
RAD-FETCH: Modeling Prefetching for Hard Real-Time Tasks

Roberto Pineiro, Kleoni Ioannidou, Scott A. Brandt, Carlos Maltzahn
Computer Science Department

University of California, Santa Cruz
{rpineiro,kleoni,scott,carlosm}@cs.ucsc.edu

Abstract— Real–time systems and applications are becoming
increasingly complex and larger, often requiring to process
more data that what could be fitted in main memory. The
management of the individual tasks is well-understood, but
the interaction of communicating tasks with different timing
characteristics is less well-understood. We discuss how to
model prefetching across a series of real–time tasks/components
communicating flows via reserved memory buffers (possibly
interconnected via a real–time network) and present RAD–
FETCH, a model for characterizing and managing these
interactions. We provide proofs demonstrating the correctness
RAD–FETCH, allowing system designers to determine the
amount of memory required and latency bounds based upon
the characteristics of the interacting real–time tasks and of the
system as a whole.

I. INTRODUCTION
Today, an increasingly larger number of hard real-time

applications are required to process data sets larger than
what can be fitted into main memory. These applications
are becoming increasingly popular outside the domain of
embedded systems. Examples include achieving recovery
within a time bound as part of disaster recovery solutions [1].
Large scale scientific computing applications were transi-
tionally considered best-effort. Some of those applications
can be classified as hard real-time since they are forced to
fetch data from persistent storage, processed it, and store
back results in a bounded amount of time before data is
lost due to system failure. Due to lack of sufficiently large
memory space, these applications are forced to execute their
workload directly in the storage devices. Our goal is to
enable these applications to execute a workload larger than
what main memory can fit in bounded time. We will enforce
this by prefetching data, which allows execution of the
workload to proceed while simultaneously the needed data
is continually fetched into the main memory.
Traditionally, systems designed for hard real-time appli-

cations pre-load all data in memory before the execution of
the workload. This solution no longer applies for extremely
large data sets. Recent efforts [2], [3], [4] have focused on
accessing the secondary storage memory predictably. These
techniques can be used to bound the execution time of a
workload on the secondary storage memory. These efforts
serve as the foundations upon which more sophisticated
predictable systems can be build.
At a high level prefetching is a mechanism used to close

the gap in performance between components. In the context

of this paper, it allows an application to experience shorter
bounds on worst case latency. This is achieved for the
following three reasons: First, by serving data from a fast
local memory as opposed to serving data from a slow or
remote memory we shorten round trip time. Second, we
can aggregate multiple independent operations into a single
larger batch that may be delivered into the storage device
all at once, instead of delivering each operation one at a
time. This is specially useful when the propagation cost
of operations between the application and the storage is
significant, such as where operations have to go through
the network. Third, we can improve worst–case execution
time of individual operations for specific combinations of
workload and storage device. For example, a fully sequential
stored workload on a disk would allow better worst–case
execution time than a randomly distributed workload.
In this paper, we show how to pre-load data requested by a

single application so that although not all data is loaded into
memory, hard real-time applications execute the workload in
a bounded amount of time. Our techniques can be applied
to a large variety of systems where many applications can
run concurrently but interactions of concurrent applications
are out of our scope. Our suggested prefetching solutions
preserve performance in a predictable manner given that the
rest of the system also behaves predictably (i.e., secondary
storage enforces predictable accesses [2]). This results in a
system that supports hard real-time applications by account-
ing for worst case execution bounds.
We build our work based on the assumption that we know

in advance the references to the data that will be accessed
by the application. This is a reasonable assumption for many
practical scenarios such as reading sequential content from
multimedia, restoring checkpointed data, or booting an OS
in a bounded amount of time in order to meet recovery time
objectives as part of a disaster recovery solutions [1].
In order to enable hard real-time applications to achieve

predictable performance, we must provide a design and
model that can be used to bound the execution time of the
workload. Such a model can be used by system designers
to predict the execution time of a workload and account
for sufficient resources. Formal analysis of our prefetching
solutions is necessary to make them appropriate for hard
real-time applications. An interesting observation is that we
can trade execution time for buffering space up to a certain
point. By carefully characterizing the interactions between



components across the system, and removing dependencies
on time operations spend on each component we can pro-
vide shorter bounds for buffering space and time without
overprovisioning on either of them. Consequently, we want
to formulate how buffer space and execution time relate
to the processing capabilities and restrictions of the system
components involved in prefetching. By analyzing the above,
prefetching allows hard real-time applications to run without
having to overprovision in terms of buffer space and time.
Overprovisioning in buffer space would incur in unnecessary
resources that may not be available in certain scenarios, such
as large scale scientific systems.
In this paper, we develop a model that enables hard

real-time applications to achieve a bounded execution time
while prefetching data from a predictable storage device. Our
model is composable. In particular, it has been constructed
so that the execution time of a workload can be easily
computed as the sum of the time operations spend on
components along the system independently of the state
of other system components. This is done by eliminating
dependencies in time introduced by blocking communicating
tasks due to lack of space to store data, while enabling the
component of the system (e.g. disk, network) to produce data
on periodic basis according to their processing capabilities.
Blocking is also avoided by ensuring that enough data
have been prefetched hence, the client can continue its
execution without having to wait. We have identified and
described formally how communicating components interact
by relating all important factors while computing buffering
space and time. These include processing capabilities of the
components and timing factors such as application’s latency
requirements, time to propagate of operations, etc.
In more detail, our contributions include:
• An abstract architecture for prefetching and a general
framework that describes a large class of prefetching
algorithms (III).

• A formal definition of the prefetching problem includ-
ing the parameters that a system designer must consider
when designing prefetching algorithms for predictable
performance (Section IV).

• A concrete model for prefetching with real-time behav-
ior, called RAD-FETCH(Section V).

• A prefetching algorithm based on RAD-FETCH model
(Section VII).

