
SimiHash: Hash-based Similarity Detection

Technical Report UCSC-SOE-11-07

Caitlin Sadowski
University of California, Santa Cruz

supertri@cs.ucsc.edu

Greg Levin
University of California, Santa Cruz

glevin@cs.ucsc.edu

February 22, 2011

1 Abstract

Most hash functions are used to separate and obscure
data, so that similar data hashes to very different
keys. We propose to use hash functions for the op-
posite purpose: to detect similarities between data.

Detecting similar files and classifying documents is
a well-studied problem, but typically involves com-
plex heuristics or O(n2) pair-wise comparisons. Us-
ing a hash function that hashes similar files to sim-
ilar values, file similarity can be determined simply
by comparing pre-sorted hash key values. The chal-
lenge is to find a similarity hash that minimizes false
positives.

We have implemented a family of similarity hash
functions with this intent. We have further enhanced
their performance by storing the auxiliary data used
to compute our hash keys. This data is used as a
second filter after a hash key comparison indicates
that two files are potentially similar. We use these
tests to explore the notion of similarity.

2 Introduction

As storage capacities become larger it is increasingly
difficult to organize and manage growing file systems.
Identical copies or older versions of files often become
separated and scattered across a directory structure.
Consolidating or removing multiple versions of a file
is desirable. However, deduplication technologies do
not extend well to the case where files are not identi-
cal. Techniques for identifying similar files could also
be useful for classification purposes and as an aid to
search.

A standard technique in similarity detection is to
map features of a file into some high-dimensional
space, and then use distance within this space as a
measure of similarity. Unfortunately, this typically
involves computing the distance between all pairs of
files, which leads to O(n2) similarity detection algo-
rithms. If these file-to-vector mappings were reduced
to a one-dimensional space, then the data points
could be sorted in O(n log n) time, greatly increas-
ing detection speed.

Our goal is to create a similarity hash function.
Typically, hash functions are designed to minimize
collisions (where two different inputs map to the same
key value). With cryptographic hash functions, col-
lisions should be nearly impossible, and nearly iden-
tical data should hash to very different keys. Our
similarity hash function has the opposite intent: very
similar files should map to very similar, or even the
same, hash keys, and distance between keys should
be some measure of the difference between files. Of
course, “file size” is a sort of hash function on files
which satisfies these requirements. However, while
similar files are expected to have similar sizes, there
is no expectation that two files which are close in size
have similar content. It is necessary to minimize the
number of such false positives in similarity hashes in
order to implement a practical system. That said, it
is not at all clear how to condense information from
a file into a more useful one-dimensional key.

While SimiHash does produce integer-valued hash
keys, we rely on auxiliary data to refine our similarity
tests. Our key values are based on counting the oc-
currences of certain binary strings within a file, and
combining these counts. The key values are roughly

1

proportional to file size, which causes false positives.
However, the auxiliary data provides an easy and ef-
ficient means of refining our similarity detection. A
refined version of our keys based on file extension
gives a much wider spread of key values, and allevi-
ates some of the aforementioned problems.

3 Semantics of Similarity

“Similarity” is a vague word, and can have numerous
meanings in the context of computer files. We take
the view that in order for two files to be similar they
must share content. There are different ways to define
that sharing, or what is meant by “content.” Take a
text file encoded in RTF format as an example. Con-
tent could refer to the entire file, just the text portion
of the file (not including RTF header information), or
the semantic meaning of the text portion of the file
(irrespective of the actual text).

Many previous attempts at file similarity detection
have focused on detecting similarity on the text [1, 2]
level. We decided to instead use binary similarity as
our metric. Two files are similar if only a small per-
centage of their raw bit patterns are different. This
definition overlooks some files which we intuitively
recognize as similar. For example, adding a line to
source code file might shift all line numbers within
the compiled code. The two source files would be
detected as similar under our metric; the compiled
results would not. We decided on binary similarity
because we did not want to focus on one particular
file type (e.g. text documents) or structure.

