship
of the breakdown of perturbation theory and the onset of multistreaming.

Finally, a robust method to capture the onset of multistreaming across multi-
ple scales will help to set the initial cosmological time for starting cosmological
simulations. The initial conditions for cosmological simulations are based on the
Zel’dovich approximation, which is only valid if the paths of tracer particles do not
cross (i.e., before multistreaming). Therefore, the simulations have to be started
sufficiently before the occurrence of multistreaming events in order to guarantee
accurate results.

Traditionally, LSS is investigated primarily by considering the distribution of
dark halos. Although there are differences between methods, halos are typically
identified by thresholding on the density of tracer particles (for a description of
halo finders, see, e.g., [7]). In this paper, we are concerned not so much with den-
sity, but how the velocity information of tracer particles can find and characterize
multistreaming regions. In particular, we are interested to know what additional
information may be gleamed from the velocity information.

2 Multistreaming
What is multistreaming? Unfortunately, there is no single precise mathematical de-
scription of multistreaming. As such, the problem is reminiscent of finding vortex
core lines in vector field analysis. What do exist in literature are phenomenologi-
cal descriptions of multistreaming events. In this paper, we derive several velocity
based multistreaming extractors based on such descriptions.

Multistreaming is said to occur when there are multiple velocities at a given
spatial point. A simple example is illustrated in Figure 2 for a one-dimensional
cold and collisionless medium [9]. In the phase space plot (bottom panel), the
boundary between a three-stream flow and a single stream is denoted by the dashed
lines. At the boundaries, there is a shell-crossing singularity (caustic) in the density
field because the mapping from phase space to physical space becomes multi-
valued. This picture generalizes to higher dimensions.

One can also find additional clues for finding multistreaming from the follow-
ing description — “If the dark matter is a cold, collisionless fluid, then at any given
spatial point, at early times, there is a unique fluid velocity. However, as evolution
proceeds, the map connecting initial to final positions develops singularities (caus-
tics) corresponding to multiple flow directions at a given spatial point. Regions of
multistream flow form, and even though each stream is irrotational (curl-free), the
velocity field is no longer a potential flow. Because of the large density of particles
near caustics and other dynamical complexities associated with multistreaming, it
is expected that perturbative methods will tend to break down in these regions” [8].
This description suggests additional avenues for finding multistreaming events via
velocity based analyses. For example, we can look for regions where the flow is
irrotational, examine the divergence field to see where particles may possibly con-
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Figure 2: 1-D illustration of multi-stream flow. Top panel: Over-dense region with
three-stream flow confined between the dashed lines. Bottom panel: The corresponding
phase space plot showing the different stream regions [9].

gregrate, examine the linearity of the flow field, check similarity of velocities as
well as velocity dispersion. The following flow behaviors may also account for
multistreaming: (i) particle flows have different speed and direction, or (ii) parti-
cles flows have the same speed but different direction, or (iii) particles flows have
different speeds but the same direction. So, checking the shear in the flow may
provide some information as well. We explore these in Section 5.

3 Previous Work
The visualization of cosmological data sets has received significant attention. Most
cosmological simulations are particle-based. The size of these simulations, mea-
sured by the number of particles, have increased with better computing resources,
allowing us to capture physical phenomenon at a much wider range of length
scales.

Within the visualization community, there have been several works focusing on
astrophysics data sets. A subset of these include works by Li et al. [6] which ex-
plored how to display positional and trajectory uncertainties in astrophysical data
sets; and Fraedrich et al. [3] focused on scalable rendering of large cosmological
simulations using a combination of hierarchical level-of-detail approach and GPU
accelerations. While these works have studied the issues related to visualizing cos-
mological simulation data, they are different from the work in this paper in that we
are primarily interested in identifying multistreaming events in such data sets.