• A formal theoretical evaluation of our RAD–FETCH
algorithm (Section VIII). In particular, we answer ques-
tions such as: a) how much time the client has to
wait before it can start its operations, b) how much
data to prefetch before allowing the client to consume
operations, c) what amount of buffer space suffices to
allow predictable prefetching, d) when to turn on and
off prefetching to meet the applications requirements
without overflowing/underflowing the buffer, e) what
is the minimum latency that the system can guar-
antee to the application. Additionally we show how

the parameters presented in the RAD–FETCH model
relate. This allows us to compute the latency bound
of operations moving across components as well as
buffer space needed and express them as a function
of the system’s processing capabilities. The derived
inequalities are a major contribution of our work as
they provide the means to trade resources (space and
time) while ensuring hard performance guarantees.

Our theoretical models presented in this paper are the
foundation for the design of predictable prefetching. This
work focuses on the details and formal correctness of
our prefetching algorithms. Future work will address the
tradeoffs inherent in maintaining predictable performance
while ensuring good performance through prefetching.

II. RELATED WORK

Traditionally, hard real time applications [5] have been
forced to preload all data in a predictable storage memory
before execution. However, this is not feasible for workloads
larger than what the primary memory can fit, such as in the
case of large scale scientific computing. We are after a so-
lution that enable the hard real–time applications to execute
while the workload is partially loaded in memory. To do
that, we introduce models, formalism, and analysis needed
to bound the execution time, such that in combination with
a buffer–cache design, and other predictable components the
system can provide the performance guarantees needed.
Previous research efforts have focused their attention on

worst–case analysis of prefetching in the context of CPU [6],
[7], [8], [9]. In this research, the CPU cache is modeled
as a black box, whose design and behavior is imposed
to the real–time system designers. In our research, we
redesign the buffer–cache so that it is real–time aware (i.e., it
takes into consideration the needs of real–time applications).
Similarly, to the CPU research we also compute worst–case
bounds. Incorporating our cache design to CPU cache could
potentially improve the bounds on the worst case execution
of the applications. Our model can be used to the first — to
our knowledge — hard real–time aware buffer–cache design.
In [10], the authors dealt with the problem of cache

pollution (i.e., fetching unnecessary data into the cache). In
our case, we assume that references to the data accesses
are known to the system because we are designing solutions
for hard real–time applications. Because of this necessary
assumption, we are able to deal with cache pollution with
simple replacement techniques (such as simple FIFO).
In [11], the authors have tackled the problem of pre-

dictability of buffer–replacement algorithms. Analysis of
these algorithms is relevant under the presence of cache hits.
Our goal is to identify the bound on worst–case execution
time, under which we assume absence of cache hits. We
focus on modeling communication and interactions between
communicating tasks involved in prefetch. Specifically, to
identify buffer space needed that would enable system
designers to compute the bound on the execution time of



the application. In the future, building up our work, we
will describe how cache hits are modeled and handled in a
nondestructive manner, in order to preserve latency bounds
of each individual operation.
The combination of work on CPU [12], DISK [2], [3],

NETWORK [13] and memory BUFFERS [4] enables hard
real–time applications to achieve predictable execution on
a storage device. Our approach leverage these efforts and
extend them in order to provide shorter latency bounds on
the execution time by prefetching the workload closer to the
client of the buffer–cache during its execution.
RAD–FLOWS [4] introduced the models needed to char-

acterize communication patterns between predictable tasks.
RAD–FLOWS accounts for sufficient buffer space derived
from processing capabilities of the components involved in
the communication. More importantly, RAD–FLOWS pro-
vides the model needed to compute the bounds on the time
needed to deliver and execute operations across the end–to–
end system. RAD–FETCH represents a significant extension
to the RAD–FLOWS [4]. In this paper, we have augmented
and applied the models presented in [4] to fully charac-
terize the interactions between the components involved in
prefetching. Note that RAD–FLOWS have briefly addressed
a specialized case of prefetching where applications requests
data with a fixed reate (i.e., they never slow down). The
purpose of this analysis there was to illustrate a simple
application of RAD–FLOWS. In contrast, here we present
a full analysis of prefetching (using RAD–FLOWS) where
the applications is allowed to request data with a variable
rate that may change dynamically over time.
Prefetching has been an area of extensive study in the

general systems community. Prefetching can happen in an
adhoc manner [14], [15], [16], [17], [18], [19] to shorten
execution time and average latency, but without proper
coordination and analysis this would not ensure performance
guarantees needed by hard real–time tasks. To do so, it
is also possible to resort to overprovision in terms of
time to preload into the temporary storage as well as the
amount of data to preload, but that could be expensive in
memory requirements, and some times impossible for large
enough workloads. More importantly, overprovisioning does
not allow system designers to predict the bound on the
execution time of the workload which is needed for worst
case analysis. Hence here we are interested in predictable
prefetching which ensures performance requirements of all
system components involved, without resorting to overprovi-
sioning. That enables system designers to accurately identify
bounds on execution time.
The problem of prefetching has been explored before

for soft real–time applications such as multimedia [20],
[21]. In contrast, our goal is to offer hard performance
guarantees. We must carefully identify and categorize the
interactions that emerge between the components involved
during prefetching in order to ensure that we eliminate
dependencies that otherwise would lead to incorrect bounds

on time that could only ensure soft real–time guarantees .
Traditionally, to handle hard real–time applications, de-

signers have to account for worst case behavior. To our
knowledge, this is calculated by making worst-case assump-
tions on every system parameter and behavior of system
components when workloads are executed. This analysis
may lead to computing bound as the sum of worst-case ex-
ecution of each operation separately. In contrast, our model
allows system designers to incorporate specific knowledge
of the application’s behavior, workload characteristics and
system specific design when those details are available. This
allows us to avoid worst case assumptions in certain parts
of the design. By incorporating this knowledge into the
design and models, we can predict much shorter bounds
on the execution time. In particular, we characterize flow of
operations through the system given certain rates imposed
over time intervals. This performance characterization allows
us to account for worst case execution on sets of operations
flowing through the system in those intervals instead of
accounting worst case execution on per operation basis. The
idea is to allow a set of operations to move throughout the
system, as if they were executed on a pipeline of data flowing
through components. The worst-case execution time of those
operations is computed as the worst-case execution time
operations spend on each stage in the pipeline, independently
of the state of other component.