Another issue we do not explore in this paper is
that of semantic similarity. For example, two pieces
of text might use different words to convey the same
thing. Or, two MP3s of the same song sampled differ-
ently may result in completely different binary con-
tent. We focus on syntactic, not semantic, similarity.
In the words of Udi Manber, “we make no effort to
understand the contents of the files.” [3]

Broder [4] first made clear the distinction between
resemblance (when two files resemble each other) and
containment (when one file is contained inside of an-
other). As an example of a containment relationship,
take the case where one file consists of repeated copies

of another smaller file. SimiHash is focused on re-
semblance detection. Two files with a significant size
disparity (as in the example above) are implicitly dif-
ferent; containment relationships between files do not
necessarily make two files similar under our metric.

In order for files to be similar under our estima-
tion, they must contain a large number of common
pieces. Another dividing point of similarity identifi-
cation techniques is the granularity and coverage of
these pieces. SimiHash operates at a very fine gran-
ularity, specifically byte or word level. We do not
attempt complete coverage; we only care about the
portions of the file which match our set of bit pat-
terns.

Given some similarity metric, there needs to be a
threshold which defines when files count as similar.
We are focused on files which are very closely related,
ideally within 1-2% of each other.

Another tradeoff for similarity detectors is whether
they are meant to be used for organization or search;
the focus could be either on retrieving a set of files
similar to a given file (relative), or retrieving all pairs
of similar files (absolute). SimiHash does both.

4 Implementation

Our hash key is based on counting the occurrences of
certain binary strings within a file. The keys, along
with specific intermediate data, are stored in a rela-
tional database (Figure 1). A separate program then
queries the database for keys with similar values, and
outputs the results. SimiHash was written in C++,
and developed simultaneously for the Windows and
Macintosh platforms.

4.1 Computing Hash Keys

Since our notion of similarity is based on binary sim-
ilarity, SimiHash counts the occurrences of various
specific binary strings within a file being processed.
We preselect a set of strings, called tags, to search
for. We only use a subset of all possible strings of a
given length in the set of tags, as summing matches
over all strings would blur file differences and essen-
tially reflect file size. Tag size is important, since

2

files

. . .

. . .

. . .

. . .

Sim
Hash

Figure 1: SimiHash processes files on a per-directory
basis and stores the hash keys and sum table values
in a relational database.

shorter strings do not represent meaningful patterns
and longer strings may not occur with meaningful
frequency in smaller files. We chose to use 16 8-bit
tags, although we experimented with several differ-
ent tag sets; 8 bits strike a balance between opposing
concerns.

The SimiHash program opens each file in a direc-
tory and scans through it linearly looking for matches
with each of our tags (Figure 2). We advance the de-
tection window one bit at a time, rather than one
byte, since bit patterns across consecutive bytes en-
code some information about byte order. This also
gives us a larger and more varied key space, which al-
lows more refined similarity detection. When a match
is found, a skip counter is set and then decremented in
the following bits. This prevents overlaps of matches
on the same tag (for example, 0x00 will only be de-
tected twice, and not 9 times, when two consecutive
zero bytes are scanned). A count of matches, or hits,
is kept for each tag, and these are stored in a sum
table. The hash key is then computed as a function
of the sum table entries. We restrict our attention to
linear combinations of the sums, as giving an order
of magnitude more weight to one tag over another
would be basically equivalent to not using the other
tag at all. We experimented with various weighting
schemes for our linear combinations.

Figures 3 shows key values plotted against file
sizes. This figure shows the key spaces for keys with
identical weights (Uniform) and heavily imbalanced
weights (Skew), and plots the line y = x for reference.

Tag1 =
101100

Tag2 =
111111

TagN =
001011

File binary data: ... 10110010111...

. . . .

= f ()
Hash Key

. . . .

SumTable

Figure 2: SimiHash produces two levels of file simi-
larity data: tag counts make up the sum table entries,
which are then combined to form a hash key.

Note that both key values are roughly proportional to
file size, although the Skew Key has a wider variance.

For each file, the file name, path, and size, along
with the SimiHash key and all entries in the sum ta-
ble, are stored in a MySQL database. Our implemen-
tation has the capacity to compute and store multiple
keys per field, so that different sum table weightings
can be compared side-by-side or used as additional
filters.