Multistreaming events have been explored in the past years. For example, Yano
et al. [12] investigated the distribution of caustics in the expanding Universe. In
this work, the model describe continuous matter density fields, such as singulari-
ties of density field or density perturbations. Regions demarcated by high density
contrast are associated with multistreaming and results in structures such as halos.
The density contrast is defined as, for a given time and region, how much does the
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density changes with respect to mean density. Depending upon the types of the
Universe simulated or the halo structure of interests, such as inner halo parts or
halo boundary, the minimum value of density contrast varies. One of the common
approaches for finding halos uses the Friends-Of-Friends (FOF) group finder [2].
The basic idea is that given a simulation with N particles with a fixed volume, the
average inter-particle spacing is first calculated. Then, pairs of particles that are
closer than some fraction of the average inter-particle spacing are linked together,
resulting in a network of linked particles. We compare our results to the FOF halo
finder implemented in ParaView 3.10 [11].

More recently, Shandarin [10] proposed a new approach to identify the cosmic
web based on finding multistreaming flows. Instead of relying solely on the density
of particles, Shandarin’s technique incorporates velocity information of particles
along with their location information. He used the local velocity variance to iden-
tify multistreaming events. Prior to his work, we have also worked with particle
velocity information to identify multistreaming events. In that work, our analysis
was based on simulations consisting of 643 and 2563 particles. The analysis and
results reported in this paper are based on simulations consisting of 5123 particles
within a box that is 256 h−1Mpc along each side. Higher resolution data sets allow
us to resolve multistreaming regions at a wider range of length scales. A related
work that focuses on tracking the evolution of multistreaming regions is also under
review.

4 Time and Scale Dependent Thresholds
Our approach to finding velocity based multistreaming regions assumes a con-
tinuous velocity field is available. There are a number of options available for
converting the discrete particle velocity information into a gridded velocity format
where we can assume some form of continuity. These options range from the sim-
ple nearest-grid-point (NGP) method that assigns particle velocities to the nearest
grid point, to more sophisticated methods such as those that use radial basis func-
tions to provide a smooth velocity field. NGP has some drawbacks such as abrupt
changes between nearby grid points, while more sophisticated methods are also
more expensive as the number of particles and spatial resolution increase. In this
paper, we use the cloud-in-cell (CIC) method to generate a velocity field from the
particle velocity. CIC [5] uses a weight factor to account for the distance of the
particle to its closest grid points. That is, the velocity of each particle is distributed,
using a distance based weight factor, amongst the grid points of the cell containing
the particle. This method is a good compromise in terms of speed and smoothness
of the resulting field. It is also the same method used in the simulation code to
resolve the influence of the gravitational field on the particles.

The choice of grid resolution is quite important. If the grid is too coarse, the
resampling process will smooth out the data too much and we may miss the mul-
tistreaming event. In addition, the grid size has to be small enough to resolve the
features of interest at certain length scales. On the other hand, if the grid is too
fine, it would result in a low particle count and confidence, not to mention the ex-
tra computational expense. For our investigation, we choose a grid resolution such
that on average there are 64 particles contributing to each grid point. For the 5123

particle data set, this goal is achieved by a regular grid with 2563 cells. As we ex-
plain later, this grid size also allows us to find multistreaming regions early on in
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Figure 3: Breakdown of perturbation theory at different scale factors and different
length scale. The curves are the ratio of two different perturbation theories. As the
ratio deviate from one, perturbation theory is not valid anymore. Each curve shows the
result for one time snapshot. At the top of the plot we indicate length scales, at the
bottom we indicate wave numbers. The dashed lines in red show the scales that can be
resolved by the simulation data.

the evolution. At the start of the simulation, each grid cell contains 8 particles on
average. Therefore, the 8 cells sharing a grid point contain 64 particles on average.
The simulation uses periodic boundaries. Note that as time progresses, some re-
gions become more dense while others become more sparse or even empty. Empty
cells as well as those in their immediate vicinity must be treated with care and are
specially marked so that they do not produce erroneous results in the analysis.