III. SYSTEM ARCHITECTURE

In this section, first we describe the system architecture
that we consider. Then, we present a framework that de-
scribes a class of prefetching algorithms based on which we
later provide solutions to the prefetching problem.

A. Architecture
To study the prefetching problem, we describe a system

architecture that is generic and can capture a large range of
practical scenarios where prefetching can be applied. The
system we consider has the following three components:

• The Client (C) issues a stream of requests of data with
some performance requirements.

• The Data Store (DS) is the system component where
all data can be accessed directly or indirectly.

• The Intermediate Storage (IS) provides finite buffer
space for temporarily storing data that moves between
the client and the data store.

We assume that the intermediate storage has knowledge
in advance of the data requested by the client and the
order in which those data will be requested. This allows the
intermediate storage to pre-load data from the data store.
The client could be an application or a network as part

of a remote storage server in hierarchical storage. The
intermediate storage is expressed as a set of buffers but in
practice it could be memory buffers or other form of long
term storage such as flash or a disk. The data store could be















 





 
























Figure 1: Modeling the Prefetch Mechanism.

a local disk, a remote distributed storage system, or it could
generated dynamically by a simulation.

B. Prefetching Framework
In this section, we present a general framework (illustrated

in Figure 1(a)), that describes prefetching in our system.
Requests are moving top down while responses move bottom
up. The client communicates exclusively with the interme-
diate storage which we illustrate as Upper Communication
in Figure 1(a). The intermediate storage ensures the client’s
requirements are met while serving its requests by send-
ing data it stores locally. The Lower Communication Box
in Figure 1(a), represents the communication between the
intermediate storage and the data store. The intermediate
storage prefetched data from the data store that later will be
used to serve the client’s requests. The data store exclusively
communicates with the intermediate storage and its role is
to deliver the requested data to the intermediate storage.
This generic framework successfully characterizes

prefetching solutions while it abstracts system details
allowing designers of clean and easy algorithms with
relatively simple proofs (an example of which is illustrated
in this paper). Our framework provides a guideline on how
to construct prefetching solutions in “any” system. To do
so, it purposefully hides system details such as how data
and requests are moving through the Upper and Lower
Communication and how processing capabilities and client
restrictions are described. Upper and Lower Communication
are treated as black boxes which ensure communication
between system components.

IV. DEFINITION OF PREDICTACLE PREFETCHING
In this section, given our system architecture, we will

formally describe the problem of predictable prefetching.
Our goal is to meet the client’s requirement by ensuring
that the intermediate storage has enough data when the
client needs it. In more detail, when the client requests
some data, we need to ensure that these data exist in the
intermediate storage. Otherwise, the client would have either
to wait or to access the data store which is what we avoid

by our prefetching solutions. Since the intermediate storage
has finite space it is important to ensure that we always
have updated the data in the intermediate storage with what
is needed by the client at each time. We formalize this
requirement by the minimum target consumption property:

Minimum Target Consumption The data stored in the in-
termediate storage at each time suffice to provide responses
to any request that the client can perform at that time.

At a high level, to perform predictable prefetching we
need to enforce the minimum target consumption without
violating any other system restrictions described below.
The client, intermediate storage, and data store each have
their own characterization of performance described by their
ability to consume or produce operations over (possibly dif-
ferent) units of time. We refer to those as processing bounds.
Finally, there may be different requirements characterizing
the time data takes to move between the components that
we refer to as latency bounds.

Predictable Prefetching Problem Given a workload
whose accesses are known by the system in advance,
processing bounds, and latency bounds, we will specify
when to allow the client to start consuming and how should
the intermediate storage prefetch data from the data store so
that the Minimum Target Consumption is met at all times.

Additionally to predictable prefetching we are aiming at
solutions that do not block due to lack of space. Block-
ing of system components is undesirable because it can
introduce dependencies on the time it takes for data to
propagate throughout the system. These dependencies are
difficult to compute, which would make it challenging
to provide predictable end-to-end behavior. For those rea-
sons, we would like non-blocking solutions to predictable
prefetching, allowing simple composition with other system
components across the system. In our system non-blocking
would mean that system components are not blocking due
to lack of resources to store data (or data to be consumed).
In particular, the intermediate storage is allowed to stop
producing/consuming operations only as specified by the
prefetching algorithm (for example to avoid overflow of
the buffer). Similarly, the data store is allowed to perform
according to its processing bounds while it never stops due
to lack of buffer space. However, it is allowed to stop at
will. More formally, we are interested in solutions for the
following problem:

Non-blocking Predictable Prefetching Problem An algo-
rithm that solves predictable prefetching is non-blocking if
the intermediate storage and data store never block due to
lack of buffer space.

We refer to prefetching algorithms to be solutions to the
non-blocking predictable prefetching problem.



V. EXTENSIONS TO RAD–FLOWS MODEL

In this section, we describe the way we model system
specifications such as processing capabilities of system com-
ponents, requirements of applications, and communication
between system components. We use this model to later
prove correctness of our solutions. Our model is an extension
of RAD-FLOWS first presented in [4] that can be used to
characterize worst case costs of data flow between compo-
nents with different processing capabilities. We will show
how we can use RAD-Flows to provide sufficient details
that have been abstracted by our framework presented in
Section III. In particular, in Subsection V-A, we describe
the metrics with which system components express their
processing capabilities and requirements. In Subsection V-B,
we describe how to model communication between system
components abstracted by our framework as Upper/Lower
Communication (Figure 1(a)).