4.2 Extensions

We also implemented a variation of the key function
which accounts for file extensions. It is not unreason-
able to claim that two files are inherently different if
they have different extensions; our extension-aware
hashing scheme assigns very different values to any
two files with different extensions. To this end, the
extension-aware SimiHash computes a simple hash
of the first three characters of a file’s extension, with
a value between 0 and 1. The distribution of these
values is fairly uniform across the space of possible
extensions. We then multiply this extension value by
MAX INT, and add to our SimiHash key value. Since

3

Figure 3: Visualization of Key Spaces for Uniform
and Skew Keys

we only care about the distance between keys, and
not their actual values, this mapping will not affect
the relation between files with the same extension but
will tend to widely separate files of different exten-
sions. This has the effect of more evenly distributing
our key values across the space of 32-bit integers, and
making cross-extension key matches very unlikely.

Figure 4 shows the Skew Key with file extension
modification. Keys span the full range of 32-bit val-
ues, with horizontal stripes representing different file
extensions. It is clear from the picture that key hits
between different file types would be highly unusual.
For further discussion of these keys, see Section 5.

4.3 Finding Similarities

Once the database has been populated, we use a
second program called SimiFind to look for similar
keys (Figure 5). SimiFind performs a SQL query on
each key to find all other key values within a certain
threshold, one file at a time. SimiFind has a single
tolerance level across all files; this tolerance level is
multiplied by the size of the target file when creating
the threshold since we expect key values to increase
proportionally to file size. The threshold-matches are
the first pass from the similarity filter. SimiFind then
discards any potential matches where the file size dif-
fers too much from the target file. Next, SimiFind

Figure 4: Visualization of Skew Key Space with File
Extension Modification

computes the distance between the sum tables for
each potential match and the target file, which is just
the sum of the absolute values of the differences be-
tween their entries. If this distance is within a certain
tolerance (proportional to the key tolerance and file
sizes), then we report the two files as similar. Fur-
ther, if the sum table distance is zero, the two files
are optionally compared directly to determine if they
are, in fact, identical files.

Essentially, two files are deemed similar if they each
contain a very similar number of our selected bit-
wise tags. This method has several strengths and
drawbacks. Because the ordering of the tag matches
within a file is not accounted for, rearranging the con-
tents of a file will, up to a point, have little impact
on key values and sum tables. Similarly, adding or
removing small pieces of a file will have only a small
effect on the hash key. Consequently, small changes
to a file shouldn’t throw off our similarity measure.
Further, the results of our calculations are relatively
easy to understand and reason about. Because “sim-
ilarity” is based on the numerical distance between
values, we can easily change the tolerance level for
key and sum table distance matches. Of course, in-
creasing tolerance values both widens the range of
similar files found and increases the number of false
positives, so a good balance between these must be
found.

4

KeyHits

. . .

. . .

Similar?

Sum Table Hits

file

Threshold

...

...

Figure 5: SimiFind identifies all files which have key
values within a certain tolerance of a particular file,
then performs pairwise comparisons among the sum
table entries to return a filtered selection of similar
files.

As the order of strings within files is not measured,
very different files can be detected as similar if they
happen to share too many bit patterns. For exam-
ple, the law of large numbers makes false positives
within the key space more likely for large files with
effectively random data. Since key similarity compar-
isons are based on O(log n) searches through a sorted
list, an excess of false key-similar positives means a
larger number of pair-wise comparisons that must be
performed on the sum table.

5 Results

We explored how different selections of tags and tag
weights affected our output. We also investigated fac-
toring in other data, such as the file extension, when
computing hash keys. We ran tests on a variety of
data sets, both artificially generated and found in the
wild. There are still many settings and improvements
to explore in the future.

We found that an unbalanced weighting scheme
where only a few tags were used to compute a key
worked best on a realistic file set, although a more
uniform weighting scheme performed better on con-
trived data sets. We also identified several problems
with our method which highlight areas for future
work.