Based on previous studies, we know that multistreaming happens at different
scales and increases over time. Initially, small multistreaming regions form, which
later coalesce in a complex manner into larger multistreaming regions. Hence,
an important parameter in searching for multistreaming regions is estimating the
length scales for different times. In order to do this, we examine when pertur-
bation theory fails. The perturbative treatment of gravitational clustering should
break down in regions where multistreaming events occur. To predict these events,
we make the following simple argument based on an internal check within the per-
turbative analysis. To do this, we note that perturbation theory can be carried out
at different orders in the density perturbation. In the regimes where perturbation
theory works, higher-order corrections serve to improve the lower-order results.
However, once the fluctuations are too large, consistency between orders no longer
exists, and different order results can disagree strongly. By investigating at what
scales two different approaches at different orders diverge from each other, we can
estimate the scale where perturbation theory fails, and hence produce a candidate
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a Frame # L scale 10% L scale 5%
0.500 248 37 h−1Mpc 43 h−1Mpc
0.333 165 30 h−1Mpc 34 h−1Mpc
0.250 123 24 h−1Mpc 27 h−1Mpc
0.200 95 18 h−1Mpc 24 h−1Mpc
0.167 80 14 h−1Mpc 19 h−1Mpc
0.111 70 10 h−1Mpc 12 h−1Mpc
0.125 60 8 h−1Mpc 10 h−1Mpc
0.111 52 6 h−1Mpc 8 h−1Mpc
0.100 47 5.8 h−1Mpc 7 h−1Mpc
0.091 18 5.6 h−1Mpc 6 h−1Mpc
0.045 21 2 h−1Mpc 3 h−1Mpc
0.033 13 1 h−1Mpc 1.05 h−1Mpc
0.020 7 0.9 h−1Mpc 0.98 h−1Mpc

Table 1: This table shows the relationship between the scale factor a and the frame
number of the simulation. It also shows length scale for two different tolerances at
which perturbation theory breaks down. The tolerances are at 10 and 5 percent from the
ratio of one between the two perturbation calculations seen in Figure 3. When choosing
the grid size for calculating the continuous fields it is important that the smallest length
scale of interest is resolved. For example, in frame 30 at a tolerance of 10 percent, the
scales of interest are at 1 h−1Mpc. With a box size of 256 h−1Mpc the grid size has to
be at least 2563 to resolve these scales. If the grid is coarser, the length scale that can
be resolved increases and therefore multistreaming events could only be resolved at a
later time step. To determine the thresholds for the different methods described in the
next section, we use a tolerance of 10 percent.

scale for the onset of multistreaming.
Following Carlson et al. [1], we calculate the matter power spectrum for second

order perturbation theory and a re-summed scheme with a code provided by the
authors. We then take the ratio of these power spectra at different epochs. The
results are shown in Figure 3 for scale factors between a = 0.02 and a = 1.0.
Note that redshift is related to the time dependent scale factor a. An estimate
of when and at what length scales multistreaming will occur can be obtained by
measuring the scales at which the curves deviate from unity in Figure 3. The figure
indicates that these scales vary with time. Multistreaming regions that are relevant
to the breakdown of perturbation theory start out as small structures which grow
bigger over time. The dashed line on the right indicates the resolution limits due
to smoothing from the density calculation. It can be easily varied by reducing
or increasing the grid size for the CIC (an increase moves the cutoff lower and a
reduction moves it higher), although one cannot increase it beyond a certain point
set by particle spacing limits in the simulation. For the data set being presented
in this paper, the smallest wave-number (k = 2π/L) is k ≈ 0.02 h−1Mpc, and the
corresponding smallest length scales we can resolve is 0.256 h−1 Mpc. Using a
grid of 2563 cells, we can resolve length scales of 1 h−1 Mpc. However, when
coupled with CIC with window size equal to one cell, our resolution drops to
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length scales of 2 h−1Mpc.
Table 1 is created based on the predictions from Figure 3. It lists the expected

size of the multistreaming scales for different snapshots in the simulation data. The
time stepping unit is measured with respect to the scale factor a. Given that there
are 500 time steps in the simulation, ∆a = 0.002 from one frame to the next. In
short, this table provides us with information as to the timing and length scale of
multistreaming. The next section focuses on finding their location.