A. RAD Processing Capabilities
The RAD (Resource Allocation/Dispatching) model ini-

tially was introduced to manage CPU [12] and later extended
to manage disks [2], [3]. The model provides the foundations
for predictable resource management, decoupling how much
resource is needed, from when those resources are needed.
The model initially introduced device time utilization as

the metric for guaranteed performance. This makes sense for
system components such as disk and CPU, but for buffers
the RAD metric is rate of operations that can be produced
or consumed and the period (time) when this rate must be
enforced. The periods are fixed intervals of time that are
characterized by their fixed length. According to RAD for
buffers, if a node produces (or consumes) operations with
rate r over periods of length p, then up to rp operations
are produced (or consumed) during any period. Although
consumption can happen at any time throughout the period,
the model used to manage the component [2], [3] only
guarantees that rp operations are consumed within a period
if those operations are available at the beginning of this
period. In other words, if those operations aren’t available at
the beginning of the period, some of these operations may
remain in the buffer for some additional time characterized
in [4]. We use RAD (rate and period) to characterize the
processing bounds of our system.

B. Modeling Communication
In this section, we will show how to use RAD-FLOWS to

describe the Upper/Lower Communication of our prefetch-
ing framework. We will model the Upper and Lower Com-
munication using one common abstraction, the LOOP. The
LOOP, introduced in [4], is used to characterize cyclic
communication between two predictable tasks, requestor and
responder. Both Upper and Lower Communication can be
characterized by two flows of data: requests move from
the component on top, that we call the requestor to the
component on the bottom, that we call the responder.

Responses to those request move in the reverse direction. In
our system, the requestor of the Upper Communication is
the client and the responder is the intermediate storage. For
the Lower Communication, the requestor is the intermediate
storage and the responder is the data store. The LOOP is
the combination of those two flows, more formally:

Loop The loop is an abstraction used to characterize bidi-
rectional communication between two real-time components
exchanging data through memory buffers: The requestor,
sends requests to the responder which in turn sends a
correlated response to the requestor.

We model the LOOP using RAD-FLOWS [4]. Each
communicating component has some processing capabilities
described by RAD. In [4], we have fully analyzed the
behavior of flow of operations between components with
RAD processing capabilities. The two tools we will use here
are called TRANSFER and WAIT.

• TRANSFER serves queuing operations (in a FIFO
queue) between components with possibly different
processing capabilities where one component produces
operations while the other consumes them. The pro-
ducer never blocks due to lack of space but it is allowed
to produce operations with a variable rate up to a certain
upper bound specified by its processing capabilities.
Note that this case, the consumer is allowed to stop
if no data is available due to the producer’s possibly
reduced production.

• WAIT is an extension of the TRANSFER building
block which allows data to reside in the buffer after they
have been consumed in anticipation of some additional
event to happen such as: a) receiving an acknowledg-
ment confirming successful completion of the operation
or b) waiting for the application to extract the response
out of the buffer. An example would be waiting for
an acknowledgement confirming that a write has been
stored in the remote storage device. The buffer space
needed for the WAIT building block depend on the
maximum amount of time the corresponding responses
take to arrive (i.e., time to serve the operation on a
remote system).

In [4], we have analyzed the buffer space needed and
the time it would take for operations to flow through
TRANSFER and WAIT. Those are expressed as functions
of RAD processing rates and periods of the system com-
ponents involved. The buffer space and time needed by
the loop is given by the sum of buffer space and buffer
times, respectively of the components (ie., TRANSFERs and
WAIT) involved in each loop. Next, we provide examples of
different loop models but for all cases we denote BL to be
the minimum buffer space needed by the LOOP. We denote
TL to be the maximum time between the requestor sends a
resquest and it receives the corresponding response. Let T ′

L
be the maximum time after the responder consumes a request
until it is able to produce a corresponding response as


















 

















 










 




















 











 




















Figure 2: Loop. Modeling bidirectional communication.

iillustrated in Figure 2. Finally, as proved in [4], the LOOP
does not block any of its components involved because it is
constructed by TRANSFERs and WAITs that have the same
non-blocking property.
Next, we present special cases of the LOOP given certain

common practical scenarios. The loop can be used to model
various types of communications as shown in Figure 2. We
present three loops that characterize the behavior between
communicating tasks based on the type of medium used
to store the data and the amount of time needed to turn
a request into a response. The In Memory Loop is used
to model local access where the data is already stored in
a memory buffer used to deliver responses. In this model,
requests are turned into responses immediately, as they are
already available in the memory buffer. The Short Term Loop
is used to model slower accesses to local store, such as
a disk or flash storage. In this model, requests are turned
into responses within the time bounds characterized by the
period of the component under the loop (i.e., disk). Note that
production from this component happen with the same rate
and period as its consumption. The Long Term Loop is used
to model accesses to operations that may take some time to
complete. The latency bound T ′

L characterizes the maximum
bound to turn a request into a response in the underlying
system components after the request has been consumed by
the component under the LOOP. Note that production of
responses may occur with a different rate and period than
consumption of requests.

VI. RAD–FETCH MODEL

In this section, we introduce the RAD–FETCH model,
and describe the behavior of each of the system compo-
nents. The RAD–FETCH model is a general framework

characterizing a class of prefetch algorithms and system
configurations. RAD-FETCH is described based on three
parameters: prebuffering time, OnFetch, and OffFetch. To
describe particular instances of algorithms based on RAD-
FETCH model we need to provide particular values for those
three functions. An example of such algorithm is given in
Section VII. RAD-FETCH can be used as part of a feasibility
test during admission control of a system to decide whether
a particular instance of a system configuration can satisfy
client’s performance requirements. The RAD-FETCH model
is derived by our general prefetch framework (Section III)
combined with the LOOP.