5.1 Choosing Tags and Keys

As previously discussed, we settled on 16 8-bit tags
to apply our similarity measure. In trying to select
tags, we noticed that 0x00 was often the most sig-
nificant single differentiator of file structure. This is
not surprising, as some files are padded with large
sections of zeros, while data rich files and text files
contain few or no 0x00 bytes. Other than 0x00, an
essentially random selection of bytes values seem to
perform generally better than contrived or structured
tag sets. We included the ASCII representations of
‘e’ and ‘t’, as these appeared to be strong indicators
of text-based data, and also non-ASCII-range bytes,
which would be less prevalent in text files.

One measure of key performance is the ratio of sum
table hits to key hits. That is, what fraction of key
hits are validated as actually similar according to the
sum table? The higher this ratio, the lower the pre-
sumed false positive rate of the key. We use this
measure to compare different modifications.

Figure 6 shows results of comparing four keys on
two distinct file sets. The Uniform Key has all 16 tags
weighted equally, while the Skew Key applies uneven
weights to only 4 of the tags, with the 0x00 tag get-
ting the largest weight (other weighting schemes were
tested, but were found to regularly lie between these
two extremes). The “Similar Files” set contains a se-
quence of 4K files, each of which differs in only a few
bytes from its predecessor. Consequently, “nearby”
files should all be considered similar. The “Differ-
ent Files” set contains a sample of assorted files from
a real file system. From this set, files with apparent
similarities were removed, and all files were truncated
to 4K to make results more easily comparable. That
we observe a smaller rate of false positives on a set of
similar files is not surprising, since there are simply
fewer dissimilar files. For the somewhat more realis-

5

Figure 6: Comparing effectiveness of different key
strategies on sets of predominantly similar and pre-
dominately different files.

tic set of different files, the Skew Key shows better
performance1. Running tests on several other data
sets confirmed this observation and so the Skew Key
was adopted as the standard key for future tests.

We also investigated various relative weightings of
tags in the calculation of the hash key. We tried equal
and unequal weightings of all tags, as well as giving
zero weights to (i.e. ignoring) a large fraction of our
tags. On the whole, this last scheme performed best
on real file sets.

The next trial demonstrated the value of the file
extension key modification. Figure 7 shows key hits
and sum table hits for the Skew Key, with and with-
out the file extension modification. The trial was run
on 10,364 files from a random selection of directories
on an existing Macintosh file system. To normalize

the results, values were divided by
(

n
2

)
, the to-

tal number of pairs of files across the test set. Even
at a rather high tolerance, the Skew Key with ex-
tensions only reports a match for about one in 5000

1Note that these are ratios, not absolute counts of similarity
hits. While some effort was made to remove similar files from
the “Different Files” set, the remaining hits that were found
were all between files with matching extensions, even with-
out the file extension enhancement in place. Further, matches
appeared to occur on genuinely similar files, with similarity
decreasing as tolerance increased.

Figure 7: Number of key and sum table hits with and
without the file extension key modification. Results
are scaled by the total number of file pairs in the file
set.

pairs, or about two hits per file. In other words, only
a small number of auxiliary sum table comparisons
are needed on average. While a file set of 10000 is
small compared to an entire file system, the small
percentage of matches is an encouraging sign that
our methods have some hope of scaling well to larger
file sets.

5.2 Problems

There are a number of problems with our method,
although it is not clear if any generalized similarity
measure could address all of these. One problem we
encountered was certain file formats with very large
headers. Postscript is an example of this. We took
200 randomly generated 4K ASCII files (which should
have no more similarity than would be predicted by
the averaging effects of the law of large numbers), and
then converted them to both PDF and Postscript.
The results of applying the Skew Key to these three
sets is shown in Figure 8. In all three formats, there
is a critical tolerance region, where we quickly jump
from “none similar” to “all similar.” While the shape
of the curves is nearly identical, this threshold ap-
pears for Postscript files at a tolerance value nearly
100 times more sensitive than their raw ASCII coun-

6

Figure 8: Sum table hits for 200 randomly gener-
ated ASCII files, with data converted to PDF and
Postscript formats. Large file headers in Postscript
cause the same content to be identified as similar at
much lower tolerance levels.

terparts. This is due to common headers and file
padding in the more complex file formats. For exam-
ple, 4K of raw text translates into a 12K PDF, and
an enormous 252K Postscript file. Obviously, the ma-
jority of the file is structure and not content, and so
two Postscript files with entirely different data will
still show a very high similarity as a percentage of
their size. This makes detecting differences in data
problematic for such file formats. A potential solu-
tion would be to manually set the tolerance levels for
different file formats. A very low tolerance setting for
Postscript extensions would rule out similarity that
amounts to only a small percentage of the file size.