This table is instrumental in determining the threshold values used by the dif-
ferent feature extractors. As can be seen in this table, multistreaming regions grow
over time. We therefore use the information from Table 1 to guide us in finding a
time-varying threshold appropriate for the epoch in the simulation. For example,
if we are searching for regions of interest at frame 250, we expect these regions to
have length scale of about 37 h−1Mpc. Therefore, we want to find a threshold value
that will produce regions of this expected size. Since the regions may come in a
variety of shapes, and because the length scale itself does not fully capture shape
information, we use it as an indicator of a region size rather than a strict length
scale. In this regard, region size is taken to mean the number of connected grid
points that are above the current threshold. To determine the appropriate threshold
for a given frame, the initial threshold threshold0, is set to a value that will result
in all points being classified as multistreaming according to the feature extractor.
We then adjust the current threshold by a small amount, which is some fraction of
the range of values for the particular feature extractor, and restart the scanning pro-
cess. Once we find at least one region with the expected feature size, we finalize
the threshold value for that frame. Because the growth of region size is fairly well
behaved, we can use the final threshold value of the current frame as the initial
guess for the next frame.

5 Velocity Based Extractors
In this section, we examine several methods that look for multistreaming regions
using the particle velocity information. We use ParaView to visualize our results,
and compare them to the output of ParaView’s HaloFinder filter. Figure 4 shows
the halo finder results. Frame 70 is when the first halo is found. Based on our
analysis, we actually expect the multistreaming to occur earlier, at around frame
21. For each of our methods, we show the zoomed in views of two frames from a
partial volume of the simulation: (a) frame 70, for comparison with the halo finder
results, and (b) frame 499, the last frame of the simulation. In addition, we include
plots that show the relative values of the time-varying threshold and the volume
average of the different metrics over time.

5.1 Maximum Shear Stress
Particles going in opposite directions or even in the same direction but at different
speeds lead to shear in the velocity field. We hypothesize that shear in the velocity
field can be one of the mechanisms for multistreaming. To find the maximum shear
stress, we first calculate the velocity gradient tensor of the velocity field, then find
its symmetric tensor component, and then the associated eigenvalues λ1, λ2, and
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Figure 4: Halo Finder output from ParaView 3.10 using the friends of friends (FOF) al-
gorithm. Arrows represent average velocity of halos. The parameters use a link length
of 0.2 and a minimum of 100 particles. This is our reference for comparing veloc-
ity based feature extractors. We can observe the rapid increase in average velocities
around frame 70 when the first halos are found. Velocities then gradually tapers off,
while the concentration of particles in the halos increase over time. Several discernible
structures can also be observed by frame 499.

λ3. We use the von Mises criterion for maximum shear stress which is defined as:

MS =

√

(λ1 −λ2)
2 +(λ1 −λ3)

2 +(λ2 −λ3)
2

2
(1)

Note that as flows become isotropic i.e. λ1 = λ2 = λ3, the maximum shear stress
goes to zero. So, this particular feature detector looks for regions that exhibit
high shear as indicated by highly anisotropic regions. Note that other types of
anisotropic measures could possibly be used in place of the von Mises criterion.
Figure 5 shows the results of this metric. We can see that the general structure
in frame 499 has some qualitative similarities with those from the halo finder.
Frame 70 seems to capture larger high shear regions than the corresponding halos,
while frame 499 captures a subset of the corresponding halos. Looking at shear
stress alone, we can observe that the average and median shear stress converge
rapidly and approach a value of around 20 with very small standard deviation. The
threshold needed to obtain multistreaming regions of the appropriate length scale
is decreasing over time, and approaches the average shear stress value. Within
the high shear stress regions, we can readily observe that stress is decreasing over
time suggesting that differences in velocity magnitudes may be decreasing. This
information is not available using the halo finder alone. Later on, we investigate
differences due to velocity directions using the normalized dot product metric. In
summary, the maximum shear stress criterion is able to qualitatively identify the
general structure of multistreaming regions and also provide information about the
behavior of maximum shear within such regions.
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Figure 5: Maximum shear stress. Glyphs are colored and sized by maximum shear
stress. The time-varying thresholds are 180 and 80 for frames 70 and 499 respectively.