A. Characterizing Processing Capabilities and Latency
Processing bounds are all expressed as the RAD pro-

cessing capabilities of producing and consuming operations.
The client can produce requests with maximum rate rc and
period pc (RADc) and consume operations (extract data
from the intermediate storage) with maximum rate r′c and
period p′c (RAD′

c). Note the client may stop consuming
operations. Therefore, some extra space may be needed to
hold responses from the point where they become available
for consumption until they are actually consumed. This is a
function of the maximum number of outstanding operations
the client is allowed to have.
The intermediate storage receives requests from the client

with maximum rate rI and period pI (RADI) and it sends
data to the client with the same processing capabilities and
T′L = 0. This is because, we model access to a local storage
memory by characterizing production and consumption with
the same performance capabilities and no time separation
between these two events (In Memory or Short Term LOOP).
The intermediate storage sends requests to the data store

with maximum rate r′I and period p′I (RAD′
I) and receives

data from the data store with maximum rate r′′I and period
p′′I (RAD′′

I ). Finally, the data store receives requests from
the intermediate storage with maximum rate rs and period
ps (RADs) and sends data to the intermediate storage with
maximum rate r′s and period p′s (RAD′

s).
The client’s latency bounds require that it must receive a

corresponding response to a request within Tmax time.

B. Characterizing Component’s Behavior
The Upper and Lower Communication of our prefetching

framework (Figure 1(a)) is modeled by LOOPs as illustrated
in Figure 1(b). In particular, the top LOOP is either a In
Memory or Short Term LOOP and the one on the bottom
can be any among all possible LOOPS of Figure2.
We will describe the behavior of each of the system

components (i.e., client, intermediate storage and data store).
The client’s behavior is a given to our problem: The client
produces requests and consumes responses given its process-
ing bounds. Even though responses may be available by the
system to the client, those will have to be consumed by the
client according to its processing bounds (rate and period



of consumption). Since the client’s consumption happens
asynchronously compared to its production of requests, there
may be some outstanding operations (i.e. number of requests
that has been produced by the client, but not consumed
by the client yet) at any given point in time. We assume
that there is an upper bound on those that we denote
Omax. We can calculate that additional space by adding a
WAIT component in the LOOP between the client and the
intermediate storage.
Contrary to the client, the production of data by the data

store is directly derived by its consumption of requests.
Production of responses from the intermediate storage to the
client is derived directly by the consumption of requests. The
Data Store produces responses to operations that has been
previously consumed consumed with a maximum separation
in time T ′

L after consumption of the request.
It remains to describe the behavior of the intermediate

storage. The production of requests of the intermediate
storage is under the control of the system. In particular,
the intermediate storage operates in three phases: Prebuffer-
ing Phase, Steady Phase, and Final Phase. During the
Prebuffering Phase, the intermediate storage accumulates
data from the data store before the client is allowed to
start consumption. The amount of data accumulated in the
intermediate storage is expressed by variable DataInCache
in Figure VI-B. Once these data is accumulated then the
client is allowed to start consumption and it does so by
moving into the Steady Phase (Figure VI-B.). In the Steady
Phase we ensure that there is always enough data in the
intermediate storage but not infinitely many. To ensure that,
the intermediate storage starts prefetching when the data
in the cache goes below a certain threshold denoted as
OnFetch in Figure VI-B. This is expressed in line 4 of
Figure VI-B. Similarly, we stop prefetching when the data
in the cache exceeds another threshold denoted as OffFetch
in Figure VI-B. This is expressed in line 7 of Figure VI-B.
When the intermediate storage wants to prefetch data it sends
r′I p′I requests every p′I . When the intermediate storage stops
prefetching then it stops sending requests. The Steady Phase
is repeated indefinitely until the end of the workload during
which we move to the Final Phase. During the Final Phase
the system stops prefetching data and the client consumes
all remaining data.

VII. RAD-FETCH ALGORITHM
In this section, we present our prefetching algorithm.

This algorithm is based on the RAD-FETCH model. Recall
that this model provides a general framework of a class of
prefetching algorithms. To derive a specific algorithm we
just need to provide specific values for the parameters that
are not evaluated in RAD-FETCH model. The algorithm
works exactly as specified in Section VI-B when we replace
the RAD-FETCH parameters as follows:
The parameter OnFetch corresponds to data size that

trigger starting prefetching. As we will show in our proof

Algorithm VI.1 Steady Phase of prefetch algorithm
1: while more data is available to consume do
2: wait until the beginning of the period (p′I)
3: if DataInCache< OnFetch then
4: turn prefetch ON
5: end if
6: if DataInCache>= OffFetch then
7: turn prefetch OFF
8: end if
9: if prefetch is ON then
10: fetch one period worth of data (r′Ip′I)
11: end if
12: end while

of correctness in the next section, it suffices that OnFetch
contains rcpc data plus the maximum amount of data that
can be removed from the intermediate storage within a
time interval of length p′I +TL + e, where e is the smallest
possible value that forces this interval to start and end at the
beginning of some period p′I . It is easy to calculate that:

e=

⌈

p′I +TL
p′I

⌉

p′I− (p′I +TL) (1)

OnFetch= rcpc+(

⌈

p′I +TL+ e
pI

⌉

)rI pI (2)

The parameter OffFetch triggers the intermediate storage
to stop prefetching and it is evaluated as follows:

OffFetch= OnFetch+(

⌈

max (TL, p′I)
pI

⌉

+1)rI pI (3)

Finally, the prebuffering time chatacterizes the time it
will elapse before the client can start producing operations.
During that time the intermediate storage is prefetching data
as explained in detail in Section VI-B.