Another problem we haven’t addressed here is
scale. So far, we have only used a maximum test set
of 10,000 files. As similarity detection would be useful
in file systems of potentially millions of files, it is not
immediately obvious how well our results scale. In
terms of space usage, only a few hundred bytes were
necessary to store the SimiHash information associ-
ated with a particular file. In our implementation,
most of this was taken up with the file path string
for increased readability. In a more integrated im-
plementation, that text could be replaced with the
file inode address or other numerical representation

Figure 9: Run time versus file count for SimiFind on
sets of similar files, with a quadratic curve plotted for
reference.

(such as a hash of the path), reducing the space usage
to approximately 100 bytes per file.

We ran our SimFind process on sets of similar files
that ranged in count from 500 to 8000, and timed the
results, shown in Figure 9. A quadratic curve is plot-
ted for reference, and our time growth appears to be
O(n2). This is exactly the sort of prohibitive growth
that a hash key method has potential to avoid, al-
though we must keep in mind that these are sets of
very similar files, where numerous key hits are ex-
pected. It should only take O(log n) time to deter-
mine the number of key matches against a file, but
if the number of matches is proportional to the total
number of files, then we will need to perform O(n)
sum table comparisons for each file. O(n2) growth
may be unavoidable. Within a typical file system, it
may be the case that the number of files that actu-
ally generate key hits against a single file is a tiny
fraction of the overall file count; this fraction may be
small enough to make the constant on the O(n2) of a
manageable size, so that our method would be still be
efficient in practice. In any case, we did not expect
key hits by themselves to provide a reliable measure
of fine-grained similarity. Instead, we expected they
would provide a strong filter which greatly reduces
the number of pair-wise comparisons subsequently
needed.

7

A final difficulty is the relation between key and
sum table hits. Sum table hits represent a much more
accurate measure of similarity. Ideally, if sum ta-
ble comparisons would label two files as similar, then
those two files should also first pass the coarser key
similarity test. In practice this ideal may not be de-
sirable. Consider the Uniform Key, where all tags are
given equal weights. If two files have a sum table dis-
tance of 20, then the differences in their keys would
lie somewhere between 0 and 20. If our sum table
tolerance is 20, then our key hit tolerance should be
20 as well to allow all possible sum table hits to be
checked2.

In general, it may be that a key tolerance of 15 only
eliminates 10% of our sum table hits, but reduces the
number of false positives by 40%. This phenomenon
is visible in Figure 7, where the improved key with ex-
tensions admits fewer sum table hits. This trade-off
between performance and accuracy may be accept-
able or even desirable. Exploring the interaction of
these two tolerances remains a topic for future work;
their actual values could be set based on the needs of
a given implementation environment.

6 Related Work

The problem of identifying file similarity is not a new
one, although no one seems to have discovered a con-
sistently good general solution. Much of the research
on similarity detection has focused on very specific
applications and file types. This includes:

• technical documentation [1]

• software systems [5]

• plagiarism detection [2, 6]

• music [7]

• web pages [8, 9]

2Only in an extreme case is this high a key tolerance neces-
sary. We compared sum table hits to key hits in a data set of
similar files made by successively appending bytes to a starter
file. In this worst case scenario, the sum hit to key hit ratio
approaches one.

For example, Manku et al. applied a so-called
simhash3 algorithm [10] to detect similar web docu-
ments in a large repository [9]. Their strategy works
at the document level and counts instances of hashes
instead of bit patterns.