5.2 Divergence
Divergence is a scalar quantity that measures the degree to which a vector field is
a source or a sink at a given location. Positive values indicate a source-like behav-
ior, while negative values indicate a sink-like behavior. The motivation for using
divergence for finding multistreaming is that it finds regions where particles con-
gregate, as in caustics. The more negative the divergence value, the stronger that
region attracts nearby particles. Given a vector field ~V = (Vx,Vy,Vz) and operator

∇ = ( ∂
∂x ,

∂
∂y ,

∂
∂ z ), divergence is defined as

∇ ·~V =
∂Vx

∂x
+

∂Vy

∂y
+

∂Vz

∂ z
(2)

The results of the metric are shown in Figure 6. Comparing these images to the
halo finder results, we can see that locations of large negative divergence corre-
spond to large clusters, particularly for frame 499. This indicates that those re-
gions are still drawing in particles and smaller regions from its nearby surround-
ings, though at a diminished rate relative to frame 70. One can observe that earlier
in the simulation, the negative divergence is stronger, but the regions are not as
dense. Later in the simulation, the multistreaming regions have weaker negative
divergence indicating that they are not drawing in nearby particles as aggressively,
perhaps leading to a more stability in the LSS. The plot on the right shows that the
threshold for regions with negative divergence is becoming less negative over time,
confirming that indeed the multistreaming regions is becoming weaker at attract-
ing new particles. This metric shows additional information not available from the
halo finder – the dynamical behavior of halo clusters.
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Figure 6: Divergence. The time-varying thresholds are -360 and -130 for frames 70 and
499 respectively. The glyphs are colored and sized according to divergence. Since we
are interested in regions with negative divergence only, the colormap of the 2 figures
are bounded by 0 and the largest negative value -607. More negative divergence are
mapped to larger balls.

5.3 Vorticity
In fluid dynamics, the rotation of vector field is well studied, and is called vorticity.
It determines the tendency of an object to rotate at a given location (x,y,z). The
vorticity at a point is a vector and is defined as the curl of the velocity field. Given
a vector field ~V = (Vx,Vy,Vz) and the operator ∇ = ( ∂

∂x ,
∂
∂y ,

∂
∂ z ), the curl is

∇×~V =

(

∂Vz

∂y
−

∂Vy

∂ z

)

i+

(

∂Vx

∂ z
−

∂Vz

∂x

)

j+

(

∂Vy

∂x
−

∂Vx

∂y

)

k (3)

Since multistreaming regions are suppose to remain curl-free (irrotational), this
metric provides an indication of how well this condition is satisfied. Regions of
interest are those with very small rotational motions and not their particular ori-
entations. Therefore, the key variable is the vorticity magnitude. The results are
illustrated in Figure 7. We see the regions found in frames 70 and 499 are also
similar to those of the halo finder. More importantly, we can see that over time, in-
deed the vorticity magnitudes in the multistreaming regions are getting lower and
have less vorticity. This is confirmed by the plot on the right as well. At the same
time, the threshold is still above the average vorticity due to regions with very high
vorticity. If one extrapolates the curves on the plot, a possible conclusion is that
the system appears to be reaching some form of dynamic equilibrium where few
large multistreaming regions with low vorticity are balanced by other areas with
high vorticity. Such behavior is impossible to observe from the halo finders alone.

5.4 Dot Product
Particles inside multistreaming regions have different velocities. We can measure
the degree to which a set of vectors are similar or different using dot products.
Given two vectors: ~V = (v1,v2, ...,vn) and ~U = (u1,u2, ...,un), the dot product is
defined as
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Figure 7: Vorticity vectors colored by their magnitude. The time-varying thresholds are
180 and 90 for frames 70 and 499 respectively. We hypothesize that multistreaming
regions will have low vorticity magnitudes. The scale on the 2 images are the vorticity
magnitudes found in multistreaming regions over the course of the simulation, while
the plot on the right includes all regions including those in non-multistreaming regions.