Prebuffering Time= TL+ p′I + e+

⌈

OnFetch
r′I p′I

⌉

p′I (4)

VIII. THEORETICAL EVALUATION OF RAD–FETCH
Clients with hard performance requirements have to wait

until some data is fetched by the intermediate storage prior
to starting their execution as formally shown in [4]. We
described this initial phase as prebuffering phase in RAD-
FETCH. The first question to answer by our analysis is
how much time the client has to wait before it can start
producing its operations and how much data should the
intermediate storage prefetch during the prebuffering phase.
Recall that the former is the prebuffering time and the later
is the prebuffering space. In Theorem 8.8 we show that the
value of prebuffering time given by Equation 4 suffices for
our RAD-FETCH algorithm to work correctly. Prebuffering
space is calculated in Theorem 8.10.



During the Steady Phase (after the prebuffering phase),
the intermediate storage starts and stops prefetching upon
need based on: OnFetch and OffFetch. Providing exact
values for those parameters answers the question of when
to turn on and off prefetching to meet the applications
requirements without overflowing/underflowing the buffer in
the intermediate storage. In Theorem 8.8 we show that the
value of OnFetch and OffFetch given by equations 2 and 3,
respectively suffice for correctness.
The rest of the section is organized as follows: In Sub-

section VIII-A, we show that our RAD-FETCH algorithm
(Section VII), solves the non-blocking predictable prefetch-
ing problem. In Subsection VIII-B, we analyze how much
buffer space is needed by our prefetching algorithm. The
buffer space needed is calculated as a function of the RAD
processing capabilities of the system components.

A. Correctness of RAD-FETCH Algorithm

Our goal is to ensure the minimum target consumption
without blocking of the system components. To do this,
we need to have enough available data in the intermediate
storage so that the client can perform its operations by
exclusively accessing the intermediate storage. In our model,
the client may request up to rcpc operations every period
pc. Hence, in our model, the minimum target consumption
translates to having the maximum data (i.e., rcpc) that the
client can request at the beginning of each period pc. Hence,
for our RAD-FETCH algorithm suffices to ensure RAD–
TARGET:
Property 8.1 (RAD–TARGET): The intermediate storage

has rcpc data available at the beginning of each period pc
after the client is allowed to start requesting data (i.e., after
the prebuffering phase).
For RAD-FETCH to support correct prefetching algo-

rithms, we need to impose some restrictions of the rates
of the components (properties 8.2,8.3, 8.4). Property 8.2 is
necessary as the client must be able to consume operations
at least as fast as it requests them, to avoid buffer overflow.
Property 8.3 ensures that the intermediate storage’s rate of
prefetching requests from the data store is larger than or
equal to the rate at which requests may be coming out of
the intermediate storage to avoid buffer underflow. Finally,
Property 8.4 ensures that the data store can produce data to
the intermediate storage fast enough by matching the rate of
consumption of requests by the intermediate storage.
Property 8.2: The maximum rate of production of the

client is smaller or equal to its maximum rate of consump-
tion: rc ≤ r′c.
Property 8.3: The maximum rate of refilling the cache

should be larger or equal to the maximum rate of emptying
the cache. It suffices that: r′I p′I ≥ (

⌈

pI
p′I

⌉

+1)rI pI .
Property 8.4: The maximum rate of production of data

by the data store must be larger than or equal to its rate of
consumption of the corresponding requests: rs ≤ r′s

Given our rate assumptions (properties 8.2, 8.3, 8.4),
formal correctness of our algorithm follows in Theorem 8.8.
We start with some preliminary lemmata.
Lemma 8.5: If the intermediate storage performs

prefetching during a period of time while data are not
removed from the intermediate storage, then after p′I+TL+e
time has elapsed, the intermediate storage will be storing at
least (additional) r′I p′I data by the beginning of each period
p′I .

Proof: While the intermediate storage performs
prefetching it sends its maximum requests r′I p′I per period p′I .
Those requested travel through the LOOP and data arrives
back from the data store within the LOOP’s latency TL.
Since there is no control on where within a period p′I the
intermediate storage will issue requests, it may take up
to time TL + p′I to start receiving requested data. At the
beginning of the next p′I period (i.e., after TL+ p′I + e time)
then data is guaranteed to be consumed (hence stored) by
the intermediate storage and in the worst case those arrive
at the beginning of each period p′I .
Lemma 8.6: At the end of the prebuffering phase (i.e.,

after prebuffering time TL+ p′I+e+
⌈

OnFetch
r′I p

′
I

⌉

p′I), there are
at least OnFetch data available in the intermediate storage.

Proof: The prebuffering phase lasts for prebuffering
time TL + p′I + e +

⌈

OnFetch
r′I p

′
I

⌉

p′I . During that time the
intermediate storage continually performs prefetching and no
data come out of the intermediate storage since the client has
not started requesting data. Then from Lemma 8.5, we know
that r′I p′I data will be stored in the intermediate storage by
the beginning of every p′I period after ≤ TL+ p′I+e time has
elapsed. Since the prebuffering phase continues for another
⌈

OnFetch
r′I p

′
I

⌉

periods of length p′I , then by the end of the
period we are guaranteed to have in the intermediate storage
⌈

OnFetch
r′I p

′
I

⌉

r′I p′I ≥ OnFetch data.
Lemma 8.7: During the Steady Phase, the intermediate

storage maintains at least rcpc data at all times.
Proof: By Lemma 8.6, because the steady phase starts

at the end of the prebuffering phase, at the beginning of the
intermediate storage there is at least OnFetch data available
in the intermediate storage. We will divide the Steady Phase
into two types of execution fragments separated by starting
and stopping prefetching.
First, let’s consider an execution fragment between start-

ing prefetching (where we have OnFetch data available)
and stopping prefetching (when we have OffFetch data
available). During the first p′I +TL+e time of this execution
fragment, the intermediate storage may not receive any data
as it may take that much time until the requests travel
through the loop and data appear as a response. This value
is calculated to be the beginning of a period p′I after the
latency of the loop plus a period p′I has elapsed. During that
time there can be at most (