There has also been a body of research focusing
on redundancy elimination or deduplication. In most
cases, the main goal of redundancy elimination is a
reduction in either bandwidth or storage. Redun-
dancy elimination can focus on eliminating multiple
copies of the same file, or else preventing repeats of
specific blocks shared between files. The standard
way to identify duplicate blocks is by hashing each
block. Venti [11] is an archival storage system which
stores only one copy of every block. As files are
modified, new copies of modified blocks are written
to disk, without changing references to unmodified
blocks. Shared or unmodified blocks are identified
by comparing hashes of the blocks within a file be-
fore writing to disk. LBFS [12] exemplifies a similar
idea but is focused on bandwidth reduction; when a
file is changed, only modified blocks are sent over the
network. Redundancy elimination at the block (or
chunk) level provides a coarse-grained method of file
similarity; files which share enough identical blocks
are similar. Forman et al[1] took this approach when
identifying similar documents in a repository. A file
is represented by a collection of hashes of content-
based chunks. If the collections of a set of files share
a large overlap, then the files are considered similar.

A natural question when classifying blocks is how
to identify block boundaries. The options for this
include fixed-size chunking (for example, file system
blocks), fixed-size chunking over a sliding window
(rsync [13]), or some form of dynamic content-based
chunking [12]. Content-defined chunking consistently
outperforms fixed-sized chunking at identifying re-
dundancies, but involves larger time and space over-
heads [14].

Instead of coalescing repeated blocks, delta-
encoding works at a finer granularity. Essentially,
it uses the difference (or delta) between two files

3Our algorithm was originally called SimHash, and was de-
veloped concurrently with the previous use of this name [9].
However, we changed it to SimiHash in this technical report to
avoid confusion.

8

to represent the second one. This is only effective
when the two files resemble each other closely. Dif-
ferent versions in a version control system provide
a good example. DERD [15] investigates dynami-
cally identifying similar files (or web pages) and then
using delta-encoding to shrink the total footprint of
similar pairs. The goal of REBL [16] is heavy re-
dundancy elimination with a combination of previ-
ous techniques. Identical and similar (content-based)
chunks are identified. Identical copies of chunks are
removed, and similar chunks are delta-encoded. The
remaining chunks are compressed; this is essentially
redundancy elimination within one file.

Udi Manber [3] developed a technique for finding
what he calls approximate fingerprints of a file. His
approach involves the concept of a set of anchors, or
small patterns of characters. In each file, a checksum
of the characters around occurrences of each anchor
is computed. This set of checksums forms the fin-
gerprints for the file, and is compared against finger-
prints for other files when searching for similar files.
Our sum table counts are in a similar vein. An im-
portant distinction between the two ideas is that we
also form one hash key for each file. This serves as
a low-cost, first-pass filter which greatly reduces the
number of pair-wise comparisons needed.

7 Future Work

There are many ways to extend and build on the
ideas and methods presented here, some of which
were discussed in earlier sections. Our hash function
could almost certainly be improved upon. Even the
file extension modified hash appears to cover only a
small portion of our 32-bit key space. A hash func-
tion which covered this space more uniformly while
still encoding similarity could provide a much lower
rate of false positive key hits. We could also combine
multiple hash keys in a progressive filtering scheme
to remove more false positives before getting to the
level of sum table comparisons. Even the sum table
pair-wise comparison scheme could be used as an in-
termediate filter for more complex pair-wise compar-
ison schemes. Since computing sum table differences
is fast and efficient, it might provide an efficiency

boost to other methods. Alternately, we could com-
bine our similarity measurements with others.

There are a few other metrics besides binary sim-
ilarity which would extend to the diversity of file
types available in a system. One specific example
is metadata about files. We did not use file metadata
(author, creation date, etc.) for file similarity detec-
tion because we wanted our code to be cross-platform
compatible. We also did not want to get caught up
with issues of metadata reliability, and so limited our
focus to the actual contents of the file. In future, one
could imagine adding heuristics for metadata similar-
ity.

Multiple similarity metrics for different file types
could be combined to have a cohesive file similarity
measure for the entire system. Extending SimiHash
to provide varying built-in tolerance levels for differ-
ent extensions may alleviate this problem somewhat,
but there will still be some file types for which binary
similarity does not work (e.g. music files). As an al-
ternative, SimiHash could be made more effective by
running certain files through a filter before comput-
ing their hash values. For example, many different
document formats are often essentially just text (the
aforementioned Postscript, PDF, and RTF, as well
as MS Word documents, HTML files, etc). We could
extract the text content from such files and hash only
the raw ASCII.