~V ·~U =
n

∑
i=1

vi ·ui (4)

Note that this term measures similarity of both vector directions and mag-
nitudes. For this metric, we are primarily interested in similarity of directions.
Hence, the vectors should be normalized first. This normalized dot product mea-
sures the angular difference between pairs of vectors. The range of this metric is
[-1..1] corresponding to 180 degrees (opposite direction) to 0 degrees (same di-
rection). Since the maximum shear metric already accounts for situations where
vectors are going in the same with different speeds or opposite directions with the
same speeds, we tailor the normalized dot product metric to find only those regions
where vectors are crossing each other at large angles. Specifically, we use the ab-
solute value of the normalized dot product. Values closer to zero therefore indicate
regions with crossing vectors.

To calculate this metric, we first calculate the average normalized velocity of
all the particles in neighboring cells that share a grid vertex. We then calculate the
dot product of each of the normalized particle velocity against the vertex veloc-
ity. These dot products are finally averaged together and represents the directional
similarity among the particles in the vicinity of the grid vertex.

Multistreaming regions composed of particles going in directions that tend to
cross each other can be characterized by low values of the absolute value of the
normalized dot product. We can observe from the 2 images that this quantity starts
out as fairly high in frame 70 and become smaller in frame 499 indicating that the
velocities within the multistreaming regions are becoming more dissimilar. The
overall structure is still recognizable when compared to the results of the halo
finder, although the overlapped regions are different. There are more regions that
are flagged as multistreaming early on that were not found by the halo finder. On
the other hand, in later parts of the simulation, the reverse is true. By itself, this
metric can find overlaps with the halo finder, but its discriminatory power seem to
vary over time. Thus, while it shows information about the degree of dissimilarity
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Figure 8: Normalized dot product. The time-varying thresholds are 0.385 and 0.15 for
frames 70 and 499 respectively. Spherical glyphs are colored and sized by the absolute
value of the normalized dot products. The plots are also based on the absolute value of
the normalized dot products.

within regions, it may be best to use other metrics to obtain a more definitive
locations of the regions first.

5.5 Variance
Variance is a measure of how different and spread out a set of numbers are from
each other. Velocity variance then measures the spread of velocities. Since multi-
streaming regions are characterized as having different velocities (also referred to
as the velocity dispersion property in literature), velocity variance is intuitively a
good measure for finding these regions. Shandarin [10] also used velocity variance
in his analysis, but our formulation differs slightly. Given n numbers x1,x2, ..xn and
a mean µ , the variance σ 2 is defined as

σ2 =
1
n

n

∑
i=1

(xi −µ)2 (5)

Since we are interested in velocity variance in 3D, the variance extends to a
symmetric covariance matrix where the diagonals are the variance of each velocity
component. Treating each component as an independent random variable, the net
velocity variance is simply the sum of the diagonals. If this sum is high it indicates
high velocity variance. Unlike the normalized dot product measure described ear-
lier, this measure captures the variance of both the direction and magnitude of the
velocity field.

Comparing the images to the halo finder results, we can observe similar struc-
tures in frame 70, but just the core of the largest halo region is extracted in frame
499. Compared to the normalized dot product results, we see a similar pattern
of decrease in the size of the multistreaming regions. One difference is that with
normalized dot product, the dissimilarity of crossing vectors increased over time,
while the velocity variance decreased over time. This difference may be attributable
to the fact that the normalized dot product focuses on crossing vectors while the
variance includes all types of vectors. This suggests that most of variance in later
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Figure 9: Variance. The time-varying thresholds are 8,500,000 and 1,500,000 for
frames 70 and 499 respectively. Glyphs are colored and sized by velocity variance.
The maximum variance in the interval from frame 1 to 50 is an order of magnitude
higher and truncated so that we can see more detail in the other curves.

frames is dominated by crossing vectors and less by shearing vectors. The results
using the shear stress metric supports this observation.

5.6 Linearity Test
Another test for multistreaming is to check if the velocity field is still linear. This
is motivated by the description that the simulations start out being linear, then
transition through a quasi-linear, and finally to a nonlinear behavior. Detecting
changes in the linearity of the velocity field may be an indicator of multistreaming.