⌈

p′I+TL+e
pI

⌉

+1)rI pI data removed
from the intermediate storage, because data is moved out



with rate rI and period pI . In the worst case, no data has
been added during that period. At the end of that period,
there will be OnFetch−(

⌈

p′I+TL+e
pI

⌉

+1)rI pI = rcpc data left
in the intermediate storage. But at the beginning of every
subsequent period there will be a gain of at least r′I p′I data
added to the intermediate storage by Lemma 8.5. Hence until
the intermediate storage stop prefetching, we guarantee that
for the next periods p′I there is at least additional r′I p′I data
stored per p′I . By Assumption 8.3, during those periods we
will have no loss of data since what we are guaranteed to
gain in size of data in the intermediate storage (i.e. r′I p′I)
at the beginning of each period p′I is larger or equal to the
maximum data that the intermediate storage can loose during
that period (i.e. (

⌈

pI
p′I

⌉

+ 1)rI pI). If OffFetch is reached at
any time during the intervals considered above then dditional
data accumulated than the above calculated minimum values.
Hence at all times we never had less than rcpc between
starting prefetching and stopping prefetching.
It remains to consider the execution fragments between

stopping prefetching and starting prefetching. For this case it
is trivial to see that we have at least rcpc data available in the
intermediate storage because by definition of this execution
fragment during that time there is no less than OnFetch data
available in the intermediate storage and OnFetch is larger
than rcpc.
Theorem 8.8: Given the rate assumptions (Properties 8.2,

8.3, and 8.4) our RAD-FETCH algorithm solves the non-
blocking predictable prefetching problem.

Proof: First, we will show how we ensure the min target
consumption. Given RAD-FETCH, to ensure the minimum
target consumption (Property IV) it suffices to ensure the
RAD–TARGET property 8.1, as explained at the beginning
of this section. RAD-TARGET is ensured by Lemma , which
ensures that the required rcpc data are available in the
intermediate storage at all times.
Second, given that the system has enough buffer space (as

calculated in Subsection VII) to support our RAD–FETCH
algorithm, the latency bound Tmax of the client is met given
that it is larger or equal to the latency of the loop used for
Upper Communication. This is because, the minimum target
consumption ensures that all responses to the client can be
served through the intermediate storage at all times.
Finally, our RAD-FETCH algorithm is non-blocking be-

cause it is build upon RAD-FLOWS components that are
non-blocking either as shown in [4]. In particular, all in-
volved consumers and producers never block due to lack of
space which is proved in RAD–FLOWS [4].
B. Analysis of Buffer Space of RAD-FETCH Algorithm
In this section, we calculate the minimum buffer space

that suffices for our RAD-FETCH algorithm. To calculate
that value we add the space needed by the 2 LOOPs (i.e.,
2BL) to the space needed by the algorithm run by the inter-
mediate storage (which is the maximum data accumulated
duringvprebuffering and steady phase).

Lemma 8.9: It takes at least time TL after stopping
prefetching until the intermediate storage starts prefetching.

Proof: For the intermediate storage to stop prefetching,
it has in its storage OffFetch = OnFetch+ (

⌈

max (TL,p′I)
pI

⌉

+

1)rI pI data. For it to start prefetching it must loose
(
⌈

max (TL,p′I)
pI

⌉

+ 1)rI pI data so that it meets the triggering
condition of prefetching (i.e., there are only OnFetch data
stored. The data is removed from the intermediate storage
with RAD processing capabilities rI , pI (i.e., at most rI pI
every pI). Hence, to loose at least (

⌈

max (TL,p′I)
pI

⌉

+ 1)rI pI
data, at least max (TL, pI) time has elapsed and as a result,
at least TL time has elapsed. We conclude that between
stopping and starting prefetching at least TL time has elapsed
and the Lemma follows.
Theorem 8.10: The prebuffering space is at least OnFetch

and at most (prebuffering time)r′I .
Proof: The prebuffering space is at least OnFetch

follows directly from Lemma 8.6. The maximum data accu-
mulated during the prebuffering phase is bounded by the
maximum data that the intermediate storage can request
during that time. Since the intermediate storage requests
r′I p′I data per p′I , then the maximum prebuffering space is
r′I p′I multiplied by the number of p′I periods that can fit in
prebuffering time. Since prebuffering time is a multiple of
such periods then the maximum data is prebuffering time
multiplied by the rate r′I .
Theorem 8.11: It suffices to have 2BL +

max ((prebuffering time)r′I ,OffFetch + (
⌈

TL
p′I

⌉

+ 1)r′I p′I)
buffer space available for the RAD-FETCH algorithm to
work correctly.

Proof: Since there are two loops involved in the RAD–
FETCH algorithm, we need at least 2BL buffer space to
account for those two loops. Next we calculate how much
additional space is needed by the intermediate storage. This
is given as the maximum of the space needed during pre-
buffering phase (which is prebuffering time)r′I , and during
the steady phase. Next we show that during the steady phase
at most OffFetch+ (

⌈

TL
p′I

⌉

+ 1)r′I p′I) buffer space is needed
and hence the theorem follows.
During steady phase, when prefetching is on the data

stored in the intermediate storage is less than or equal to
OffFetch. Once the OffFetch threshold is met no more data
is prefetched for the next TL time (by Lemma 8.9). During
that time the intermediate storage can receive data that is
still in transit (requested before stopping prefetching and
not received yet). This is bounded by at most the maximum
amount of data that the intermediate storage can request
within a period of length TL. Since the intermediate storage
can request at most r′I p′I operations per period p′I and there
can be at most (

⌈

TL
p′I

⌉

+ 1) periods p′I overlapping TL the

maximum data in transit is equal to (
⌈

TL
p′I

⌉

+1)r′I p′I .