Existing similarity detection methods based on
similar file chunks could be extended and enhanced
with similarity hashes. Using the LBFS [12] scheme
for dynamically partitioning files into chunks, we
could restrict our attention to a similarity hash on
file chunks. One of the main drawbacks of our ap-
proach is the strong correlation between our keys and
file sizes. With a small upper bound on chunk sizes
and data quantity not playing such a role, we could
implement more diverse schemes for similarity hash-
ing.

8 Conclusions

We developed a similarity hash function, called
SimiHash, which stores a set of hash keys and auxil-
iary data per file, to be used in determining file sim-

9

ilarity. We define similarity on a binary level, and
experimented with variations. We discovered some
fundamental limitations to a general-purpose simi-
larity hash function for files, and directions for future
work.

9 Acknowledgments

Thanks to Ian Pye for help with getting MySQL
up and running, and teaching us Python for all our
scripting needs. Thanks to Darrell Long for inspiring
us to work on this project.

10 Code

Source code for SimiHash is available under GPL v2
at: http://code.google.com/p/simhash/.

References

[1] G. Forman, K. Eshghi, and S. Chiocchetti. Find-
ing similar files in large document repositories.
International Conference on Knowledge Discov-
ery in Data Mining (KDD), 2005.

[2] T.C. Hoad and J. Zobel. Methods for identifying
versioned and plagiarized documents. Journal
of the American Society for Information Science
and Technology, 54(3):203–215, 2003.

[3] U. Manber. Finding similar files in a large file
system. USENIX Annual Technical Conference
(ATEC), 1994.

[4] A. Broder. On the resemblance and containment
of documents. Conference on the Compression
and Complexity of Sequences, 1997.

[5] T. Yamamoto, M. Matsusita, T. Kamiya, and
K. Inoue. Measuring Similarity of Large Soft-
ware Systems Based on Source Code Corre-
spondence. International Conference on Product
Focused Software Process Improvement (PRO-
FES), 2005.

[6] Y. Bernstein and J. Zobel. A scalable system
for identifying co-derivative documents. Lecture
notes in computer science, 3246:1–11, 2004.

[7] Matt Welsh, Nikita Borisov, Jason Hill, Robert
von Behren, and Alec Woo. Querying large col-
lections of music for similarity. Technical Report
UCB/CSD-00-1096, EECS Department, Univer-
sity of California, Berkeley, 2000.

[8] D. Buttler. A Short Survey of Document Struc-
ture Similarity Algorithms. International Con-
ference on Internet Computing (ICOMP), 2004.

[9] G.S. Manku, A. Jain, and A. Das Sarma. Detect-
ing near-duplicates for web crawling. In Interna-
tional conference on World Wide Web (WWW),
2007.

[10] M.S. Charikar. Similarity estimation techniques
from rounding algorithms. In Symposium on
Theory of Computing (STOC), 2002.

[11] S. Quinlan and S. Dorward. Venti: a new ap-
proach to archival storage. Conference on File
and Storage Technologies (FAST), 2002.

[12] A. Muthitacharoen, B. Chen, and D. Mazières.
A low-bandwidth network file system. In Sympo-
sium on Operating Systems Principles (SOSP),
2001.

[13] A. Tridgell and P. Mackerras. The rsync algo-
rithm. Technical Report TR-CS-96-05, Depart-
ment of Computer Science, The Australian Na-
tional University, 1996.

[14] C. Policroniades and I. Pratt. Alternatives for
detecting redundancy in storage systems data.
SENIX Annual Technical Conference (ATEC),
2004.

[15] F. Douglis and A. Iyengar. Application-specific
delta encoding via resemblance detection, 2003.

[16] Purushottam Kulkarni, Fred Douglis, Jason
LaVoie, and John M. Tracey. Redundancy elimi-
nation within large collections of files. In Usenix
Annual Technical Conference (ATEC), Berkeley,
CA, USA, 2004.

10