Given a velocity field ~V , position p, and velocity gradient J, we can obtain the
velocity of a nearby point that is δ p away using first order approximations, if the
field is linear. From the velocity at p, we can obtain the velocities around it through

~V (p+δ p) =~V (p)+ J(p) ·δ p (6)

δ p is set to one of [±1,0,0], [0,±1,0], or [0,0,±1] depending on which neighbor-
ing velocity we want to get. To check whether the velocities around p are linear
or nonlinear, we compare the first order approximation of ~V (p+ δ p) against the
original velocity Vo(p+ δ p) at each of the 6 orthogonal neighbors. We use the
normalized dot product to see if the directions of two vectors are similar, and use
the absolute value of the difference of their velocity magnitudes to see if their mag-
nitudes are similar. Note that the simple unnormalized dot product will consider
velocities that agree in direction but not in magnitude as being similar, which is
not what we want in this case. The vector pair is considered similar if their nor-
malized dot product is at least 0.90 (i.e. less than 25.8 degrees). If a vector pair
is similar according to this criterion, we assign it a value of 1, else a 0. A grid
vertex is determined to be nonlinear based on the number of neighboring cells that
are dissimilar. An aggregate value of 0 means the cell is highly nonlinear, while a
value of 6 means the cell is linear. Note that if any neighbor of p is empty, we skip
the calculation of J(p) and do not apply the linearity test at p. Figure 10 shows
results of running the linearity test on the our data set. The overall structure of the
nonlinear regions are consistent with those found with other methods described
earlier. Here, we can see that in the earlier frame, the size of the nonlinear region

14



Figure 10: Nonlinear regions in frames 70 and 499. First, we apply the time-varying
thresholds of 5 and 2 respectively. These are the number of neighbors voting that the
vertex velocity is linear. Applying this threshold identifies vertex velocities that are
nonlinear. These are then grouped together into larger connected regions. The glyph
size and color are mapped to the size of nonlinear regions. Note that while the images
show size of connected nonlinear regions, the plots show the linearity measures. We
can see that majority of the volume is linear (high average linearity with small standard
deviation) except for the identified nonlinear regions in the images.

are smaller. This corresponds to the expected length scale of the multistreaming
regions. At the last frame, we can see much larger regions, together with smaller
nonlinear regions. This also corresponds to the multi-scale nature of multistream-
ing regions. We also note that while the prominent halo found by the halo finder
and other methods described earlier is the one near the center of the volume, the
region closer to the bottom left also figures prominently in terms of size based on
the nonlinearity criterion.

6 Conclusions and Future Work
We started this investigation with a general question of whether we can use the
particle velocity information to detect and characterize multistreaming events. We
hypothesized how the flow field should behave given the various descriptions of
multistreaming in the cosmology literature and formulated ways to extract regions
with those behaviors. These methods require a threshold value to determine if a
region is multistreaming or not. For that, we used a physics based approach of
determining a time-varying threshold for the different methods that would capture
the multi-scale multistreaming events.

We have compared our results against the popular density based halo finder
as implemented in ParaView, and also against the work by Shandarin [10] which
is based on velocity variance. Our findings indicate that: (i) the different veloc-
ity based methods not only find the multistreaming regions, but they also provide
additional information about the dynamic behavior within and in the vicinity of
the regions. These behaviors include how shear, vorticity, divergence, vector sim-
ilarity in direction, velocity variance, and linearity, change over time; (ii) there
is good qualitative correspondence between the regions found using our velocity
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based methods and those found by ParaView’s halo finder; (iii) the relationship
between the regions found using velocity variance (and other velocity based meth-
ods) and density reflect those observed by Shandarin. While there are differences
in the locations and peaks of over density and high velocity variance regions (or
those by other velocity based methods), we posit that these can be resolved by an-
alyzing the evolution of these regions as opposed to studying individual frames of
the simulation. In particular, we hypothesize that high velocity variance regions
(or those by other velocity based methods) may at a later time lead to high over
density regions, and vice versa. Further investigations along this line will require
feature tracking tools.

While one may wonder which is the best method, we are not ready to provide
an answer yet as the methods have different strengths and weaknesses with respect
to the different properties of multistreaming. We plan to investigate if a machine
learning approach may yield a superior feature extractor using some combination
of density and velocity based methods. Another area of future research is to com-
pare the percolation statistics of multistreaming regions obtained by density and
velocity based feature extractors.
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