IX. CONCLUSION AND FUTURE WORK

We have presented the RAD–FETCH model that char-
acterizes predictable prefetching using RAD–FLOWS. This
model supports hard real–time applications. The main con-
tribution of our work is a full analysis that describes how
to prefetch data in order to ensure the application’s require-
ments without violating the system capabilities. Without our
model in place prefetching could result in unnecessary over-
provisioning. More importantly, there will be no assurance
of the bound on the executiom time of the workload, needed
for hard real–time applications. As future work, we plan to
extend the RAD–FLOWS to model other cache mechanisms
such as writeback and cache hits.

REFERENCES

[1] A. Verma, K. Voruganti, R. Routray, and R. Jain, “Sweeper:
an efficient disaster recovery point identification mechanism,”
in Proceedings of the 6th USENIX Conference on File and
Storage Technologies, ser. FAST’08, 2008, pp. 20:1–20:16.

[2] A. Povzner, T. Kaldewey, S. Brandt, R. Golding, T. M.
Wong, and C. Maltzahn, “Efficient guaranteed disk request
scheduling with fahrrad,” SIGOPS Oper. Syst. Rev., vol. 42,
no. 4, pp. 13–25, 2008.

[3] T. Kaldewey, T. M. Wong, R. Golding, A. Povzner, S. Brandt,
and C. Maltzahn, “Virtualizing disk performance,” Real-Time
and Embedded Technology and Applications Symposium,
IEEE, vol. 0, pp. 319–330, 2008.

[4] R. Pineiro, K. Ioannidou, S. Brandt, and C. Maltzahn, “Rad-
flows: Buffering for predictable communication,” in Proceed-
ings of the 17th IEEE Real Time on Embedded Technology
and Applications Symposium. Washington, DC, USA: IEEE
Computer Society, 2011.

[5] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra,
F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Sten-
ström, “The worst-case execution-time problem– overview of
methods and survey of tools,” ACM Trans. Embed. Comput.
Syst., vol. 7, pp. 36:1–36:53, May 2008.

[6] H. Ramaprasad and F. Mueller, “Bounding worst-case data
cache behavior by analytically deriving cache reference pat-
terns,” in Proceedings of the 11th IEEE Real Time on Em-
bedded Technology and Applications Symposium, 2005, pp.
148–157.

[7] Y. Ding and W. Zhang, “Loop-based instruction prefetching
to reduce the worst-case execution time,” IEEE Transactions
on Computers, vol. 59, pp. 855–864, 2010.

[8] J. Yan and W. Zhang, “Analyzing the worst-case execution
time for instruction caches with prefetching,” ACM Trans.
Embed. Comput. Syst., vol. 8, pp. 7:1–7:19, January 2009.

[9] M. Lee, S. L. Min, and C. S. Kim, “A worst case timing anal-
ysis technique for instruction prefetch buffers,” in Selected
papers of the short notes session on Euromicro ’94, 1994,
pp. 681–684.

[10] X. Zhuang and H.-H. S. Lee, “Reducing cache pollution
via dynamic data prefetch filtering,” IEEE Trans. Comput.,
vol. 56, pp. 18–31, January 2007.

[11] J. Reineke, D. Grund, C. Berg, and R. Wilhelm, “Timing
predictability of cache replacement policies,” Real-Time Syst.,
vol. 37, pp. 99–122, November 2007.

[12] S. A. Brandt, S. Banachowski, C. Lin, and T. Bisson, “Dy-
namic integrated scheduling of hard real-time, soft real-time
and non-real-time processes,” in Proceedings of the 24th IEEE
Real-Time Systems Symposium (RTSS 2003), Dec. 2003, pp.
396–407.

[13] S. Brandt, C. Maltzahn, A. Povzner, R. Pineiro, A. Shew-
maker, and T. Kaldewey, “An integrated model for perfor-
mance management in a distributed system,” OSPERT, 2008.

[14] B. S. Gill and L. A. D. Bathen, “Amp: adaptive multi-stream
prefetching in a shared cache,” in Proceedings of the 5th
USENIX conference on File and Storage Technologies, 2007,
pp. 26–26.

[15] A. J. Smith, “Cache memories,” in ACM Comput. Surv, 1982,
pp. 473–530.

[16] S. Harizopoulos, C. Harizakis, and P. Triantafillou, “Hierar-
chical caching and prefetching for high performance contin-
uous media servers with smart disks,” IEEE Concurrency,
vol. 8, p. 2000, 2000.

[17] B. S. Gill and D. S. Modha, “Sarc: sequential prefetching in
adaptive replacement cache,” in Proceedings of the annual
conference on USENIX Annual Technical Conference, ser.
ATEC ’05, 2005, pp. 33–33.

[18] F. Dahlgren, M. Dubois, and P. Stenstrom, “Fixed and adap-
tive sequential prefetching in shared memory multiproces-
sors,” in Proceedings of the 1993 International Conference
on Parallel Processing - Volume 01, ser. ICPP ’93, 1993, pp.
56–63.

[19] T.-F. Chen and J.-L. Baer, “Reducing memory latency via
non-blocking and prefetching caches,” in Proceedings of
the fifth international conference on Architectural support
for programming languages and operating systems, ser.
ASPLOS-V, 1992, pp. 51–61.

[20] S. Lim and M. H. Kim, “A real-time prefetching method for
continuous media playback,” Database and Expert Systems
Applications, International Workshop on, vol. 0, p. 889, 1999.

[21] S. Oh, B. Kulapala, A. Richa, and M. Reisslein, “Continuous-
time collaborative prefetching of continuous media,” Broad-
casting, IEEE Transactions on, vol. 54, no. 1, pp. 36 –52,
mar. 2008.


